
Pruning the SASLOG –

Digging into the Roots of NOTEs, WARNINGs, and ERRORs

Andrew T. Kuligowski

HSN – St. Petersburg, FL

ABSTRACT

You've sat through constant design meetings. You've endured countless requests for "just one
more little change". You even managed to find a creative solution to that nagging technical
problem. But, you persevered, and despite all of the obstacles, you've managed to eliminate the
final syntax error in your newest SAS routine. Time to sit back and relax -- uh, not quite ...

The primary focus of this presentation will be on techniques to ensure comprehension of your input
data. We will look at several messages that are often found in the SASLOG, such as:

NOTE: MERGE statement has more than one data set with repeats of BY

values.

that imply that there may be gaps in your knowledge of your data! Special emphasis will be placed
on the use of ad-hoc queries to assist in finding data anomalies that can cause problems with your
SAS code. It is assumed that the reader has a basic understanding of the SASLOG, including its
composition, format, and the SAS system options which control its content.

MERGE Statement: Repeats of BY Values

Most users of the SAS system have encountered the following message:

NOTE: MERGE statement has more than one data set with repeats of BY values.

There are many papers in the Proceedings from past SUGI, SESUG, SCSUG, and the other
various regional SAS User Group conferences that describe how to programatically force such a
merge to occur. This assumes that the user wants to merge datasets that have repeats of BY
values. However, it is also possible that the user did not expect this condition. This implies an error
in your SAS routine, caused by a misunderstanding of the input data. We want to isolate these
cases and modify our assumptions, so that we can correct our MERGE and eliminate this condition.

The following will illustrate an example of "repeats of BY values". We are going to merge a dataset
containing a list of dog breeds [see Table "1-A"] against a dataset containing the dogs owned by
sample households [see Table "1-B"] using the variable BREED, keeping only those records from

the Breed file that have a corresponding record in the Household file. As one would expect
(knowing, of course, that this example was created to illustrate the problem at hand), the merge
results in "more than one data set with repeats of BY values" [illustrated in Table "1-C"]. The
problem is to determine which BY values had repeats, which records (on which files) are affected,
and what additional information needs to be included to make the "BY values", also referred to as
"merge variables", unique on at least one of the files.

BREED VARIETY OTHER INFO

Bulldog 17834

Dalmatian 49235

Dachshund Mini 18435

Dachshund MiniLonghair 75846

Dachshund MiniWirehair 09431

Dachshund Std 18098

BREED VARIETY OTHER INFO

Dachshund Std Longhair 75324

Dachshund Std Wirehair 09389

Ger Sheprd 09622

GoldRetrvr 38292

Husky,Sib 75555

Lab Retrvr 38192

Table "1-A" : Breed File

HHLD ID BREED VARIETY BIRTHDAY GOAWAYDY

0005884 Dalmatian 07/31/87

0005884 Dalmatian 12/23/89

0005884 Bulldog English 05/19/91 02/20/95

0005884 Dachshund Std Longhair 09/17/94

0005884 Dachshund Std Longhair 10/29/95

0008824 Ger Sheprd 11/24/89 12/07/92

0008824 Husky,Sib 05/26/93

0008824 Lab Retrvr 02/28/94 05/06/95

0008824 GoldRetrvr 03/06/95

Table "1-B" : Dogs per Household File

177 DATA DOGDTL;

178 MERGE DOGOWNED (IN=IN_OWNED)

179 DOGBREED (IN=IN_BREED);

180 BY BREED ;

181 IF IN_OWNED ;

182 RUN;

NOTE: MERGE statement has more than one data set with repeats

 of BY values.

NOTE: The data set WORK.DOGDTL has 13 observations and

 6 variables.

Table "1-C" : SASLOG - MERGE with "repeats of BY values"

We can use basic elements of the SAS System to do most of the analysis for us; our most powerful
tool will be the MEANS procedure. PROC MEANS is traditionally used to compute descriptive
statistics for numeric variables in a SAS Data set. In this situation, we simply need a list of the
unique values of our merge variable (or, in a more complex case, the unique combinations of
values for our merge variables), along with a count of the number of occurrences of each in both of
our datasets. The NWAY option on the PROC MEANS statement will limit the output dataset to
only those observations with the "highest interaction among CLASS variables" -- that is, only those
records containing the unique values or combinations of values for the BY variables will be written
to the output dataset. NOPRINT is optional; it can be used or excluded based on personal
preference. The variable used in the VAR statement can be any numeric variable in the dataset;
the only condition is that it must be a numeric variable. Date variables and ID values should be
considered, since many / most datasets contain them and they are normally stored as numeric
values. (In the rare event your dataset contains exclusively character variables, you will need to
add a numeric variable to either the original dataset or a copy of it prior to issuing PROC MEANS.)
The OUTPUT statement must specify an OUT= dataset. It must also include the statistics keyword
N=, so that a record count -- and only a record count -- for each unique combination of values for
the BY variables will be written to each observation of the output dataset. [Table "1-D" illustrates
this use of PROC.]

The next step is to take the outputs of our PROC MEANS for each affected dataset and merge
them together. We cannot encounter the "... repeats of BY values" note, since we now only have
one observation per unique combination of BY values! Each observation does have a count of the
number of observations that contain the combination of BY values in their original dataset, stored as
FREQ by default. The RENAME= option the datasets in the MERGE statement can be used to
give the _FREQ_ variable in each dataset a unique name in our output dataset. (Alternatively, a
clearner approach would be to change the N= option on the OUTPUT statement in PROC MEANS

to N=varname, avoiding the need for the subsequent RENAME.) We will use a subsetting IF, so

that we only keep those observations that have multiple occurrences in each input dataset. The
output of this step will contain the unique combinations of values that are causing the "...repeats of
BY values" note. [The routine is contained in Table "1-E", and the output depicted in Table "1-F".]

208 PROC MEANS DATA=DOGOWNED NOPRINT NWAY;

209 CLASS BREED ;

210 VAR HHLD_ID ;

211 OUTPUT OUT=SUMOWNED N=CNTOWNED;

212 RUN;

NOTE: The data set WORK.SUMOWNED has 7 observations and

 4 variables.

NOTE: The PROCEDURE MEANS used 0.05 seconds.

213 PROC MEANS DATA=DOGBREED NOPRINT NWAY;

214 CLASS BREED ;

215 VAR OTHRINFO ;

216 OUTPUT OUT=SUMBREED N=;

217 RUN;

NOTE: The data set WORK.SUMBREED has 7 observations and

 4 variables.

NOTE: The PROCEDURE MEANS used 0.05 seconds.

Table "1-D" : SASLOG - PROC MEANS example

585 DATA SUMMERGE (KEEP=BREED CNTBREED CNTOWNED);

586 MERGE SUMBREED (RENAME=(_FREQ_=CNTBREED))

587 SUMOWNED ;

588 BY BREED ;

589 IF CNTBREED > 1 AND CNTOWNED > 1;

590 RUN ;

NOTE: The data set WORK.SUMMERGE has 1 observations and

 3 variables.

Table "1-E" : SASLOG - Merging the PROC MEANS outputs

SAS Dataset WORK.SUMMERGE

 OBS BREED CNTBREED CNTOWNED

 1 Dachshund 6 2

Table "1-F" : Results of Merging the PROC MEANS outputs

Up to this point, we have not discussed one important factor in this analysis - the human element.
The process described in this section is meant to be used as a tool to guide the analyst through the
unknown elements in their data - once these areas become known - there is no need to continue
this analysis. The listing of unique combinations of values that occur multiple times in each dataset
will often be that stopping point for an analyst. The information obtained will allow them to make
modifications to their assumptions and corresponding changes to their routines. However, in the
event that the oddities are still not clear, we can employ one or more additional MERGE steps,
taking the merged outputs from the PROC MEANS, and merging those dataset against each of the
original datasets. [Table "1-G" shows how this is done, while Table “1-H” displays the results of this
analysis.] This final step should provide sufficient clarification for the analyst to determine which
factor(s) are missing in their assumptions and adjust their routines accordingly.

599 DATA CHKOWNED ;

600 MERGE DOGOWNED (IN=IN_BREED)

601 SUMMERGE (IN=IN_MERGE);

602 BY BREED ;

603 IF IN_MERGE ;

604 RUN ;

NOTE: The data set WORK.CHKOWNED has 2 observations and

 7 variables.

605 DATA CHKBREED ;

606 MERGE DOGBREED (IN=IN_BREED)

607 SUMMERGE (IN=IN_MERGE);

608 BY BREED ;

609 IF IN_MERGE ;

610 RUN ;

NOTE: The data set WORK.CHKBREED has 6 observations and

 5 variables.

Table "1-G" : SASLOG - Merging the analysis back to the original input

SAS Dataset WORK.CHKOWNED

OBS HHLD_ID BREED VARIETY BIRTHDAY GOTCHADY CNTBREED CNTOWNED

 1 5884 Dachshund Std Longhair 12678 12870 6 2

 2 5884 Dachshund Std Longhair 13085 13179 6 2

SAS Dataset WORK.CHKBREED

OBS BREED VARIETY OTHRINFO CNTBREED CNTOWNED

 1 Dachshund Mini 1843 6 2

 2 Dachshund MiniLonghair 7584 6 2

 3 Dachshund MiniWirehair 943 6 2

 4 Dachshund Std 1809 6 2

 5 Dachshund Std Longhair 7532 6 2

 6 Dachshund Std Wirehair 938 6 2

Table "1-H" : Results of merging the analysis back to the original input

The end result of this analysis is the discovery that the BY statement in the routine does not contain
the proper variables to uniquely identify each record. By adding the extra variable or variables to
the original BY statement, the routine works without error – and without the offending NOTE. [Table
"1-I" shows the corrected MERGE statement.]

682 DATA DOGDTAIL;

683 MERGE DOGOWNED (IN=IN_OWNED)

684 DOGBREED (IN=IN_BREED);

685 BY BREED VARIETY;

686 IF IN_OWNED ;

687 RUN;

NOTE: The data set WORK.DOGDTAIL has 9 observations and

 6 variables.

Table "1-I" : SASLOG - MERGE without "repeats of BY values"

INPUT Statement: Reached past the end of a line

Most users of the SAS system have encountered the following message:

NOTE: SAS went to a new line when INPUT statement reached past

 the end of a line.

The manuals describe how to prevent this message using options on the INFILE statement.
MISSOVER and TRUNCOVER will prevent SAS from reading the next line but continue processing,
while STOPOVER will force an error condition and stop building the data set. However, these
options do not help resolve which line(s) on the input dataset triggered the problem. This message
implies an error in your SAS routine, caused by a misunderstanding of the input data. We want to
isolate these cases and modify our INPUT statement so that we no longer have this condition.

We can illustrate this with an example. We will read a sequential file containing the ID numbers of
students in attendance at classes per day. Each record will have a key containing the Date and
Class Name. The next two fields will represent the Number of Students Registered and the
Number of Students Absent. Finally, the record will have a variable number of Student IDs,
representing the students in attendance at the class on the given date [shown in Table "2-A"]. Our
first attempt at reading this file will use the Number of Students Registered field to determine -
incorrectly - how many occurrences of the Student ID field must be processed. [Table "2-B" will
illustrate the SAS default of attempting to complete the INPUT statement on the next line. Note that
the SASLOG indicates that we have 3 observations, although we read a file with 5 lines.] The
problem is to isolate the incorrect assumption in our original analysis that is causing us to continue
the INPUT after we have hit the end of line.

 DATE CLASS REGIST. ABSENT ID # OF STUDENTS IN ATTENDANCE

 02/21/96 Physics 12 2 27 29 33 34 37 41 42 43 44 45

 02/21/96 Botany 15 7 6 7 9 28 35 36 40 51

 02/21/96 Geology 16 9 13 29 30 31 39 45 46

 02/21/96 Anatomy 8 1 10 12 22 25 32 47 49

 02/21/96 Zoology 10 0 1 3 7 8 9 12 18 19 22 23

Table "2-A" : Attendance File

 15 DATA ATTEND;

 16 ARRAY ATNDID (25) ATNDID01-ATNDID25 ;

 17 INFILE 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT';

 18 INPUT @ 1 DATE MMDDYY8.

 19 @ 10 CLASS $CHAR8.

 20 @ 18 REGIST 2.

 21 @ 21 ABSENT 2. @ ;

 22 pt = 24 ;

 23 DO CNT = 1 TO REGIST;

 24 INPUT @ pt ATNDID(CNT) 2. @ ;

 25 pt = pt + 3 ;

 26 END ;

 27 RUN;

 NOTE: The infile 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT' is:

 FILENAME=C:\SCSUG02\TSTS-SAS\ATTEND.DAT,

 RECFM=V,LRECL=256

 NOTE: 5 records were read from the infile

 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT'.

 The minimum record length was 43.

 The maximum record length was 52.

 NOTE: SAS went to a new line when INPUT statement reached

 past the end of a line.

 NOTE: The data set WORK.ATTEND has 3 observations and

 31 variables.

 NOTE: The DATA statement used 0.98 seconds.

Table "2-B" : Incorrect INPUT routine

As in the MERGE problem discussed earlier in this paper, we can use basic elements of the SAS
System to do most of the analysis for us. In this case, we will use the options available on the
INFILE statement itself. The LENGTH= option on the INFILE statement will define a numeric
variable, which will be assigned the length of the current input line when an INPUT statement is
executed. In our example, we will begin with the assumption that our initial input statement is
correct and it is the array processing that is incorrect. Therefore, we will subtract the 22 bytes
contained in our record's key from our line size. (Please note that the LENGTH= variable is not
written to the output dataset; we will store its value in another SAS variable so that we can make
further use of it in subsequent steps if necessary.) Finally, we will assume that our array is correctly
made up of 2 character numeric variables, delimited by a single blank character. Therefore, we will
divide the remaining line size by 3 to determine the number of members in the array per line; we will
add 1 to the difference under the assumption that the final numeric value is not blank-padded.
[Table "2-C" contains the SAS routine described in this paragraph, while Table "2-D" contains the
dataset created by executing the routine.]

 521 DATA LINELONG;

 522 INFILE 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT'

 523 MISSOVER LENGTH=LNSZ;

 524 INPUT @ 1 DATE MMDDYY8.

 525 @ 10 CLASS $CHAR8.

 526 @ 18 REGISTCT 2.

 527 @ 21 ABSENTCT 2. @ ;

 528 LINESIZE = LNSZ;

 529 STDNTCNT = (LINESIZE - 23 + 1) / 3;

 530 RUN;

Table "2-C" : Using LENGTH= to determine line size

 DATE CLASS REGIST. ABSENT LINESIZE STDNTCNT

 02/21/96 Physics 12 2 52 10

 02/21/96 Botany 15 7 46 8

 02/21/96 Geology 16 9 43 7

 02/21/96 Anatomy 8 1 46 8

 02/21/96 Zoology 10 0 52 10

Table "2-D" : Results of our LENGTH= experiment

The final task is the trickiest one -- interpretation of the output. By quickly scanning the output, we
can see that only one record has the same value, 10, for "REGIST" as for "STDNTCNT". The
record has one other oddity -- the value of "ABSENT" is 0. As we all learned early on in life, 10 - 0 =
10. Therefore, we can adopt the working theory that STDNTCNT = REGIST - ABSENT. A quick
check of our input data will show that the theory holds for every record in our dataset. (We could
have written another ad-hoc routine to verify this assumption if our sample data had been more
complex.) Therefore, by replacing the upper bound of our FOR loop with the calculated value
STDNTCNT, our data can be read without error [as shown in Table "2-E"].

In the real world, the solution may not be as apparent as it was for our contrived example. In these
cases, it may be necessary to review the assumptions made at the start of the analysis. The
investigation may have cast a doubt on their validity, or possibly even disproved some of them
altogether. The analyst should adjust the assumptions that are believed to be incorrect and return
to exploring their data with a fresh angle. It is also possible that the investigation has not been
fruitful, but none of the working assumptions have been neither proved nor disproved. The analyst
has two choices at this point. One possibility is to return to the analysis using an alternate tool. [For
example, during the research period for this paper, the author explored the use of the $VARYING.
informat as a mechanism to solve the problem. It proved to be less effective than the LENGTH=
option described above, and was omitted from the final draft in the interests of space.] The other
approach is to return to the analyst's assumptions and alter one or more of them. The analyst can

then readdress the problem from a new angle -- the worst case will be that it proves no more fertile
than the unproductive approach that the analyst had just abandoned!

579 DATA ATTEND;

580 ARRAY ATNDID (25) ATNDID01-ATNDID25 ;

581 INFILE 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT';

582 INPUT @ 1 DATE MMDDYY8.

583 @ 10 CLASS $CHAR8.

584 @ 18 REGIST 2.

585 @ 21 ABSENT 2. @ ;

586 STDNTCNT = REGIST - ABSENT ;

587 pt = 24 ;

588 DO CNT = 1 TO STDNTCNT ;

589 INPUT @ pt ATNDID(CNT) 2. @ ;

590 pt = pt + 3 ;

591 END ;

592 RUN;

NOTE: The infile 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT' is:

 FILENAME=C:\SCSUG02\TSTS-SAS\ATTEND.DAT,

 RECFM=V,LRECL=256

NOTE: 5 records were read from the infile

 'C:\SCSUG02\TSTS-SAS\ATTEND.DAT'.

 The minimum record length was 43.

 The maximum record length was 52.

NOTE: The data set WORK.ATTEND has 5 observations and

 32 variables.

NOTE: The DATA statement used 0.7 seconds.

Table "2-E" : Correct INPUT routine

BEST. Format

Most users of the SAS system have encountered the following message:

NOTE: At least one W.D format was too small for the number to be

 printed. The decimal may be shifted by the "BEST" format.

You can refer to the manuals to learn the use and benefits of the BEST.w format, which is the

default for numeric variables. However, most users of the SAS System prefer to embellish their
output by using the various output formats available to them. The message listed above informs
you that SAS encountered a minor problem with their routine, and is overriding its original
instructions in order to complete its task without error. The message implies, however, that you do
not understand your data as well as you might. In order to eliminate this message, you will want to
isolate the values that are too large for their format, and modify the formats on your PUT
statements, so that you no longer have this condition.

In many cases, the offending data is blatantly obvious on the SAS routine's output. A quick visual
scan of the report will identify the number or numbers whose formats have been adjusted for
printing. You can simply correct those formats and re-execute your SAS routine, without having to
perform an extensive analysis or needing to write and execute assorted ad-hoc routines. In other
situations, the problematic output is not as easy to spot. For example, the report could be very
large, with most of the values within it conforming to the expected format. Or, it might be in a .CSV
format, which is harder for the typical human to scan over than columnar reports. In these cases,
you can use some basic tools that the SAS system provides to probe your data.

Let us illustrate this situation with a very simple example – let’s say that you will input a series of

numbers using a numeric 5. format, and attempt to output them with a numeric 4.2 format. [Table

"3-A" displays the routine used to read and write the values. It also contains a table showing the
actual value input by the program matched against the value output via the BEST. format.]

629 DATA FORMAT42;

630 INFILE CARDS;

631 INPUT @ 1 ACTUAL $CHAR5.

632 @ 1 FMT4_2 5.;

633 FILE LOG ;

634 PUT @ 1 ACTUAL= $CHAR5.

635 @ 15 FMT4_2= 4.2 ;

636 CARDS;

ACTUAL=7.499 FMT4_2=7.50

ACTUAL=14.49 FMT4_2=14.5

ACTUAL=768.1 FMT4_2=768

ACTUAL=1997 FMT4_2=1997

ACTUAL=4858. FMT4_2=4858

ACTUAL=54632 FMT4_2=55E3

NOTE: The data set WORK.FORMAT42 has 6 observations and 2 variables.

NOTE: At least one W.D format was too small for the number to

 be printed. The decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.55 seconds.

Table "3-A" : Sample Data Illustrating "BEST." Format Override

You need to use a basic assumption to validate the numbers in this example : a 4.2 format should
produce a single-digit number, followed by a decimal point and two decimal places. Therefore, the
decimal place should always be in the same position -- the second from the left -- when the number
is printed. The PUT function can be used to store the number to a character variable using this
selected format. (It is suggested that you use the Zw.d format, which zero-pads the number to the
left if necessary. This will ensure that the assumption of aligned decimals will be valid in examples
when the number in question is expected to be greater than 9.) Once the formatted value is stored
electronically, you can use the INDEX function to determine if the decimal place is in the expected

position. [Table "3-B" contains the validation ad-hoc, along with a tabular listing of its results.]

644 DATA _NULL_ ;

645 SET FORMAT42;

646 C_FMT4_2 = PUT(FMT4_2, Z4.2);

647 WHERE_PT = INDEX(C_FMT4_2, '.');

648 FILE LOG ;

649 PUT @ 1 ACTUAL $CHAR5.

650 @ 7 C_FMT4_2 $CHAR4.

651 @ 12 WHERE_PT 1.;

652 RUN ;

7.499 7.50 2

14.49 14.5 3

768.1 0768 4

 1997 1997 0

4858. 4858 0

54632 55E3 0

NOTE: At least one W.D format was too small for the number to be

 printed. The decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.28 seconds.

Table "3-B" : Validation Ad-Hoc (and Results) #1

The combined use of the PUT and INDEX functions can also be used to isolate data that exceed
the anticipated precision when your values do not contain decimal places. When a whole number
exceeds the expected precision, the BEST. format override will use scientific notation. You can use
the INDEX function to locate the first occurrence of "E" in your number, as formatted by the PUT
function. A value of 0 indicates that "E" is not present; this is the expected condition. However, a
non-zero value can be interpreted to mean that SAS converted our number to scientific notation.

This discussion of which values of the INDEX function are and are not valid under certain
circumstances can get confusing. You may find it easier to convert them into text, to clearly

differentiate valid from invalid values. [Table "3-C” contains a complete example of this validation

technique, illustrating the search for both invalid decimal places and scientific notation, and the
conversion of numeric responses into text values.]

673 DATA _NULL_ ;

674 SET FORMAT42;

675 C_FMT4_2 = PUT(FMT4_2, Z4.2);

676 WHERE_PT = INDEX(C_FMT4_2, '.');

677 WHERE_E = INDEX(C_FMT4_2, 'E');

678 IF WHERE_PT ^= 2 THEN

679 ERRNOTE1 = 'DECIMAL';

680 IF WHERE_E ^= 0 THEN

681 ERRNOTE2 = 'EXPONENTIAL';

682 FILE LOG ;

683 PUT @ 1 ACTUAL $CHAR5.

684 @ 7 C_FMT4_2 $CHAR4.

685 @ 13 ERRNOTE1 $CHAR10.

686 @ 24 ERRNOTE2 $CHAR12.;

687 RUN ;

7.499 7.50

14.49 14.5 DECIMAL

768.1 0768 DECIMAL

 1997 1997 DECIMAL

4858. 4858 DECIMAL

54632 55E3 DECIMAL EXPONENTIAL

NOTE: At least one W.D format was too small for the number to be

 printed. The decimal may be shifted by the "BEST" format.

NOTE: The DATA statement used 0.28 seconds.

Table "3-C" : Validation Ad-Hoc (and Results) #2

In this example, you can see that the largest value being read in contains 5 significant digits to the
left of the decimal place. You can also see that the most precise value contains 3 decimal places.
There are several possible solutions to our problem. If you want to print all values that you have
read in, you can change the code to output the value using a Z9.3 format, or you can change the
code to output the value using a Z8.2 format if you only need two decimal places. On the other
hand, if you want to flag large numbers as erroneous values, you can put in validation code that
watches for and traps numbers >=10, only printing values that can be properly displayed in the
requested 4.2 format.

CONCLUSION

This paper addressed different messages that are commonly found in a SASLOG. It discussed the
use of ad hoc routines to explore WHY those messages occurred, and covered how to correct a
routine to prevent the recurrence of those messages. It is hoped that the mechanisms discussed in
this paper might be used by the readers in their daily jobs. However, this paper is a failure -- at
least in part -- if the process stops there. It is hoped, even more strongly, that the concepts of
developing and using ad hoc routines to fully understand ones data are the true lessons that the
reader retains from this paper.

REFERENCES / FOR FURTHER INFORMATION

Burlew, Michele M. (2001). Debugging SAS Programs – A Handbook of Tools and Techniques.
Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2003), "The BEST. Message in the SASLOG". Proceedings of the Twenty-
Eighth Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (1996), "Software Validation and Testing". Proceedings of the Twenty-First
Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1990), SAS Language: Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (2000), SAS OnlineDoc, Version 8. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1994), SAS Software: Abridged Reference, Version 6, First Edition. Cary, NC:
SAS Institute, Inc.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries.
 indicates USA registration.

The author can be contacted via e-mail at:

KuligowskiAndrew@gmail.com

ACKNOWLEDGMENTS

The author graciously offers thanks to Frank DiIorio, Neil Howard, David Riba, Nancy Roberts, Tom
Winn, Marje Fecht, and Debbie Buck for their contributions towards this paper. If they hadn't
offered their suggestions on the content of this paper, agreed to proofread its myriad drafts, or
offered the occasional reminder as to the definition of the word deadline, this paper would not have
been completed. The author also wishes to acknowledge those individuals, whose identities have
been lost to the ages, whose data oddities across the years provided the true inspiration behind this
paper.

