
How to configure Python and SASPy

Michael McCarthy PE, Austin Energy, Austin TX USA

ABSTRACT

SASPy is an interface between SAS® and Python that can generate SAS® code from Python3 scripts. The SASPy module

enables Python objects and syntax to access SAS data. Thus, it’s possible to use Python to perform machine learning

techniques on existing SAS data sets using packages like Scikit-learn, SciPy, and NumPy. This paper presents a step-by-

step tutorial showing the configuration of the connection from BASE SAS® to an Anaconda Distribution of Python3

running on Windows 10.

INTRODUCTION

SASPy provides Python access to your exiting archive of BASE SAS® data sets, making it possible for you to share insights

and collaborate with users on the Python platform. If you already have Python and Jupyter Notebooks installed, just

“pip” the SASPy package. If you don’t, then go to https://www.python.org/downloads/ and install Python and pip

packages as you need them. Note, there are several free open source Python distributions that will perform setup and

configuration during install. This can potentially save a lot of time and frustration as there is likely older version(s) of

Python on your PC configured to run with existing applications, and it’s important to avoid a changing the configuration

of these Python installations. Be sure to install Python3 since this will give you access Scikit-learn, SciPy, and NumPy. If

you enjoy the Jupyter format, you can work in the Python3 Kernel as well as the SAS®Kernel. The Jupyter platform will

allow you to program in either Python3 or BASE SAS®.

METHODOLOGY – INSTALLATION INSTRUCTIONS

The first thing to do is install Python3. I’m installing the Anaconda3 version that comes with pandas and Jupyter

Notebooks installed and configured for Windows 10. Choosing a distribution is helpful since the majority of the Python

configuration details are handled automatically:

Anaconda Installation:

1.) Go to https://www.anaconda.com/download/

2.) Select Python 3.6 Version (64 Bit Graphic Installer)

3.) Open the Anaconda3.exe installer > Agree to Terms > Select Just Me (Installs as App)

4.) When you are done you’ll see a folder called Anaconda3. It has installed Anaconda Navigator, Anaconda DOS

Prompt, Jupyter Notebook, and Spyder

5.) You’re done installing the file server. This file server is running locally on your PC, but you can access all the

installed tools from a browser (except - Anaconda DOS Prompt. Do this from your App list).

6.) Note that you now have a local install of Python and these tools under your user profile on this PC. Since it’s just

installed for your profile, you were not required to be an Admin on your PC. Note that the files are actually

installed in C:\Users\YourWindowsName\AppData\Local\Continuum

7.) Go to the Anaconda DOS prompt and type Python

(base) C:\Users\YourWindowsName>python

You should see…
Python 3.6.3 |Anaconda custom (64-bit)| (default, Oct 15 2017, 03:27:45) [MSC v.1900 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

8.) Note: You may have other globally installed versions of Python on your PC (i.e. ArcGIS uses Python). These are

separate from this install. When you install packages, please make sure you are using the Anaconda DOS

https://www.python.org/downloads/
https://www.anaconda.com/download/

Prompt. The advantage of the Anconda3 version is that comes with pandas and Jupyter Notebooks installed and

configured.

Now we’re ready to install the SASPy package:

1.) SASPy provides Python access to all of the features that your SAS license allows

2.) Go to the Anaconda DOS Prompt > Type pip install saspy

3.) You will see some info about the install in your Anaconda DOS Prompt window. When it’s done, navigate to

C:\Users\YOURWINDOWSNAME\AppData\Local\Continuum\anaconda3\Lib\site-packages. As you install

packages using the Python “pip” command you will see them in this directory. Note that you must import the

packages using the import “package name” command in you Python script. Sometimes the package name is

different (e.g. Sci-Kit Learn is called sklearn) so you may need to check the site-packages directory to see what

things are actually named.

4.) Packages can launch or interact with other programs on you PC. To enable these, you will need to update the

Java Path (or called “Path”). This “Path” is actually a list of important locations Java needs to know about. Java

needs to know these locations since it’s invoked from some Python packages (like saspy) to run other PC

programs (like SAS). You can update your “Path” by following the instructions on the next page

Almost done…How to set the path and variables in Windows 8 and Windows 10:

1.) From the Desktop, right-click the very bottom left corner of the screen to get the Power User Task Menu.

2.) From the Power User Task Menu, click System. It should look like:
3.) Click the Advanced System Settings link in the left column. You will need Admin privileges or IT to update this

PATH

Note: In Windows 10, you may need to scroll down to the Related settings section and click the System info link. In the
System window that opens, click the Advanced system settings link in the left column.

https://www.computerhope.com/jargon/d/desktop.htm
https://www.computerhope.com/jargon/p/putm.htm

4.) In the System Properties window, click on the Advanced tab, then click the Environment Variables button near

the bottom of that tab.

5.) In the Environment Variables window (pictured below), highlight the Path variable in the "System

variables" section and click the Edit button. Add or modify the path lines with the paths you want the
computer to access. Each different directory is separated with a semicolon as shown below.

C:\Program Files;C:\Winnt;C:\Winnt\System32

Note: You can edit other environment variables by highlighting the variable in the "System variables" section and
clicking Edit. If you need to create a new environment variable, click New and enter the variable name and variable
value. To view and set the path in the Windows command line, use the path command.

6.) We need to add the directory that contains the file sspiauth.dll to our Path variable. This file is located at
~\SASHome\SASFoundation\9.4\core\sasext. Search for this folder in your SASHome directory. Click Edit and
add the path to this directory to the list.

7.) If you open the cmd line in DOS and type path (i.e. > path) you will see something like (our edit is in red):

https://www.computerhope.com/jargon/p/pushbutt.htm
https://www.computerhope.com/pathhlp.htm

PATH=C:\Oracle\product\11.2.0\client_X64\bin;C:\ProgramData\Oracle\Java\javapath;C:\windows\system32;C:\windo
ws;C:\windows\System32\Wbem;C:\windows\System32\WindowsPowerShell\v1.0\;C:\Program
Files\ServiceNow;C:\Program
Files\ServiceNow;F:\SAS\SASHome\SASFoundation\9.4\ets\sasexe;F:\SAS\SASHome\Secure\ccme4;F:\SAS\SASHome\S
ASFoundation\9.4\core\sasext;C:\Users\YOURWINDOWSNAME\AppData\Local\Microsoft\WindowsApps;

8.) Now update the sascfg.py file using IDLE. This file will be located in

C:\Users\WINDOWSUSERNAME\AppData\Local\Continuum\anaconda3\Lib\site-packages\saspy. Right click and

choose Open with IDLE (Python editor).

…scroll down to the config names below

SAS_config_names=['winlocal','winiomwin','winiomIWA']

…scroll down to the path files below

build out a local classpath variable to use below for Windows clients
cpW =
"F:\\SAS\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94490__prt__xx__sp0__1\\deploywiz\\sas.svc.connection.jar"
cpW += ";F:\\SAS\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94490__prt__xx__sp0__1\\deploywiz\\log4j.jar"
cpW +=
";F:\\SAS\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94490__prt__xx__sp0__1\\deploywiz\\sas.security.sspi.jar"
cpW += ";F:\\SAS\\SASHome\\SASDeploymentManager\\9.4\\products\\deploywiz__94490__prt__xx__sp0__1\\deploywiz\\sas.core.jar"
cpW += ";C:\\ProgramData\\Anaconda3\\Lib\\site-packages\\saspy\\java\\saspyiom.jar"

…cpW is aliased as winlocal (see below)

winlocal = {'java' : 'java',
 'encoding' : 'windows-1252',
 'classpath' : cpW

 }

9.) Test your connection by opening Anaconda > Jupyter > and type the following in a Jupyter “In” box:

GOING FURTHER

It’s even possible to add the SAS Kernel to your Jupyter Notebook and program in SAS from your Jupyter project:

1.) Go to your Anaconda DOS prompt and type “pip install sas_kernel”. It will install the sas_kernel in

C:\Users\YOURWINDOWSNAME\AppData\Local\Continuum\anaconda3\Lib\site-packages

2.) Once the install is complete, type “jupyter kernelspec list” you should see:
(base) C:\Users\YOURWINDOWSNAME>jupyter kernelspec list

Available kernels:

 sas C:\Users\YOURWINDOWSNAME\AppData\Roaming\jupyter\kernels\sas

 python3 C:\Users\YOURWINDOWSNAME\AppData\Local\Continuum\anaconda3\share\jupyter\kernels\python3

3.) Now, from Jupyter create a new Code Cell. Select Cell Type ‘SAS’. Type PROC setinit; run; CNTRL+RETURN. You

will see Jupyter connect to the kernel, start a process, and return all of you licensing information. You can now

use Jupyter to run BASE SAS using your PC.

4.) Note that Jupyter can only be connected to a single kernel at a given time, so you cannot have mixed Cells in you

Jupyter notebook.

CONNECT SASPy TO YOUR SAS DATA

 The following example demonstrates how to connect Python to local SAS data sets

#Import a SAS data set into python
import saspy
sas=saspy.SASsession(cfgname='winlocal')
Python uses \\ notation for windows filepaths
sas.saslib("MYLIB", "BASE", "C:\\Users\\MYUSERNAME\\Desktop\\MachineLearning")
PYTHONDATA = sas.sasdata("TCADWCAD","MYLIB")

#Import a SAS data set into pandas
import pandas
PANDADATA= pandas.read_sas('C:/Users/MYUSERNAME/Desktop/MachineLearning/TCADWCAD.sas7bdat')
print(PANDADATA)

PERFORM MACHINE LEARNING ON A SAS DATA SET USING PYTHON

The data set in this example consists of public tax appraisal data. Here, I’m using Python packages sklearn, scipy, and

numpy to train a model which predicts the Appraised Value based upon the sqft, year built, floors and zip code. I then

apply the model to a small sample of test data. The SAS data set used to train the model is loaded using the statement:

TRAIN_X = pandas.read_sas('C:/Users/ MYUSERNAME /Desktop/MachineLearning/TRAIN.sas7bdat')

Python3 MACHINE LEARNING EXAMPLE SCSUGS 2018
Written by Michael McCarthy, PE

IMPORT LIBRARIES NEEDED FOR MACHINE LEARNING
import pandas
IMPORT NumPy
import numpy
IMPORT SCIKIT-LEARN
import sklearn
IMPORT scipy
import scipy
IMPORT JOBLIB FOR PIPELINING
import joblib
Import a SAS data set into python
import saspy
sas=saspy.SASsession(cfgname='winlocal')

Python uses \\ notation for windows filepaths
sas.saslib("MYLIB", "BASE", "C:\\Users\\MYUSERNAME\\Desktop\\MachineLearning")
DATA PREP ON SAS - Either run SAS Kernel in Jupyter or use BASE SAS editor
libname dataprep 'C:\Users\MYUSERNAME\Desktop\MachineLearning';
data dataprep.TRAIN (KEEP = STATECODE FLOORS YRBLT SQFT ZIP);
set dataprep.TCADWCAD;
format ZIP 6.;
FLOORS = MAXFLOOR; YRBLT = MAXYRBLT; SQFT = TOTALSQFT; ZIP=STREETZIP;
if missing(MAXFLOOR)OR missing(MAXYRBLT) OR (TOTALSQFT LT 200) OR (TOTALSQFT GT 9000) OR ZIP LT 70000 OR ZIP GT 80000 Return;
if STATE_CD = 'A1' then output;
run;
Pandas uses / notation for windows filepaths - Make sure no missing values in data set
TRAIN_X = pandas.read_sas('C:/Users/ MYUSERNAME /Desktop/MachineLearning/TRAIN.sas7bdat')
TRAIN_Y = pandas.read_sas('C:/Users/ MYUSERNAME /Desktop/MachineLearning/TRAIN.sas7bdat')

You could also import csv directly into pandas
#TRAIN_X = pandas.read_csv("C:/Users/ MYUSERNAME /Desktop/MachineLearning/TRAIN.csv")
#TRAIN_Y = pandas.read_csv("C:/Users/ MYUSERNAME /Desktop/MachineLearning/TRAIN.csv")

BUILD TRAINING DATA SETS
X = TRAIN_X[['FLOORS','YRBLT','SQFT','ZIP']].as_matrix()
print(X)
Y = TRAIN_Y['VALUE'].as_matrix()
print(Y)
SPLIT THE DATA 70-30 INTO TRAINING AND TEST DATA SETS
YOU MUST IMPORT INDIVIDUALLY MODELS FROM THE SCIKIT_LEARN PACKAGE
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3, random_state=0)
FIT REGRESSION MODEL
from sklearn import ensemble
model = ensemble.GradientBoostingRegressor(
 n_estimators = 10, # How many decision trees to build
 learning_rate=0.3, # how much each decision tree influences the model
 max_depth = 4, # How deep each individual decision tree can be
 min_samples_leaf = 10, # How often a value appears in the training set before it's used to make a decision
 max_features=0.1, # Number of features considered to create a branch in the decision tree
 loss = 'huber' # Controls how the Cost function is considered while the model learns
)
model.fit(X_train,Y_train) #CALL Sci-Kit Learn and train the model
SAVE OUTPUT MODEL USING ANOTHER SCIKIE LEARN FUNCTION
joblib.dump(model,'trained_house_model.pkl')

#CHECK ACCURACY OF MODEL USING MEAN ABSOLUTE ERROR FUNCTION FOR EACH Y CALL PREDICTION
FIND THE ERROR RATE ON THE TRAINING DATA SET
from sklearn.metrics import mean_absolute_error
mse = mean_absolute_error(Y_train,model.predict(X_train))
print("Training data set Mean Absolute Error: %.4f" % mse)

FIND THE ERROR RATE ON THE TEST DATA SET
mse = mean_absolute_error(Y_test,model.predict(X_test))
print("Test data set Mean Absolute Error: %.4f" % mse)

LOAD THE GRADIENT BOOSTING MODEL AND APPLY TO NEW DATA
model = joblib.load('trained_house_model.pkl')

IMPORT REAL DATA
REAL_X = pandas.read_csv("C:/Users/MYUSERNAME/Desktop/MachineLearning/SCSUGS.csv",dtype={"FLOORS": int,"YRBLT": int,"SQFT": int,"ZIP": int
},low_memory=False)
CONVERT TO MATRIX
X = REAL_X[['FLOORS','YRBLT','SQFT','ZIP']].as_matrix()
print(X)
Pass in values from a data set we want to model - Call Model.predict
Predicted_Home_Values = model.predict(X)
print(Predicted_Home_Values)
predicted_value = Predicted_Home_Values[0]
print("The estimated value is ${:.2f}".format(predicted_value))
mylist = REAL_X.ID.tolist()

OUTPUT PREDICTED HOUSE PRICES
for n in mylist:
 Predicted_Home_Values = model.predict(X)
 predicted_value = Predicted_Home_Values[n-1]
 print("The estimated value is ${:.2f}".format(predicted_value))

CONCLUSION

The instructions presented in this paper should get SASPy up and running on Python3 with Jupyter Notebooks. I chose to

install the Anaconda distribution since the Python package installation and configuration is automated. This paper

presents a step-by-step tutorial showing the configuration of the connection from BASE SAS® to an Anaconda

Distribution of Python3 running on Windows 10. In this paper I demonstrated the use of Python3 to perform machine

learning on an existing SAS data set using packages Scikit-learn, SciPy, and NumPy. Happy coding!

ACKNOWLEDGEMENTS

Special thanks to John Trowbridge, PE (DABI Engineering Supervisor, Austin Energy), Liz Jambor (DABI Manager, Austin

Energy), Victor Carr (Division Manager of Information Systems, Austin Energy) and Debbie Kimberly (VP Customer

Energy Solutions, Austin Energy) for their continued support of our SAS Data Analytics Server.

REFERENCES

SASPy Documentation

https://sassoftware.github.io/saspy/

Paper 2822-2018 A Basic Introduction to SASPy and Jupyter Notebooks

Jason Phillips, PhD, University of Alabama

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2822-2018.pdf

CONTACT INFORMATION

I value your comments. You can contact the author at:

Michael McCarthy, PE
Austin Energy, Customer Energy Solutions, Austin TX USA
michael.mccarthy@austinenergy.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute

Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of

their respective companies.

https://sassoftware.github.io/saspy/
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2822-2018.pdf
mailto:michael.mccarthy@austinenergy.com

