
A Simple Method of Creating Custom Excel Reports

Jimmy DeFoor

Citi Retail Bank

This paper will show the reader how to create formatted Excel-based reports without using SAS Styles. It will

use the technique of creating a report-structured spreadsheet that imports data from a data-structured

spreadsheet.

The SAS coding methods shown in this paper will include:

1) Using the Types statement in a Proc Summary to create line totals and report totals.

2) Creating user formats to provide descriptions for each report line, including minus (‘-‘) signs that

indicate the line should be subtracted from a prior line.

3) Building a dummy data set with every possible line in the report so that the report would always have

a fixed number of columns and rows.

4) Establishing a macro that would create the same report structure for the three different summaries of

the source data.

5) Exporting reports to different worksheets in the same spreadsheet using Proc Export with the sheet option.

6) Cleaning up existing spreadsheets and copying spreadsheets using the Call System option.

7) Send an email with Filename FTP announcing that the spreadsheet is available for review.

The Excel coding methods include:

1) Linking report cells to a data cells in another spreadsheet updated by the SAS program.

2) Bolding text in the Report Title and Column Cells.

3) Formatting linked report cells as needed.

4) Using the IF function and the ISBLANK function to prevent zeros in empty numeric cells.

Below are examples of the reports created in the report spreadsheet.

Report Example #1

Characteristics:

1) Formatted Title Column Headings and Title

2) Fixed number of rows and columns.

3) Data content, including month and year, is updated automatically.

Early Warning DM Population July 2018

Category Accounts

Total DM Population 104,208

- Charged Off 20,029

- Closed 42,440

- Missed Accts 178

Early Warning DM Population 41,561

 Report Example #2

Characteristics:

1) Formatted Title Column Headings and Title

2) Fixed number of rows and columns.

3) Data content, including month and year, is updated automatically.

DM Tier 1 Early Warning Waterfall July 2018

Review Group TIER Accounts Net Book Commitment Availability

DM Early Warning Population TIER1 37,391 409,874,179 931,939,529 1,350,875,201

- In Remedial TIER1 0 0 0 0

- Charged Off TIER1 0 0 0 0

- Closed Account TIER1 3,385 3,881,095 23,477,429 19,659,188

- CALFED Closed Line Zero Bal TIER1 738 0 530,000 20,000

- CALFED Closed Line Special TIER1 391 2,635,357 0 0

- BCP Closed Line Any Bal TIER1 4,592 1,226,773 2,928,577 18,313

- AFS Closed Line Zero Bal TIER1 6 0 654,000 0

- AFS Closed Line Prod 21999 TIER1 0 0 0 0

- AFS Accts to be Closed TIER1 1 0 10,000 0

- Past Due 6 days and more TIER1 250 2,423,350 5,312,723 476,717

- In Forbearance TIER1 0 0 0 0

- AFS Termed Out by Status TIER1 3,101 99,911,304 102,911,329 1,424,351

- AFS Termed Out by Mat Date TIER1 12 231,655 231,655 0

- Active Duty Military TIER1 14 105,588 541,000 435,412

- Commercial Dispute TIER1 0 0 0 0

- WEBCATS Exclusion TIER1 148 5,873,913 10,277,361 4,434,792

- No Adverse Action Codes TIER1 0 0 0 0

- Two Pct Min Pay - CALFED TIER1 0 0 0 0

- Disaster TIER1 0 0 0 0

Total Excluded Accounts TIER1 12,638 116,289,035 26,468,773 146,874,074

- Risky Accts Not Actionable TIER1 51 1,833,575 155,000 0

- Risky Accts Loaded for Revie TIER1 119 5,664,019 6,114,536 1,926,060

- Currently Not Risky Accts TIER1 24,583 286,087,550 1,197,731,591 903,544,696

Total Reviewed Population TIER1 24,753 293,585,144 905,470,756 1,204,001,127

Note: DM means Decision Managed.

Report Example #3

Characteristics:

1) Formatted Title Column Headings and Title

2) Varying number of columns and rows (within bounds).

3) Data content, including month and year, is updated automatically.

Accounts Missing from DM Population July 2018

Obl_no Prod_Cd Prod_Cd_Desc Proc_tp Book_Dt Net_Book_Bal Availability Commitment

954752 1807 BCP 9999 10/23/2014 0 0 0

1050755 1807 BCP 9999 7/9/2001 0 0 0

1724537 1807 BCP 9999 5/20/2005 0 0 0

1778658 1807 BCP 9999 7/1/1992 0 0 0

2955994 1807 BCP 9999 11/29/2006 0 0 0

3071701 1807 BCP 9999 3/26/2012 0 0 0

3249602 1807 BCP 9999 4/20/2012 0 0 0

4403165 1807 BCP 9999 5/11/2009 0 0 0

5051667 1807 BCP 9999 7/2/1999 0 0 0

5292292 1807 BCP 9999 12/20/2006 0 0 0

13495516 1807 BCP 9999 9/19/2006 0 0 0

13542087 1807 BCP 9999 4/12/2007 0 0 0

15454592 1807 BCP 9999 3/5/2009 0 0 0

Excel methods described by report.

Report Example #1

Month and Year on each report.

July 2018

The same methods were used in Report Example #2.

Early Warning DM Population

Category Accounts

Total DM Population 104,208

- Charged Off 20,029
Data cells linked to related cells in spreadsheet created by SAS program.

(='I:\Documents\1_waterfall\[bws_waterfall_data.xlsx]STARTING_POP'!B2)

Titles and column headings bolded in Report worksheet.

Report month linked to its own worksheet.

(='I:\Documents\1_waterfall\[bws_waterfall_data.xlsx]Report_Month'!A2

)

 Report Example #3

Lists every account not found in the DM population.

Accounts Missing from DM Population

July 2018

Obl_no Prod_Cd Prod_Cd_Desc Proc_tp Book_Dt Net_Book_Bal Availability Commitment

954752 1807 BCP 9999 10/23/2014 0 0 0

1050755 1807 BCP 9999 7/9/2001 0 0 0

1724537 1807 BCP 9999 5/20/2005 0 0 0

1778658 1807 BCP 9999 7/1/1992 0 0 0

Excel methods used

1. Bolded fixed titles and column headings in Report worksheet.

2. Used IF function and ISBLANK function to prevent zeros in empty numeric cells.

 IF(ISBLANK('I:\Documents\1_waterfall\[bws_waterfall_data.xlsx]MISSING_POP'!A2)," ",

 'I:\Documents\1_waterfall\[bws_waterfall_data.xlsx]MISSING_POP'!A2))

Every possible cell that can be populated, or every cell of a good sample of the missing records, is populated with the

IF function containing the ISBLANK function on the Accounts Missing report.

General method of creating the Excel report worksheets.

1) Open the data spreadsheet and report-to-be spreadsheet at the same time.

2) Create your titles and column headings in each worksheet. Bold and font as desired.

3) Find which cells will contain your report data.

4) Start at the left top cell of your report area and enter an = sign. Then move your cursor to the data cell that

you wish to import and click that cell to activate it. Tap the Enter key after that. You should now see the data

in the report cell that you linked. The formula bar will also show the link reference, such as

‘='I:\Documents\1_waterfall\[bws_waterfall_data.xlsx]STARTING_POP'!B2’.

5) If the cell has the $ in front of each element of the linked cell reference, such as B2, remove the $.

6) Copy the full link reference to each cell of the report region.

7) Format each column as appropriate for its contents.

8) If the source cell can be blank and the report cell is numeric, then you will get zeros in your linked cell when

the source cell is blank. To avoid that, use the IF function with the ISBLANK function as described above.

9) After all links have been established and the formatting is complete, save the report spreadsheet in the same

directory as the data spreadsheet.

Updating the Excel report spreadsheet from the data spreadsheet

1) Open the report spreadsheet

2) Under the Data tab, open the Edit Links option.

3) Select ‘Check Status’. The status will become ‘OK’. Next, select ‘Update Values’.

4) If the data values are not updated, or a message is displayed that all of the links cannot be updated, then

select ‘Open Source’. The data spreadsheet will open and the values in the report spreadsheet will update.

Close the data spreadsheet then.

5) After the report spreadsheet is updated, save it under another name, perhaps with the date as part of the name.

Then, select ‘Break Links’ and save the data set again. You now have a report data set that represents the date

that it was updated.

Next shown is the SAS code used in creating the data-structured spreadsheet that is linked to the report spreadsheet.

Create report date for each report

This code creates the data set with the report month and year, such as June 2018, that is used on every report.

The data set will be exported to its own worksheet. A macro variable is also created with a Call Symput.

data report_month;

 date = put(today(),worddate.0);

 month = strip(scan(date,1));

 year = strip(scan(date,-1));

 month_year = strip(month)||' '||strip(year);

 keep month_year;

 call symput('rpt_mth',strip(month_year));

run;

Summarize data for Report Example #1.

Proc Summary summarizes by the source data by category and also creates the total line ‘Total DM Population’ in the

Report Example. The ‘()’ in the Types statement creates the grand total line. It will have a _type_ number of zero (0) in

the output data set ‘summary_catgry’.

proc summary data=dm_population missing;

 class category;

 types () category;

 output out=summary_catgry;

run;

Summary_catgry

Category _TYPE_ Accts

A 0 104062

B 1 19996

C 1 42753

D 1 220

E 1 41093

Next, the code assigns the category of ‘A’ to the total (0) line and creates the category description for each summary

line. A user form is used to put the minus (-) sign next to the description of each category that must subtracted from the

Total DM population. The user format also enables the ordering of the summary values in the form needed for the

report.

data summary_catgry;

 length Category $1

 Catg_desc $27;

 Rename _freq_ = Accts;

 set summary_catgry;

 if _type_ = 0 then

 category = 'A';

 catg_desc = put(category,$catg.);

 output;

run;

Typically, a sort would be required to order the categories, but not here since the zero (0) line is listed first in the

summary output.

$catg. is the user format.

The _Type_ of zero (0) is the total line.

This is the Proc Format that generated the $catg format. User formats are efficient, easily-understood, and portable

methods of describing data. They are a good coding method to apply in all of your SAS programs.

proc format;

 value $catg

 'A' = 'Total DM Population'

 'B' = ' - Charged Off'

 'C' = ' - Closed'

 'D' = ' - Missed Accts'

 'E' = 'Early Warning DM Population'

 ;

run;

After the application of the $catg. user format, the summary_catgry dataset looks like this:

Category Catg_desc _TYPE_ Accts

A Total DM Population 0 104062

B - Charged Off 1 19996

C - Closed 1 42753

D - Missed Accts 1 220

E Early Warning DM Population 1 41093

Export report data to the data spreadsheet.

All of the xlsx output will go to one directory. To save typing and to enable the easy changing of the output destination
on every Proc Export, the destination is assigned to a macro variable.

%let tdir = /usr04/ap/analyst/jd74575/1_miscellaneous/output;

Multiple worksheets will be written to data spreadsheet, so to ensure that no worksheets contain old data, the existing
data spreadsheet is deleted. This is done with the Call System function and the ‘rm’ UNIX command.

data _null_;

 call system("rm &tdir./bws_waterfall_data.xlsx");

run;

Next write the data to the worksheets in the spreadsheet.

First, the report month is exported to the report_month worksheet in the waterfall spreadsheet. Notice that sheet
option is used to write to name the worksheet that is populated. The range option is not available in ‘Proc Export
dbms=xlsx’, so the data cannot be written to a specific group of cells.

proc export data=report_month dbms=xlsx

 outfile="&tdir./bws_waterfall_data.xlsx";

 sheet = report_month;

run;

Next, export the category summary to the starting_pop worksheet.

proc export data=summary_catgry(drop=_type) dbms=xlsx

 outfile="&tdir./bws_waterfall_data.xlsx";

 sheet = Starting_Pop;

run;

Then, export the accounts in the missing population to the missing_pop worksheet.

proc export data=missing_population dbms=xlsx

 outfile="&tdir./bws_waterfall_data.xlsx";

 sheet = Missing_Pop;

run;

The replace option isn’t necessary on any of these exports because no sheet is being overwritten. All are being created.
Despite that, the spreadsheet will be backed up when the second sheet is created. The Call System function can be used
to delete the backup .

data _null_;

 call system("rm &tdir./bws_waterfall_data.xlsx.bak");

run;

Create the other summary data sets for the report.

This Proc Format creates the user format that will provide the descriptions of the lines in the next three reports.

proc format;

 value $grp

 '00' = 'DM Early Warning Population'

 '01' = '- In Remedial'

 '02' = '- Charged Off'

 '03' = '- Closed Account'

 '04' = '- CALFED Closed Line Zero Bal'

 '05' = '- CALFED Closed Line Special '

 '06' = '- BCP Closed Line Any Bal'

 '07' = '- AFS Closed Line Zero Bal'

 '08' = '- AFS Closed Line Prod 21999'

 '09' = '- AFS Accts to be Closed'

 '10' = '- Past Due 6 days and more'

 '11' = '- In Forbearance'

 '12' = '- AFS Termed Out by Status'

 '13' = '- AFS Termed Out by Mat Date'

 '14' = '- Active Duty Military'

 '15' = '- Commercial Dispute'

 '16' = '- WEBCATS Exclusion'

 '17' = '- No Adverse Action Codes'

 '18' = '- Two Pct Min Pay - CALFED'

 '20' = '- Disaster'

 '21' = 'Total Excluded Accounts'

 '22' = '- Risky Accts Not Actionable'

 '23' = '- Risky Accts Loaded for Review'

 '24' = '- Currently Not Risky Accts'

 '25' = 'Total Reviewed Population'

 other = 'Not Identified';

 run;

Again, notice the dashes (-) used to indicate
subtraction.

Now, the scored population is summarized into each of the three summaries to be reported: Tier 1, Tier 2, and Total.
The Total summary is generated by adding a second Type to the summary that covers just the variable ‘review_grp’.
The lower-level summaries of Tier 1 and Tier 2 are created by the Type ‘review_grp *tiergroup’.

proc summary data=scored_population missing;

 class review_grp tiergroup;

 types review_grp*tiergroup review_grp;

 var net com_bal availability commitment;

 output out=summary_review_grp sum=;

run;

Next is the output of the summary procedure. Notice the blanks in tiergroup when _TYPE_ = 2;

Summary_review_grp

review_grp tiergroup _TYPE_ _FREQ_ net com_bal availability commitment

01 2 542 -9819834 511334 0 511334

03 2 3382 6329084 26091647 22823548 26091647

04 2 735 0 510000 0 510000

05 2 386 2498370 0 0 0

06 2 4647 1198549 3013577 13729 3013577

07 2 27 0 3107616 72510 3107616

09 2 13 0 4585000 2719810 4585000

10 2 573 1031226 7527627 724772 7527627

12 2 3269 119226143 128020406 6472616 128020406

13 2 44 6956544 4363060 37357 4363060

14 2 17 511662 1416000 904029 1416000

16 2 134 11871518 14035694 3944331 14035694

22 2 95 17584147 45000 0 45000

23 2 323 40824097 23108531 5310712 23108531

24 2 26906 658850892 1622725572 1186498295 1622725572

01 TIER2 3 542 -9819834 511334 0 511334

03 TIER1 3 3291 3279445 20659025 18343842 20659025

03 TIER2 3 91 3049639 5432622 4479706 5432622

04 TIER1 3 732 0 510000 0 510000

04 TIER2 3 3 0 0 0 0

05 TIER1 3 386 2498370 0 0 0

06 TIER1 3 4551 1132389 2858577 13729 2858577

06 TIER2 3 96 66161 155000 0 155000

07 TIER1 3 13 0 1263563 0 1263563

07 TIER2 3 14 0 1844053 72510 1844053

The number of _TYPE_ is determined by the position of the variables in the Class statement and the presence
of the variables in the Types statement. For a thorough explanation of how to calculate the number for a particular
combination of Type variables, see Frank Ferriola’s paper ‘What’s Your _TYPE_? How to find the CLASS You Want
in Proc Summary’. It’s website address is http://www2.sas.com/proceedings/sugi27/p077-27.pdf.

For Class statements involving four or less variables, this example can be used that uses 2 raised to the power
associated with the position of the variable in the Class statement: 20,21, 22, 23. The last variable in the Class
statement is the zero position, next is one, then two, etc. Sum the values for the combination of variables used
in the Types statement.

Class Var3 Var2 Var1 Var0;
/* 23 (8) 22 (4) 21 (2) 20 (1) */

A Types statement with only Var2 would have a _Type_ of 22 (4). A Types statement with only Var1 would have a
Type of 21 (2). A Types statement of Var2 and Var1 would have a _Type_ of 6 (4+2). A Types statement of all
four variables would have a _Type_ of 15 (8+4+2+1).

The Class and Types statements shown earlier were:

 Class review_grp tiergroup;

 Types review_grp*tiergroup review_grp;

Thus, as shown in our earlier data listing, the _Type_ values of the summary data will be 3 (2+1) and 2. This lets us
assign ‘Total’ to Tiergroup when the _Type_ = 2.

data summary_review_grp;

 length Review_Grp $02

 Tiergroup $06

 ;

 rename Freq_ = Accounts;

 Drop _type_ commitment;

 set summary_review_grp;

 if _type_ = 2 then

 tiergroup = 'TOTAL';

 output;

run;

Creating a dummy data set for the reports

To ensure that the number of rows in each report is always 22, zero-value lines must be created for each
review_grp in a dummy data set that will be merged with the actual data. Since the Review_grps are numeric in form,
this is easy to do with a Do Loop and a put statement that creates a character numeric. Lines 19 and 21 are not
output because they do not exist in the Review_grps data.

data review_grp_zeroes;

 do j = 1 to 24;

 Review_Grp = put(j,z2.0);

 Accounts = 0;

 Net = 0;

 Com_Bal = 0;

 Availability = 0;

 Commitment = 0;

 drop j;

 if j not in (19,21) then

 output;

 end;

run;

Establish a macro to create the three reports from the same code.

The reports have the same structure, so using a macro to retain the code prevents repeating the code three times

in the program. Only the macro name and parameter need be repeated.

The report code in the macro has six steps:

1) Retrieve the appropriate summary data from summary_review_grps, either Tier1, Tier2, or Total.
2) Merge the dummy zero-value data set against the retrieved summary data.
3) Create the additional summary lines needed for each report.
4) Assign the correct description to each line from the user format $grp.;
5) Sort the data so that the summary lines are in the correct order.
6) Export the data to the appropriate spreadsheet.

%macro grp_tier(level=);

 %let tier=%upcase(&level);

 data review_grp_&level;

 length Review_Grp $02

 Review_Grp_Desc $30

 Tiergroup $06

 ;

 merge review_grp_zeroes (in=z) end=eof

 summary_review_grp(in=s where=(tiergroup="&tier"));

 by review_grp;

 keep tiergroup review_grp review_grp_desc

 accounts net availability com_bal;

 review_grp_desc = put(review_grp,$grp.);

 if z then

 do;

 Availability = round(availability,1);

 Net = round(net,1);

 Com_Bal = round(com_bal,1);

 output;

 if review_grp le '20' then

 do;

 line21_frq_total + accounts;

 line21_net_total + net;

 line21_avl_total + com_bal;

 line21_com_total + availability;

 end;

 if review_grp ge '22' and

 review_grp le '24' then

 do;

 line25_frq_total + accounts;

 line25_net_total + net;

 line25_avl_total + com_bal;

 line25_com_total + availability;

 end;

 if review_grp le '24' then

 do;

 line00_frq_total + accounts;

 line00_net_total + net;

 line00_avl_total + com_bal;

 line00_com_total + availability;

 end;

 end;

Level= is a keyword parameter to receive the summary level

wanted for each report.

This code creates the additional summary

lines needed for report.

End=eof creates an

end-of-data flag variable.

User format $grp assigns line

descriptions.

 if eof then

 do;

 Accounts = line21_frq_total;

 Net = line21_net_total;

 Availability = line21_avl_total;

 Com_Bal = line21_com_total;

 Review_Grp = '21';

 Review_Grp_Desc = put(review_grp,$grp.);

 output;

 Accounts = line25_frq_total;

 Net = line25_net_total;

 Availability = line25_avl_total;

 Com_Bal = line25_com_total;

 Review_Grp = '25';

 Review_Grp_Desc = put(review_grp,$grp.);

 output;

 Accounts = line00_frq_total;

 Net = line00_net_total;

 Availability = line00_avl_total;

 Com_Bal = line00_com_total;

 Review_Grp = '00';

 Review_Grp_Desc = put(review_grp,$grp.);

 output;

 end;

 run;

 *;

 proc sort data = review_grp_&level;

 by review_grp;

 run;

 *;

 proc export data=review_grp_&level dbms=xlsx

 outfile="&tdir./bws_waterfall_data.xlsx";

 sheet = &level;

 run;

%mend grp_tier;

Next, the macro is used three times to generate the three waterfall summaries. Each time, a different level parameter is
used.

%grp_tier(level=tier1);

%grp_tier(level=tier2);

%grp_tier(level=total);

The additional summary lines are then output.

This eof variable is set to one (1) at the end of the dummy data set.

&level comes from the level= keyword

parameter in macro execution.

Cleanup

Here, the code deletes the back-up spreadsheet created automatically by Excel.

data _null_;

 call system("rm &tdir./bws_waterfall_data.xlsx.bak");

run;

Note: &tdir was set earlier in the program with a %let statement.

%let tdir = /usr04/ap/analyst/jd74575/1_miscellaneous/output;

Next, the code creates a preferred backup by copying the data spreadsheet to another spreadsheet
with today’s date in the name.

data _null_;

 call system("cp &tdir./bws_waterfall_data.xlsx

 &tdir./bws_waterfall_data_&filedate..xlsx");

run;

Creating a list of the worksheets in the report spreadsheet

First the code generates a listing of all worksheet and columns in the spreadsheets and stores the unique worksheet
names in a data set so that they can be listed in the email sent to the distribution list.

libname xl xlsx "&tdir./bws_waterfall_data.xlsx";

Proc contents data=xl._all_ memtype=data

 out=memlist noprint;

RUN;

proc sort data=memlist(keep=memname) nodupkey

 out=mem_unique;

 by memname;

run;

Distribution list for email

This code reads the email distribution worksheet in the report spreadsheet and generates the email that is sent to

everyone on the distribution list. The distribution list could be stored elsewhere, maybe in the spreadsheet that

has all email distribution lists.

libname xl xlsx "&tdir./bws_waterfall_report.xlsx";

data email_info;

 set xl.distribution;

 output;

run;

Use xl._all_ so that all worksheet

names are written to data set.

Notice that the distribution list is in the report worksheet and not the data worksheet. That is because the report

worksheet is not deleted and the data worksheet is. Also, the report worksheet could be maintained by the user and

they would determine who gets the report.

Example of email distribution worksheet

Person Email_address Email_reference

Mary Wilson mary.wilson@anybus.com BCC

John Smith john.simith@anybus.com TO

David Jones david.jones@anybus.com TO

Robert James robert.jones@anybus.com CC

The table above describes the form and content needed for the code that follows. This code builds a tolist, a cclist,
and a bcclist. Currently, it expects a maximum of five entries per list, but that can be easily be expanded by changing
the macro cnt variable to more than 5. And, if the length of each name averages longer than 30 characters, that can be
changed by modifying the 30 in the macro lnth variable calculation. %Eval is required for all macro calculations.

The purpose of this code is to concatenate the email addresses into a single email list for each group.

Code to create the email lists.

%let cnt = 5;

%let lnth= %trim(%eval(&cnt*30));

data addresses;

 length tolist $&lnth;

 length cclist $&lnth;

 length bcclist $&lnth;

 retain tolist ' ' cclist ' ' bcclist ' ';

 keep tolist cclist bcclist;

 set email_info end=eof;

 if upcase(email_reference) = 'TO' then

 do;

 tolist = strip(tolist||' '||strip(email_address));

 end;

 else if upcase(email_reference) = 'CC' then

 do;

 cclist = strip(cclist||' '||strip(email_address));

 end;

 else if upcase(email_reference) = 'BCC' then

 do;

 bcclist = strip(bcclist||' '||strip(email_address));

 end;

 if eof then

 do;

 call symput('tolist',tolist);

 call symput('cclist',cclist);

 call symput('bcclist',bcclist);

 output;

 end;

run;

%let tolist = %trim(&tolist);

%let cclist = %trim(&cclist);

%let bcclist = %trim(&bcclist);

Be sure and trim each macro variable to prevent

blanks at end of the string stored in the variable.

Using filename to send an email.

See http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002058232.htm for a
good explanation of using Filename to send email. Essentially, it allows the programmer to send email by using a simple
Data _Null_ step that writes a message to the Filename reference (here: Outbox) without using HTML or by using HTML
BODY with either a Data _Null_ or a Proc Print contained within the HTML BODY. This is the method shown here.

The Filename reference implements all of the email addresses and subject content. The same reference could be used
multiple times to send different email content to the same persons. Only the Data _Null_ would change.

filename outbox email

 ct = "text/html"

 subject= "Early Warning Waterfall Report"

 from = "jimmy.defoor@citi.com"

 to = "&tolist"

 cc = "&cclist"

 bcc = "&bcclist"

 ;

The ODS HTML body references the Filename established above. The RS=none option forces ODS to perform record-
based output. Otherwise, each Put string is continued immediately after the last string is written. Notice that the Data
Null step writes to File Print and not to Output. A Proc Print would do the same by default.

ods html body=outbox rs=none;

Title1 "The Early Warning Waterfall Reports for &rpt_mth are available";

data _null_;

 set mem_unique;

 file print;

 if _n_ = 1 then

 do;

 put;

 put "The Early Warning Waterfall data for &rpt_mth has been created”

 put “and is located at I:\Documents\1_waterfall.";

 put;

 put 'To see the data in the Waterfall report, open the report and”

 put ‘then open the source under the Edit Links option of the Data tab.”

 put ‘The report will then update. Close the source and save the report”

 put ‘to your own directory.';

 put;

 put 'Listed below are the individual reports in the worksheet';

 put;

 end; end;

 put @10 memname;

 put ' ';

run;

ODS HTML Close;

When the Close is executed, the email text is sent to the Filename, which delivers the email.

This website (http://support.sas.com/rnd/web/intrnet/dispatch/ods.html) is a good reference for using ODS HTML.

The &rpt_mth was created earlier with a Call Symput and contains the

current year and month in numeric form; e,g. 201809.

Example of email content

The Early Warning Waterfall Reports for September 2018 are available

The Early Warning Waterfall data for September 2018 has been created and

is located at I:\Documents\1_waterfall.

To see the data in the Waterfall report, open the report and then

open the source under the Edit Links option of the Data tab. The

report will then update. Close the source and save the report to

your own directory.

Listed below are the individual reports in the worksheet.

 MISSING_POP

 REPORT_MONTH

 STARTING_POP

 TIER1

 TIER2

 TOTAL

Conclusion

The purpose of this paper was to show a method of creating and maintaining an Excel-based report using simple

Excel techniques of and basic SAS coding methods. The Excel techniques were

 Formatted cells

 Linked cells

 ISBLANK function

The SAS coding methods were

 Proc Export

 Proc Summary

 User Formats

 Macro

 Data Step

 Filename Email

 ODS HTML

 Call System

References

Ferriola, Frank (2002). What’s Your _TYPE_? How to find the CLASS You Want in Proc Summary’.
Proceedings of the Twenty-seventh Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc. See is
http://www2.sas.com/proceedings/sugi27/p077-27.pdf.

SAS/IntrNet 9.1: Application Dispatcher , The Output Delivery System.

http://support.sas.com/rnd/web/intrnet/dispatch/ods.html, Cary, NC: SAS Institute, Inc .

SAS(R) 9.2 Language Reference: Dictionary, Fourth Edition, FILENAME Statement, EMAIL (SMTP) Access Method,

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002058232.htm

Contact Information

Contact the author at:

Jimmy DeFoor
Email: jimmydefoor@gmail.com

SAS is and all SAS Institute, Inc. product or service names are registered trademarks or trademarks of SAS Institute, Inc
in the United States or other countries. ® indicates USA registration.

