A Hands-on Introduction to SAS® DATA Step Hash
Programming Techniques

Kirk Paul Lafler, Software Intelligence Corporation

Abstract

SAS’ users are always interested in learning techniques that will help them improve the performance of table lookup, search,
and sort operations. SAS software supports a DATA step programming technique known as a hash object to associate a key with
one or more values. This presentation introduces what a hash object is, how it works, the syntax required, and simple
applications of it use. Essential programming techniques will be illustrated to sort data and search memory-resident data using
a simple key to find a single value.

Introduction

One of the more exciting and relevant programming techniques available to SAS users today is the Hash object. Available as a
DATA step construct, users are able to construct relatively simple code to perform match-merge and/or join operations. The
purpose of this paper and presentation is to introduce the basics of what a hash table is and to illustrate practical applications
so SAS users everywhere can begin to take advantage of this powerful SAS Base programming feature.

Example Tables

The data used in all the examples in this paper consists of a Movies data set containing six columns: title, length, category, year,
studio, and rating. Title, category, studio, and rating are defined as character columns with length and year being defined as
numeric columns. The data stored in the Movies data set appears below.

! Thie } Lergh Calogory \ You Studa __ Rewg |
1 =y Brave Heu! 177 Acton Scdverbine 15985 FPasrourt Poliss R
2 Casablanca 103 Deams 1942 MGM S UA 2]
3 | Chastnas Vacason 97 Comady 1933 Wainer Brothss P63
li Coming lo Amenica 116 Comady wamourt Pictues R
5 Deacula 130 Homot dumias TS R
f;_< Doagrad to Kl 105 Dearns Myseres mays Pachant R
7 Fonex Gump 142 Diams 1998 Paamourt Fictuses PG13
| 8 o 127 Disera Romance 1930 Pasarmourt Pictuss: 613
9 Jaws 125 Acton Adveriuas 1975 Universdl Studos PG
|10 | Jusssic Pand 127 Acton 14 vetsd Pchun FG13
11| Lethd Weagon 110 Acton Cope & Flobbes 1387 Waney Brothers R
12 Michael 105 Diama 1937 Waner Brothers FGa3
13 National Lampoon’s % Comedy 1833 Wainer Brothers PG-13
| iVecalion
14 Poltergeat 115 Hooot 1982 MGM / UA PG
15 |Racky 120 Ackon Advarium 1976 MGM / L G
16 | Scaface 170 Acton Cops & Rober 1983 Universal Studon R
W Stence of the Lanbi: 118 Duarna Suspende 1591 Oweny R
[18 SteWas 124 Ackon Scifi 1977 Lucas Fim Lid PG
12 The Hunt for Red October 135 Acton Adveriue Paamourd Piclues 2]
| The Termaae 103 Acton 5aFi 1954 Live Erdert armecd R
The Woad of Oz 101 Adventue I3 MGM /UA G
2 | Thane 194 Duana Pomancs 1997 Paarout Prtines FGI3

The second data set used in the examples is the ACTORS data set. It contains three columns: title, actor_leading, and
actor_supporting, all of which are defined as character columns, and is illustrated below.

| Thle | Actor_Leadng | Actor_Supooiing
1 Hrave Homt Med Gitracr Sopree Muceau
.."*_4 Chintreas Vacabon rwvy Chase Bevarh D'Angek
3 |Cotng to Areenca Edde Mupky Arverso Hal
4 Fonest Gung Fom Harks Saly Field
% | Ghout Patichk Sminoe Do Mooe
6 |LetheWeapen Met Gidreon Darry Glover
7 Michael Jchn Teavolts Ardie MacOowel
8 Natorad Larpoon's Vacahon revy Chae Beverh D'Angels
3 |Rodky Sydveitn Slallorm Taka Shae
10 iSkence of $e Lambs Acthory Hogkine Jode Foster
1 Sasn Corney Alec Bakdwn
12 The T enmenalor Arold Schwaienegoe Moo SBehn
13| Thene Lworssds DICagso Kot Wirsled

Page 1

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

What is a Hash Object?

A hash object is a data structure that contains an array of items that are used to map identifying values, known as keys (e.g.,
employee IDs), to their associated values (e.g., employee names or employee addresses). As implemented, it is designed as a
DATA step construct and is not available to any SAS PROCedures. The behavior of a hash object is similar to that of a SAS array
in that the columns comprising it can be saved to a SAS table, but at the end of the DATA step the hash object and all its
contents disappear.

How Does a Hash Object Work?

A hash object permits table lookup operations to be performed considerably faster than other available methods found in the
SAS system. Unlike a DATA step merge or PROC SQL join where the SAS system repeatedly accesses the contents of a table
stored on disk to perform table lookup operations, a hash object reads the contents of a data set into memory once allowing
the SAS system to repeatedly access it, as necessary. Since memory-based operations are typically faster than their disk-based
counterparts, users generally experience faster and more efficient table lookup operations. The following diagram illustrates
the process of performing a table lookup using the Movie Title (i.e., key) in the MOVIES data set matched against the Movie
Title (i.e., key) in the ACTORS data set to return the ACTOR_LEADING and ACTOR_SUPPORTING information.

MOVIES Data Set ACTORS Data Set

TITLE TITLE ACTOR_LEADING ACTOR_SUPPORTING
Brave Heart —) Brave Heart Mel Gibson Sophie Marceau

e _I_> Christmas Vacation Chevy Chase Beverly D’Angelo
Christmas Vacation Coming to America Eddie Murphy Arsenio Hall

Coming to America —I_>

Figure 1. Table Lookup Operation with Simple Key

Although one or more hash tables may be constructed in a single DATA step that reads data into memory, users may
experience insufficient memory conditions preventing larger tables from being successfully processed. To alleviate this kind of
issue, users may want to load the smaller tables as hash tables and continue to sequentially process larger data sets containing
lookup keys.

Hash Object Syntax

Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

HashTitles.DefineKey (‘Title’);

where:

HashTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification being
passed to the method.

Hash Object Methods

The author has identified twenty six (26) known methods which are alphabetically displayed, along with their description, in the
following table.

Page 2

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Description

ADD Adds data associated with key to hash object.

CHECK Checks whether key is stored in hash object.

CLEAR Removes all items from a hash object without deleting hash object.

DEFINEDATA Defines data to be stored in hash object.

DEFINEDONE Specifies that all key and data definitions are complete.

DEFINEKEY Defines key variables to the hash object.

DELETE Deletes the hash or hash iterator object.

EQUALS Determines whether two hash objects are equal.

FIND Determines whether the key is stored in the hash object.

FIND_NEXT The current list item in the key’s multiple item list is set to the next item.

FIND_PREV The current list item in the key’s multiple item list is set to the previous item.

FIRST Returns the first value in the hash object.

HAS_NEXT Determines whether another item is available in the current key’s list.

HAS_PREV Determines whether a previous item is available in the current key’s list.

LAST Returns the last value in the hash object.

NEXT Returns the next value in the hash object.

OUTPUT Creates one or more data sets containing the data in the hash object.

PREV Returns the previous value in the hash object.

REF Combines the FIND and ADD methods into a single method call.

REMOVE Removes the data associated with a key from the hash object.

REMOVEDUP Removes the data associated with a key’s current data item from the hash object.

REPLACE Replaces the data associated with a key with new data.

REPLACEDUP Replaces data associated with a key’s current data item with new data.

SETCUR Specifies a starting key item for iteration.

SUM Retrieves a summary value for a given key from the hash table and stores the value to a
DATA step variable.

SUMDUP Retrieves a summary value for the key’s current data item and stores the value to a DATA

step variable.

Page 3

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Sort with a Simple Key

Sorting is a common task performed by SAS users everywhere. The SORT procedure is frequently used to rearrange the order of
data set observations by the value(s) of one or more character or numeric variables. A feature that PROC SORT is able to do is
replace the original data set or create a new ordered data set with the results of the sort. Using hash programming techniques,
SAS users have an alternative to using the SORT procedure. In the following example, a user-written hash routine is constructed
in the DATA step to perform a simple ascending data set sort. As illustrated, the metadata from the MOVIES data set is loaded
into the hash table, a DefineKey method specifies an ascending sort using the variable LENGTH as the primary (simple) key, a
DefineData method to select the desired variables, an Add method to add data to the hash object, and an Output method to
define the data set to output the results of the sort to.

Hash Code with Simple Key

Libname mydata f‘e:\workshops\workshop data’ ;

data _null_;

if 0 then set mydata.movies; /* load variable properties into hash tables */

if _n_ = 1 then do;
declare Hash HashSort (ordered:’a'); /* declare the sort order for hash */

HashSort.DefineKey (‘Length'); /* identify variable to use as simple key */

‘Length’,

‘Category’,

‘Rating’); /* identify columns of data */
HashSort.DefineDone (); /* complete hash table definition */

end;
set mydata.movies end=eof;

©® HashSort.add (); /* add data with key to hash object */

® if eof then HashSort.output(dataset:sorted_movies); /* write data using hash
HashSort */

As illustrated in the following SAS Log results, SAS processing stopped with a data-related error due to one or more duplicate
key values. As a result, the output data set contained fewer results (observations) than expected.

SAS Log Results

Libname mydata ‘e:\workshops\workshop data’ ;
data _null_;
if 0 then set mydata.movies; /* load variable properties into hash tables */
if _n_ = 1 then do;
declare Hash HashSort (ordered:'a'); /* declare the sort order for hash */
HashSort.DefineKey ('Length'); /* identify variable to use as simple key */
HashSort.DefineData ('Title',
‘Length’,
'Category',
'Rating'); /* identify columns of data */
HashSort.DefineDone (); /* complete hash table definition */

end;

Page 4

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

SAS Log Results (Continued)

set mydata.movies end=eof;

HashSort.add (); /* add data with key to hash object */

if eof then HashSort.output(dataset:'sorted_movies'); /* write data using hash
HashSort */
run;

ERROR: Duplicate key.

NOTE: The data set WORK.SORTED_MOVIES has 21 observations and 4 variables.
NOTE: The SAS System stopped processing this step because of errors.

NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

Sort with a Composite Key

To resolve the error presented in the previous example, an improved and more uniquely defined key is specified. The simplest
way to prevent a conflict consisting of duplicate is to add a secondary variable to the key creating a composite key. The
following code illustrates constructing a composite key with a primary variable (LENGTH) and a secondary variable (TITLE) to
reduce the prospect of producing a duplicate key value from occurring (collision).

Hash Code with Composite Key

declare the sort

HashSort.DefineKey (‘Length', ‘Title’); /* identify variables to use as
composite key */

HashSort.DefineData (‘Title°®,
‘Length’,
‘Category’,
‘Rating’); /* identify columns of data */
HashSort.DefineDone (); /* complete HashSort table definition */
end;
set mydata.movies end=eof;

© HashSort.add (); /* add data with key to HashSort table */

® if eof then HashSort.output(dataset:sorted movies); /* write data using hash
HashSort */

SAS Log Results

As shown on the SAS Log results, the creation of the composite key of LENGTH and TITLE is sufficient enough to form a unique
key enabling the sort process to complete successfully with 22 observations read from the MOVIES data set, 22 observations
written to the SORTED_MOVIES data set, and zero conflicts (or collisions).

Page 5

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

data _null_;
if 0 then set mydata.movies; /* load variable properties into hash tables */
if _n_ =1 then do;
declare Hash HashSort (ordered:'a'); /* declare the sort order for HashSort */

HashSort.DefineKey ('Length', ‘Title’); /* identify variable to use as
composite key */

HashSort.DefineData ('Title',
'Length’',
'Category’',
'Rating'); /* identify columns of data */
HashSort.DefineDone (); /* complete HashSort table definition */
end;
set mydata.movies end=eof;
HashSort.add (); /* add data using key to HashSort table */
if eof then HashSort.output(dataset:'sorted_movies'); /* write data using
HashSort */
run;

NOTE: The data set WORK.SORTED_MOVIES has 22 observations and 4 variables.
NOTE: There were 22 observations read from the data set MYDATA.MOVIES.

Search and Lookup with a Simple Key

Besides sorting, another essential action frequently performed by users is the process of table lookup or search. The hash
object as implemented in the DATA step provides users with the necessary tools to conduct match-merges (or joins) of two or
more data sets. Data does not have to be sorted or be in a designated sort order before use as it does with the DATA step
merge process. The following code illustrates a hash object with a simple key (TITLE) to merge (or join) the MOVIES and ACTORS
data sets to create a new dataset (MATCH_ON_MOVIE_TITLES) with matched observations.

data match_on_movie_titles(drop=rc);

©® if 0 then set mydata.movies

mydata.actors; /* load variable properties into hash tables */

if n_ =1 then do;
® declare Hash HashActors (dataset:'mydata.actors'); /* declare the name
HashActors for hash */

© HashActors.DefineKey ('Title'); /* identify variable to use as key */
HashAtors.DefineData (‘Actor_Leading’,
‘Actor_Supporting’); /* identify columns of data */
HashActors.DefineDone (); /* complete hash table definition */
end;

set mydata.movies;

® if HashActors.find(key:title) = O then output; /* lookup TITLE in MOVIES table
using HashActors object */

Page 6

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Results
The match-merge (or join) process is illustrated using the following diagram.

195 Pywmnt ¥
150 MEM /U4 1]
19509 Wew Botes: 3

1356 Paownst Ptme R
1902 Coba IS A
1960 Fiewuns Pt A
Fonesl g e 1554 Paranaust Prtaee PG13
7 1950 Pywrwant Prtos
150% Usennadd ks
1902 e Pt

1553 Unenssd Shadee
1991 Ovor:

157 L FilnlM

1522 Pyavout Poraes
1554 L Eettarrrd
1505 MEM U
1937 oot Pk

oy ledrg
177 Afen Adwerie 135 Pammont Pcies R Vel Gison Sophie Marceay
57 Comady 1388 Viame Bufes -1 Chewy Chase Bevey ince
T oy Movies_Titles iz fanly o
14 11 T Haks Sy Feld
127 Drarez Fovarce 350 Pt Prims P11 Paick Svaps Den Mooz
110 Acton Cops & Rebbar 1317 Wanz Bufes F Vel Gosen Dary Gover
105 Denz 1337 Wanz Bofes P13 Jobn Trawika Fovde Vo Dowel
33 Comay 1321 Vans Bues PGl CrewyChass Bevzty D'inzelo
120 ciien Adwertm 1978 NGN/ U4 PG Sibvester Siaons Taz S
113 Dz Supense 1951 Oson R Xréeny Hopiirs Joge Foder
13 Koo Mwnim 1355 Paawouri Pl PG Sean Correny Az Sddan
108 Action S35 158 e Etztanment R roid Sowamenzze Wchae! B
194 Drarez Fovance 1337 Paarwori Poims G Leram Dlan ¥ae Wins2

Transposing with the TRANSPOSE Procedure

In the paper; SAS on a Shingle, Flippin with Hash (2012); Miller and Lafler illustrate two key points: 1) how PROC TRANSPOSE is
used for converting SAS data set structures and 2) how hash programming techniques are used to emulate the PROC
TRANSPOSE process. The objective was to demonstrate the programming techniques and select hash methods that were used
to successfully create a transposed data set. For those unfamiliar or with limited experience using PROC TRANSPOSE, the SAS
Base procedure gives SAS users a convenient way to transpose (or restructure) any SAS data set structure. Popular uses for
PROC TRANSPOSE include:

v' Converting the observations of a data set structure to variables, sometimes referred to as changing a vertical (long or
thin) data structure to a horizontal (wide or fat) data structure;

v' Converting the variables of a data set structure to observations, sometimes referred to as changing a horizontal (wide
or fat) data structure to a vertical (long or thin) data structure.

Although experienced SAS users may use any number of approaches in lieu of the TRANSPOSE procedure to restructure a data
set, these alternate techniques can require more time for programming, testing and debugging. The PROC TRANSPOSE syntax
to restructure (or transpose) selected variables into observations is shown, below. After sorting the MOVIES data set in
ascending order by TITLE, PROC TRANSPOSE then accesses the sorted MOVIES data set. The BY statement tells PROC
TRANSPOSE to create BY-groups for the variable TITLE. The VAR statement specifies the variables, RATING and LENGTH, to
transpose into observations. The result of the transpose process is then written to a data set called, Transposed_Movies.

Page 7

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

PROC TRANSPOSE Code:

libname mydata "e:\workshops\workshop data" ;

proc sort data = mydata.movies
out sorted_movies ;
by title ;
run ;

proc transpose data = sorted_movies
out transposed_movies ;
by title ;
var rating length
run;

The resulting Transposed_Movies data set from running the TRANSPOSE procedure, below, contains three variables: TITLE,
NAME and _COL1. With closer inspection, the data set contains duplicate TITLE values (observations), a distinct _NAME_
value for “Rating” in the first observation of COL1 and a distinct _NAME_ value for “Length” in the second observation of COL1
for each BY-group.

| _NAME_
Brave Heart Rating
Brave Heart Length
Casablanca Rating
Casablanca Length
Christmas Wacation Rating
Christmas Yacation Length
Coming to America Rating
Coming to America Length
Dracula Rating
Dracula Length
Dressed to Kill Rating
Dressed to Kill Length
Forrest Gump Rating
Formest Gump Length
Ghost Rating
Ghost Length
Jaws Rating
Jaws Length
Jurassic Park Rating
Jurassic Park Length
Lethal Weapon Rating
Lethal Weapon Length
Michael Rating
Michael Length
Mational Lampoon’s Vacation Rating
Mational Lampoon's Vacation Length
Poltergeist Rating
Paoltergeist Length
Roclky Rating
Rocky Length

Sl (SR | | b | | R |

Transposed_Movies Data Set created with PROC TRANSPOSE

Page 8

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Transposed_Movies Data Set (continued)

Scarface

Scarface

Silence of the Lambs
Silence of the Lambs

Star Wars

Star Wars

The Hurt for Red October
The Hurt for Red October
The Teminator

The Teminator

The Wizard of Oz

The Wizard of Oz

Titanic

Titanic

Transposed_Movies Data Set created with PROC TRANSPOSE (continued)

Transposing with the DATA Step Hash Method

My objective for using Hash methods in creating a restructured transposed data set is to emulate was is created with the
TRANSPOSE procedure. We'll begin with the statement, “DATA Hash_Long_Movies”, because the application of Hash methods
is currently only available in a DATA step. O The next statement, “IF 0 THEN SET MYDATA.MOVIES” tells SAS t gm ad variable
properties into the hash object located in real me@)ry. ® The DECLARE HASH statement provide a name to the hash object
being created in memory as ‘Hash_movies’, the name of the input data set, and how the data is ordered. ® The “DECLARE
HITER” statement defines and initializes the hash object for traversing the object in memory. @ The DEFINEKEY method
identifies the variable (or variables) to use as the key. © The DEFINEDATA method informs SAS what variables to read into the
hash object in memory (in our case all variables not removed with the DROP= (or KEEP=) data set option). ® The DEFINEDONE
method completes the hash table definition. @ The FIRST() method tells SAS to return the first value stored in the defined
hash object. @ The DO WHILE loop iterates repeatedly as long as there is data stored in the hash object. @ The LINK
OUTLONG statement tells SAS to execute the OUTLONG subroutine. ® The NEXT() method tells SAS to return the next value
from the defined hash object.) The STOP statement tells SAS to terminate the DATA step. (G}

libname mydata ‘e:\workshops\workshop data’ ;

©® data hash_long movies (drop=rc Rating Length) ;

® if 0 then set mydata.movies(keep=Title Rating Length) ;

if _n_ =1 then do ;
declare Hash Hash_movies(dataset: 'mydata.movies’,

ordered: 'ascending') ;

declare Hiter Hi_movies ('Hash_movies') ;
Hash_movies.DefineKey ('Title') ;
Hash_movies.DefineData (‘Title’, ‘Rating’, ‘Length’) ;
Hash_movies.DefineDone () ;

end ;

rc = Hi_movies.first() ;

do while (rc = 0) ;
link outlong ;

®

o
e
e
@
e
o
®
(]

rc = Hi_movies.next() ;
end;

Eﬂ stop ;
return ;

Page 9

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

®outlong: ;
Title ;

Label '‘Rating’' ;

Value Rating ;
output hash_long_movies

Title
Label ‘Length' ;
Value Length ;
output hash_long_movies
return ;
run ;

The resulting Hash_Long_Movies data set created with the Hash methods, below, contains three variables: TITLE, LABEL and
VALUE. As with the transposed data set created earlier, this data set contains duplicate TITLEs, a distinct LABLE value for
“Rating” in the first observation of VALUE and for “Length” in the second observation of VALUE for each BY-group.

Brave Heart
Brave Heart

Casablanca
Casablanca
Christmas Vacation
Christmas Wacation
Coming to America
Coming to America
Dracula

Dracula

Dressed to Kil
Dressed to Kil
Fomest Gump
Fomest Gump
Ghost

Ghost

Jaws

o || T | | | P [—

Jaws

Jurassic Park

Jurassic Park

Lethal Weapon

Lethal Weapon

Michael

Michael

National Lampoon’s Vacation
National Lampoon’s Vacation
Poltergeist

Poltergeist

Rocky

Rocly

Hash_Long_Movies Data Set created with Hash Methods

Page 10

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Hash_Long_Movies Data Set (continued)

Scarface

Scarface

Silence of the Lambs
Silence of the Lambs

Star Wars

Star Wars

The Hunt for Red October
The Hunt for Red October
The Teminator

The Teminator

The Wizard of Oz

The Wizard of Oz

Titanic

Titanic

Hash_Long_Movies Data Set created with Hash Methods (continued)

Conclusion

Users have a powerful hash DATA-step construct to sort data, search data sets, perform table lookup operations, and transpose
data sets in the SAS system. This paper introduced the basics of what a hash table is, how it works, the basic syntax, and its
practical applications so SAS users everywhere can begin to take advantage of this powerful memory-based programming
technique to improve the performance of sorts, searches, table lookup operations, merge (or join) and transposes.

References
Dorfman, Paul, and Marina Fridman (2010). "Black Belt Hashigana," Proceedings of the 2010 North East SAS Users Group
(SESUG) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS” Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul, Lessia S. Shajenko and Koen Vyverman (2008). "Hash Crash and Beyond," Proceedings of the 2008 SAS Global
Forum (SGF) Conference.

Dorfman, Paul, and Koen Vyverman (2006). "DATA Step Hash Objects as Programming Tools," Proceedings of the Thirty-First
SAS Users Group International Conference.

Eberhardt, Peter (2011). “The SAS” Hash Object: It’s Time to .find() Your Way Around,” Proceedings of the 2011 SAS Global
Forum (SGF) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2016 South East SAS Users
Group (SESUG) Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2016 lowa SAS Users
Group (IASUG) Conference.

Lafler, Kirk Paul (2015). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2015 South Central SAS
Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2011 South East SAS Users
Group (SESUG) Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2011 PharmaSUG
Conference.

Lafler, Kirk Paul (2011). “An Introduction to SAS’ Hash Programming Techniques,” San Diego SAS Users Group (SANDS) Meeting,
February 16“', 2011.

Lafler, Kirk Paul (2010). “An Introduction to SAS’ Hash Programming Techniques,” Bay Area SAS (BASAS) Users Group Meeting,
December 7“‘, 2010.

Lafler, Kirk Paul (2010). “An Introduction to SAS’ Hash Programming Techniques,” Proceedings of the 2010 South Central SAS
Users Group (SCSUG) Conference.

Page 11

A Hands-on Introduction to SAS DATA Step Hash Programming Techniques, continued

Lafler, Kirk Paul (2010). “An Introduction to SAS’ Hash Programming Techniques,” Awarded “Best” Contributed Paper,
Proceedings of the 2010 Western Users of SAS Software (WUSS) Conference.

Lafler, Kirk Paul (2010). “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG) One-Day
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010). “Exploring Powerful Features in PROC SQL,” SAS Global Forum (SGF) Conference, Software Intelligence
Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step and PROC SQL Programming Techniques,” South Central SAS Users Group (SCSUG) 2009
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009). “DATA Step versus PROC SQL Programming Techniques,” Sacramento Valley SAS Users Group 2009
Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Loren, Judy and Richard A. DeVenezia (2011). "Building Provider Panels: An Application for the Hash of Hashes," Proceedings of
the 2011 SAS Global Forum (SGF) Conference.

Loren, Judy (2006). "How Do I Love Hash Tables? Let Me Count The Ways!," Proceedings of the Nineteenth Northeast SAS Users
Group Conference.

Miller, Ethan and Kirk Paul Lafler (2012), “SAS® on a Shingle, Flippin with Hash,” Proceedings of the 2012 Western Users of SAS
Software (WUSS) Conference Proceedings, SRI International, Menlo Park, CA, and Software Intelligence Corporation, Spring
Valley, CA, USA.

Muriel, Elena (2007). “Hashing Performance Time with Hash Tables,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference.

Parman, Bill (2006). “How to Implement the SAS” DATA Step Hash Object,” Proceedings of the 2006 Southeast SAS Users Group
Conference.

Ray, Robert and Jason Secosky (2008). “Better Hashing in sas® 9.2,” Proceedings of the Second Annual SAS Global Forum (SGF)
Conference, SAS Institute Inc., Cary, NC, USA.

Secosky, Jason (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global Forum (SGF)
Conference, SAS Institute Inc., Cary, NC, USA.

Acknowledgments

The author thanks John Taylor and Gina Curbo, 2018 South Central SAS Users Group (SCSUG) Conference Chairs, for accepting
my abstract and paper; Clarence Jackson, SCSUG President; the SCSUG Executive Board; and SAS Institute for organizing and
supporting a great conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

About The Author

Kirk Paul Lafler is entrepreneur and founder at Software Intelligence Corporation, and has worked with SAS software since
1979. As a SAS consultant, application developer, programmer, data analyst, mentor, infrastructure specialist, educator and
author at Software Intelligence Corporation, and an advisor and SAS programming adjunct professor at the University of
California San Diego Extension, Kirk has taught SAS courses, seminars, webinars and workshops to thousands of users around
the world. Kirk has also authored or co-authored several books including Google® Search Complete (Odyssey Press. 2014) and
PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS Press. 2013); hundreds of papers and articles on a variety of SAS
topics; served as an Invited speaker, educator, keynote and section leader at SAS user group conferences and meetings
worldwide; and is the recipient of 25 "Best" contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
Software Intelligence Corporation
E-mail: KirkLafler@cs.com
LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/
LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/
Twitter: @sasNerd

Page 12

mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

