

Page 1

Conditional Processing in the SAS® Software by Example

Charu Shankar, SAS Institute Canada, Toronto, Canada
Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
Conditional processing is at the heart & core of computer programming. The SAS software supports conditionally selecting
result values from rows in a table (or view) in the form of DATA step subsetting IF, IF-Then-Else, Select-When-Otherwise, and
the IFN/IFC statements, the powerful PROC SQL Case Expression, and PROC FORMAT. Learn about best practices while crafting
your conditional statements and much more.

Introduction
It is frequently necessary to test and evaluate one or more conditions as true or false. From a programming perspective, the
evaluation of a condition determines which of the alternate paths a program will follow. Another important technique used in
conditional processing is to reclassify (or restructure) data in SAS data sets. As with most things in the SAS software, users have
a variety of options to choose from when performing conditional logic processing. From DATA step subsetting IF, IF-THEN-ELSE,
SELECT-WHEN-OTHERWISE, and IFN/IFC statements; a Case expression in PROC SQL; and user-defined formats with PROC
FORMAT.

This paper presents the power, and simplicity, of using the various conditional processing approaches found in the SAS
software. We’ll share guidelines, best practice scenarios, along with our experience using these powerful statements,
expressions, and procedures using an assortment of examples. case expressions to perform conditional processing in the SQL
procedure.

Table (Data Set) Used in Examples
The data set used in all the examples in this paper is the SASHELP.CARS. The SASHELP.CARS data set contains 428 observations
and 15 variables, illustrated below.

Conditional Processing in the SAS® Software by Example, continued

Page 2

Conditional Logic Scenarios
A powerful and necessary programming technique in the SAS® software is its ability to perform different actions depending on
whether a programmer-specified condition evaluates to true or false. The method used to accomplish this is to use one or more
conditional statements, expressions, and constructs to build a level of intelligence in a program or application. Conditional logic
scenarios in the DATA step are frequently implemented using IF-THEN / ELSE and SELECT statements. The SQL procedure also
supports logic scenarios and is implemented with a coding technique known as a CASE expression. The remaining topics
presented in this paper will illustrate the implementation of logic scenarios in the DATA step and SQL procedure.

Subsetting IF
The subsetting IF construct in the DATA step allows users to subset rows of data

. . .

Code:

Results

Conditional Logic with IF-THEN / ELSE
The IF-THEN / ELSE construct in the DATA step enables a sequence of conditions to be assigned that when executed proceeds
through the sequence of logic conditions until a match in an expression is found or until all conditions are exhausted. The
example shows a character variable Orgin_of_Car being assigned a value of either “Asia Manufactured”, “Europe
Manufactured”, “USA Manufactured” or “Unknown Manufacturer” based on the mutually exclusive conditions specified in the
IF-THEN and ELSE conditions. Although not required, an ELSE condition serves as an effective “best practice” technique for
continuing processing to the next specified condition when a match is not found. An ELSE condition can also be useful as a
“catch-all” to prevent a missing value from being assigned.

Code:

DATA IF_THEN_EXAMPLE ;
 ATTRIB Origin_of_Car LENGTH=$19 LABEL='Origin of Car' ;
 SET SASHELP.CARS ;
 IF UPCASE(Origin) = 'ASIA' THEN Origin_of_Car = 'Asia Manufactured' ;
 ELSE IF UPCASE(Origin) = 'EUROPE' THEN Origin_of_Car = 'Europe Manufactured' ;
 ELSE IF UPCASE(Origin) = 'USA' THEN Origin_of_Car = 'USA Manufactured' ;
 ELSE Origin_of_Car = 'Unknown Manufacturer' ;
RUN ;

PROC PRINT DATA=IF_THEN_EXAMPLE NOOBS ;
 VAR Origin Origin_of_Car Type Make Model MSRP ;
RUN ;

Results

Conditional Processing in the SAS® Software by Example, continued

Page 3

Conditional Logic with SELECT
Another form of conditional logic available to users is a SELECT statement. Its purpose is to enable a sequence of logic
conditions to be constructed in a DATA step by specifying one or more WHEN conditions and an optional OTHERWISE
condition. When executed, processing continues through each WHEN condition until a match is found that satisfies the
specified expression. Typically one or more WHEN conditions are specified in descending frequency order representing a series
of conditions. The next example shows a value based on the mutually exclusive conditions specified in the sequence of logic
conditions of “Shorter Length”, “Average Length”, or “Longer Length” being assigned to the character variable Movie_Length.
Although not required, the OTHERWISE condition can be useful in the assignment of a specific value or as a “catch-all” to
prevent a missing value from being assigned.

Code:

DATA SELECT_WHEN_EXAMPLE ;
 SET SASHELP.CARS ;
 SELECT ;
 WHEN (UPCASE(Origin) = 'ASIA') Origin_of_Car = 'Asia Manufactured' ;
 WHEN (UPCASE(Origin) = 'EUROPE') Origin_of_Car = 'Europe Manufactured' ;
 WHEN (UPCASE(Origin) = 'USA') Origin_of_Car = 'USA Manufactured' ;
 OTHERWISE Origin_of_Car = 'Unknown Manufacturer' ;

Conditional Processing in the SAS® Software by Example, continued

Page 4

 END ;
RUN ;
PROC PRINT DATA=SELECT_WHEN_EXAMPLE NOOBS ;
 VAR Origin Origin_of_Car Type Make Model MSRP ;
RUN ;

Results

Conditional Processing in the SAS® Software by Example, continued

Page 5

Conditional Logic with CASE Expressions
Another form of conditional logic available to users is a case expression. Its purpose is to provide a way of conditionally
selecting result values from each row in a table (or view). Similar to an IF-THEN/ELSE or SELECT construct in the DATA step, a
case expression can only be specified in the SQL procedure. It supports a WHEN-THEN clause to conditionally process some but
not all the rows in a table. An optional ELSE expression can be specified to handle an alternative action should none of the
expression(s) identified in the WHEN condition(s) not be satisfied. A case expression must be a valid SQL expression and
conform to syntax rules similar to DATA step SELECT-WHEN statements. Even though this topic is best explained by example, a
quick look at the syntax follows.

CASE <column-name>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression> …
 <ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made available to each
when-condition, and is classified as a simple case expression. When it is not specified, the column-name must be coded in each
when-condition, and is classified as a searched case expression. If a when-condition is satisfied by a row in a table (or view),
then it is considered “true” and the result-expression following the THEN keyword is processed. The remaining WHEN
conditions in the case expression are skipped. If a when-condition is “false”, the next when-condition is evaluated. SQL
evaluates each when-condition until a “true” condition is found or in the event all when-conditions are “false”, it then executes
the ELSE expression and assigns its value to the CASE expression’s result. A missing value is assigned to a case expression when
an ELSE expression is not specified and each when-condition is “false”.

A simple case expression provides a handy way to perform the simplest type of comparisons. The syntax requires a column
name from an underlying table to be specified as part of the case expression. This not only eliminates having to continually
repeat the column name in each WHEN condition, it also reduces the number of keystrokes, making the code easier to read
(and support).

In the next example, a simple case expression is illustrated that shows a character variable Movie_Length being assigned with
the AS keyword. A value of “Shorter Length” for movie lengths less than 120 minutes, “Longer Length” for movie lengths
greater than 160 minutes, or “Average Length” for all other movie lengths is assigned to the newly created column. Although
not required, an ELSE condition can be useful in the assignment of a specific value or as a “catch-all” to prevent a missing value
from being assigned, as shown below.

SQL Code

PROC SQL;
 SELECT TITLE,
 LENGTH,
 CASE LENGTH
 WHEN < 120 THEN 'Shorter Length'
 WHEN > 160 THEN 'Longer Length'
 ELSE 'Average Length'
 END AS Movie_Length
 FROM MOVIES;
QUIT;

Conditional Processing in the SAS® Software by Example, continued

Page 6

Results

 Title Length Movie_Length

 Brave Heart 177 Longer Length
 Casablanca 103 Shorter Length
 Christmas Vacation 97 Shorter Length
 Coming to America 116 Shorter Length
 Dracula 130 Average Length
 Dressed to Kill 105 Shorter Length
 Forrest Gump 142 Average Length
 Ghost 127 Average Length
 Jaws 125 Average Length
 Jurassic Park 127 Average Length
 Lethal Weapon 110 Shorter Length
 Michael 106 Shorter Length
 National Lampoon's Vacation 98 Shorter Length
 Poltergeist 115 Shorter Length
 Rocky 120 Average Length
 Scarface 170 Longer Length
 Silence of the Lambs 118 Shorter Length
 Star Wars 124 Average Length
 The Hunt for Red October 135 Average Length
 The Terminator 108 Shorter Length
 The Wizard of Oz 101 Shorter Length
 Titanic 194 Longer Length

In the next example, a searched case expression is illustrated. A searched case expression in the SQL procedure provides users
with the capability to perform more complex comparisons. Although the number of keystrokes can be more than with a simple
case expression, the searched case expression offers the greatest flexibility and is the primary form used by SQL’ers. The
noticeable absence of a column name as part of the case expression permits any number of columns to be specified from the
underlying table(s) in the WHEN-THEN/ELSE logic scenarios.

The next example shows a searched case expression being used to assign the character variable Movie_Length with the AS
keyword. A value of “Shorter Length” for movie lengths less than 120 minutes, “Longer Length” for movie lengths greater than
160 minutes, or “Average Length” for all other movie lengths is assigned to the newly created column. Although not required,
an ELSE condition can be useful in the assignment of a specific value or as a “catch-all” to prevent a missing value from being
assigned.

SQL Code

PROC SQL;
 SELECT TITLE,
 LENGTH,
 CASE
 WHEN LENGTH < 120 THEN 'Shorter Length'
 WHEN LENGTH > 160 THEN 'Longer Length'
 ELSE 'Average Length'
 END AS Movie_Length
 FROM MOVIES;
QUIT;

Conditional Processing in the SAS® Software by Example, continued

Page 7

Results

 Title Length Movie_Length

 Brave Heart 177 Longer Length
 Casablanca 103 Shorter Length
 Christmas Vacation 97 Shorter Length
 Coming to America 116 Shorter Length
 Dracula 130 Average Length
 Dressed to Kill 105 Shorter Length
 Forrest Gump 142 Average Length
 Ghost 127 Average Length
 Jaws 125 Average Length
 Jurassic Park 127 Average Length
 Lethal Weapon 110 Shorter Length
 Michael 106 Shorter Length
 National Lampoon's Vacation 98 Shorter Length
 Poltergeist 115 Shorter Length
 Rocky 120 Average Length
 Scarface 170 Longer Length
 Silence of the Lambs 118 Shorter Length
 Star Wars 124 Average Length
 The Hunt for Red October 135 Average Length
 The Terminator 108 Shorter Length
 The Wizard of Oz 101 Shorter Length
 Titanic 194 Longer Length

As previously mentioned, searched case expressions provide users with the capability to perform more complex logic
comparisons. Combined with logical and comparison operators, searched case expressions along with their WHERE clause
counterparts, provide the capabilities to construct complex logic scenarios. In the next example a listing of “Action” and
“Comedy” movies are displayed. Using a searched case expression, a value of “Shorter Length” for movie lengths less than 120
minutes, “Longer Length” for movie lengths greater than 160 minutes, or “Average Length” for all other movie lengths is
assigned to the newly created column. A column heading of Movie_Type is assigned to the new column with the AS keyword.

SQL Code

PROC SQL;
 SELECT TITLE, RATING, LENGTH, CATEGORY,
 CASE
 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND LENGTH < 120 THEN 'Action Short'
 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND LENGTH > 160 THEN 'Action Long'
 WHEN UPCASE(CATEGORY) CONTAINS 'ACTION' AND
 LENGTH BETWEEN 120 AND 160 THEN 'Action Medium’
 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND LENGTH < 120 THEN 'Comedy Short'
 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND LENGTH > 160 THEN 'Comedy Long'
 WHEN UPCASE(CATEGORY) CONTAINS 'COMEDY' AND
 LENGTH BETWEEN 120 AND 160 THEN 'Comedy Medium'
 ELSE 'Not Interested'
 END AS MOVIE_TYPE
 FROM MOVIES
 WHERE UPCASE(CATEGORY) CONTAINS 'ACTION' OR 'COMEDY';
QUIT;

Conditional Processing in the SAS® Software by Example, continued

Page 8

Results

 Title Rating Length Category Movie_Type

 Brave Heart R 177 Action Adventure Action Long
 Casablanca PG 103 Drama Not Interested
 Christmas Vacation PG-13 97 Comedy Comedy Short
 Coming to America R 116 Comedy Comedy Short
 Dracula R 130 Horror Not Interested
 Dressed to Kill R 105 Drama Mysteries Not Interested
 Forrest Gump PG-13 142 Drama Not Interested
 Ghost PG-13 127 Drama Romance Not Interested
 Jaws PG 125 Action Adventure Action Medium
 Jurassic Park PG-13 127 Action Action Medium
 Lethal Weapon R 110 Action Cops & Robber Action Short
 Michael PG-13 106 Drama Not Interested
 National Lampoon's Vacation PG-13 98 Comedy Comedy Short
 Poltergeist PG 115 Horror Not Interested
 Rocky PG 120 Action Adventure Action Medium
 Scarface R 170 Action Cops & Robber Action Long
 Silence of the Lambs R 118 Drama Suspense Not Interested
 Star Wars PG 124 Action Sci-Fi Action Medium
 The Hunt for Red October PG 135 Action Adventure Action Medium
 The Terminator R 108 Action Sci-Fi Action Short
 The Wizard of Oz G 101 Adventure Not Interested
 Titanic PG-13 194 Drama Romance Not Interested

Conclusion
The SQL procedure is a wonderful language for SAS users to explore and use in a variety of application situations. This paper has
presented code examples, explanations, guidelines and “simple” techniques for users to consider when confronted with
conditional logic scenarios. The author encourages you to explore these and other techniques to make your PROC SQL
experience a more exciting one.

References
Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2012), “Conditional Processing Using the Case Expressions in PROC SQL,” Pharma SAS Users Group
(PharmaSUG) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2012), “Conditional Processing Using the Case Expressions in PROC SQL,” Iowa SAS Users Group (IowaSUG)
2012 Half-Day User Group Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2011), “Powerful and Sometimes Hard-to-find PROC SQL Features,” PharmaSUG 2011 Conference, Software
Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2010), “DATA Step and PROC SQL Programming Techniques,” Ohio SAS Users Group (OSUG) 2010 One-Day
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “DATA Step and PROC SQL Programming Techniques,” South Central SAS Users Group (SCSUG) 2009
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2009), “DATA Step versus PROC SQL Programming Techniques,” Sacramento Valley SAS Users Group 2009
Meeting, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul, Advanced SAS® Programming Tips and Techniques; Software Intelligence Corporation, Spring Valley, CA, USA;
1987-2007.

Lafler, Kirk Paul (2007), “Undocumented and Hard-to-find PROC SQL Features,” Proceedings of the PharmaSUG 2007
Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul and Ben Cochran (2007), “A Hands-on Tour Inside the World of PROC SQL Features,” Proceedings of the SAS
Global Forum (SGF) 2007 Conference, Software Intelligence Corporation, Spring Valley, CA, and The Bedford Group, USA.

Lafler, Kirk Paul (2006), “A Hands-on Tour Inside the World of PROC SQL,” Proceedings of the 31st Annual SAS Users Group
International Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Conditional Processing in the SAS® Software by Example, continued

Page 9

Lafler, Kirk Paul (2005), “Manipulating Data with PROC SQL,” Proceedings of the 30th Annual SAS Users Group International

Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

Lafler, Kirk Paul (2004). PROC SQL: Beyond the Basics Using SAS, SAS Institute Inc., Cary, NC, USA.

SAS® SQL Procedure User’s Guide, Version 9.3; SAS Institute Inc., Cary, NC, USA; 2012.

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective
companies.

About The Authors
Charu Shankar is a technology trainer, wellness coach, writer and public speaker with proven ability in delivering top quality
training resulting in a high degree of satisfaction among clients. As a SAS instructor Charu helps individuals and organizations
leverage SAS to learn and use SAS creatively to solve practical business problems. Charu is a popular speaker at SAS user group
conferences and has helped train thousands of SAS users. She also helps individuals land their dream SAS job to meet their
technology goals and make a contribution to society with their skills. Charu’s blog posts are found at
blogs.sas.com/content/author/charushankar.

Kirk Paul Lafler is consultant, entrepreneur, and founder at Software Intelligence Corporation and has been using SAS since
1979. He is a SAS Certified Professional, mentor, provider of SAS consulting and training services, educator to SAS users around
the world, and an emeritus sasCommunity.org Advisory Board member. As the author of six books including Google® Search
Complete (Odyssey Press. 2014); PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS Press. 2013); PROC SQL: Beyond
the Basics Using SAS (SAS Press. 2004); Kirk has written hundreds of papers and articles; served as an Invited speaker, trainer,
keynote and section leader at SAS International, regional, special-interest, local, and in-house user group conferences and
meetings; and is the recipient of 25 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Comments and suggestions can be sent to:

Charu Shankar
Technical Trainer, SAS Institute, Canada

E-mail: charu_shankar@hotmail.com
LinkedIn: https://www.linkedin.com/in/charushankar

Twitter: CharuSAS

~ ~ ~ ~ ~ ~ ~

Kirk Paul Lafler
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author

Software Intelligence Corporation
E-mail: KirkLafler@cs.com

LinkedIn: https://www.linkedin.com/in/KirkPaulLafler/
LinkedIn: https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

Twitter: @sasNerd

https://pdfs.semanticscholar.org/a73a/d95270d0cedfd893ad9a598a1915bed04bf1.pdf

mailto:charu_shankar@hotmail.com
https://www.linkedin.com/in/charushankar
mailto:KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
https://www.linkedin.com/in/Order-of-Magnitude-Analytics/

	Results
	Results
	Results
	SQL Code
	WHEN < 120 THEN 'Shorter Length'
	SQL Code

	WHEN LENGTH < 120 THEN 'Shorter Length'
	SQL Code

	Technical Trainer, SAS Institute, Canada

