Modernizing Legacy SAS® Applications and Program Code

Kirk Paul Lafler, Software Intelligence Corporation
Clark Roberts, Decision Analytics

Abstract

Whether you are a novice or experienced SAS® programmer with responsibility for the support of your organization’s legacy
applications, programs and code, assistance is available to help modernize and streamline code for the 21% century and
beyond. This paper and presentation explores the available constructs, statements, functions, algorithms, operators, methods,
expressions, programming techniques and approaches users have to update and modernize legacy applications, programs and
code first introduced as far back as the 1970’s. Attendees learn how to use the SCAPROC procedure — the SAS code analyzer —
to analyze metadata about the contents of SAS code, and to streamline, scale and modernize code constructs, statements,
functions, algorithms, and legacy applications and program code.

Table of Contents

BDBSTIFACT ... bbb bbb b s b sane 1
Table of CONtENtS ... s s sae e 1
INErOAUCTION.........e bbb s s b s b e s b e s b e s b e s bnsen 3
What are Legacy Applications and Program €Code?..............iiinninnninnnnnnnnnnsnsnssnssssssssssnenes 3
Signs that a Legacy Application May Need Modernizingccccvvevirivnnnncnnnnnnnenenseseneens 3
Conditional LOGIC SCENANIOS ...t s e s e seseesssssesssssseseesesaesesaesssasessaesennesesnens 4
Conditional LOGIC WIth IF-THEN / ELSE.......cooteiirtieeieetieeeiesiestesteseesteeseestessesseteseestesseeseensessensessessessesssensensensensenses 4
Conditional Logic with SELECT-WHEN / OTHERWISEccvtiiiiiiiieeciieeeiee e cre ettt steeetre e eeeeetveestveesaveesaaeesaveesnseeennens 5
Conditional LOgic With CASE EXPIrESSIONS ..cccciiicciiiiieieeeieiiiiteeeeeeeeiiitteeeeeesesiastreseesesessstssseesssesssssssseeessessssssssnseeessnn 6
Subsetting with WHERE Expressions in a PROCedure..............iieninnnnnnnnnnnnnsnsnnesesssseees 8
Using the IN Operator for CoOompariSONSs.............ciiiiiiiiiiiii s 9
Concatenating Strings and Variables with CAT Functionsccccveviiiviiniinnnnnncenicnennennns 9
Concatenating (or Appending) Data Sets ... ssnessssesenes 11
Concatenating with the DATA-SET-RUN CONSTIUCTccuutiiiiiiiiieiiiiiiieeiee ettt st 11
Concatenating with @ PROC SQL Outer Union CORRcccuiiiieriiieiieeite ettt sttt sttt st e sbeessaeeenne 11
Concatenating with PROC APPEND (or PROC DATASETS — APPEND Statement)cccccveeveeeeneenieenieenieesieseennnes 12
Processing Multiple TABLE Statements with PROC FREQ..............ccoverververrercnrenrneennennnens 12
List of Procedures Supporting a CLASS Statement...............rirriinninnnnnnnenrceeseeeessneesenee 13
Producing Page Numbers with ODS RTF Pagination Functions................ccocccinviiiicinnicnnnes 13
Page Counters With ODS RTF FUNCLIONSuuiiiiiiiiiiiiiiiie ettt ee sttt e e e e e ettt e e e e e e s e aaataeeeeeesesnnntaaseeassesnnnses 14
Automating the Process of Creating Multiple HTML Files........cccooiiviiiveicnnnncnnncennenecsenenes 15
Automating the Process of Creating Multiple Excel Filescocciiiiiviiiiiinicnnccnienneen, 16
Discovering the Number of Occurrences of a Value in a Data Set............ccccevevvvivrricennenee 17
Discovering the Number of Occurrences of a Value in @ DATA STEPuiiiciiieiiiieee ettt ettt e e e e 17

Discovering the Number of Occurrences of a Value with the PROC FREQ NLEVELS Optionccccceeeeecuvieeennnenn. 18

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Discovering the Number of Occurrences of a Value With PROC SQLcceevvuiiiiieniiiienienie et 18
Using Metadata to Determine the Number of Observations in a Data Set....................... 19
Older Methods of Determining the Number of Observations in @ Data Setcccoceieiieiiiiinieiiicece e 19
Using DICTIONARY.TABLES Metadata to Determine the Number of Observations in a Data Set.........cc.ccceuueee. 20
Using SASHELP.VTABLE Metadata to Determine the Number of Observations in a Data Setccceceeevveenneen. 21
Using PROC PRINT With Style............iititnnnnisssssin s s ssssssssssssssssssns 21
Using Available Memory with Hash Object Programmingccccccveveriveernreercvnnnneesseenenns 23
User-developed IMACKOS............ ittt see s s s s s s s s s sassesassssanssessasesassssasassssasanns 24
PC Windows ENVIrONMENt ...ttt sesssssse st sssssssssssssssasssesns 25
User-developed Functions with the FCMP and PROTO Procedurescccccvceveeereccneennnnne 28
PROGC DS2 ...ttt sb st s b s s s s bbbt SRS R e s b e b s e SR e SR e b et e Rt SR e b e b e ns 32
T3 g ToTe OO PP P PSP PP PR PISRRPR 33
10 =4 - SO PO P PO PP PSP R PPTOPPPTOPPOT 33
Built-in Packages (refer to Jordan 2016 for detailed coverage of built-in packages):......cccccevvervirvinienceneennne, 33
USEIr DEFINEA PACKAEZESvviieeiiieeeiiieeeectiee e ettt e e sttt e e ettt e e e ettaee e s abb e e e e ataeeeeasaaeesasseaa e ssaeeaansaseesnsseaeanssaeesansaaeessranann 36
Paralle]l ProCeSSiNg ... iiiiiieiiitiitsiesieseessassssasssssssssssassssssssassssassssnss 38
SAS Gttt b SRS SRR SRRt nt 40
Exploring PROC SCAPROC - The SAS Code ANAlYzZer ... iceercreercveeencneesseeseseessssssssssesenes 40
CONCIUSION ...t s e s s s b s s b s b s b s b s b e s b sbbsabene s 42
REfEIENCES........ettr e e a e s a s 42
DS2 References and Suggested Reading................ccccovviiiiiinincccece e 42
Efficiency and Performance Tuning References and Suggested Reading 43
General References and Suggested Reading ... 43
Hash Object References and Suggested Reading................cccccoovevviiininnnecnceeenee 44
Macro References and Suggested Reading..............c..ccoooiiiiiiiiiiiiiinee e 44
Operations Research (OR) References and Suggested Reading...............cccccecveeervnnnnne 44
PROC FCMP References and Suggested Readingccccocooiiiiiiininnnnccee 44
PROC SCAPROC References and Suggested Reading ... 45
SAS Grid References and Suggested Reading ... 45
SAS Programming Techniques References and Suggested Reading.......................... 45
Text Analytics References and Suggested Reading.................ccccoovvvviinivincneccesese e, 46
WIN32API References and Suggested Reading.................cocoiiiiiiiiiinin e 46
ACKNOWIEAGMENTEScooiieiiiitiiieeierrisee s s sse s s ssasesssssnsessssanesssssanesssssnsessssanssssssanasssssn 47
Trademark Citations.............iii e b b s 47
Data Sets Used iN EXamPIES.......... o eeiccretcceersccneesscseresssssnessssssnesssssssessessnessssssnesssssanesssssnsasanne 47
F LT T = T X 50

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Introduction

As SAS users around the world celebrate a milestone of more than 40-years using SAS software, organizations want, and need,
to look at ways to modernize their inventories of legacy SAS applications and program code to operate in the 21" century and
beyond. This means that IT personnel, systems and data analysts, SAS® programmers, end-users, management, and
stakeholders everywhere must assume the responsibility of identifying, and modernizing, mission-critical legacy applications
and program code, with newer, and more scalable and efficient, statements, functions, options, code constructs, algorithms,
and programming techniques. This paper explores many areas for consideration, and provides tips, techniques and examples to
help guide SAS users through the modernization process. We suggest and illustrate a foundation of technologies, techniques,
and approaches to consider while modernizing applications and program code. We also provide an example on the use of the
SCAPROC procedure — the SAS code analyzer — to analyze metadata about the contents of SAS code, and to streamline, scale
and modernize code constructs, algorithms, functions, and legacy application program code.

What are Legacy Applications and Program Code?

Programmers and application developers have different interpretations and meanings for what legacy code means. For some
legacy applications and program code refers to code that someone else wrote a long time ago and as a result may not utilize or
represent the latest technologies. Complicating matters further, often, the original developer(s) and/or programmer(s) is/are
no longer available or affiliated with the organization. For others, legacy code represents a foundation of older, and often
outdated, statements, functions, options, coding constructs, algorithms and other techniques causing applications and program
code to become woefully behind 21 century standards.

Other characteristics attributed to legacy code are the unlimited number of coding styles and modifications that occurs over
time. This often translates into a legacy code base that may have been originally well-written but evolves into a complex, and
less than maintainable, maze of spaghetti code. In these situations the legacy code base is no longer engineered but begins to
take on the characteristics of a patched and tangled control structure. Making matters worse, this maze of patched, complex
and confusing legacy code often survives without the existence of up-to-date and effective program documentation.

Signs that a Legacy Application May Need Modernizing

Green (2017) describes modernization as, “. . . newer, faster, sleeker and more useful — all qualities we want our applications
to have. “ Modernizing legacy applications and program code involves an incremental and structured approach. It consists of
identifying the target application and program code; selecting potential solutions to use; and finally, implementing structured
and scalable solutions to replace varied coding styles and conventions made over its functional life. So, how does an
organization know when an application needs modernizing? Green shares five signs to answer this question.

Operation and maintenance costs are high.
It’s clunky or uses outdated technologies.
Your business processes have changed.

There’s no tight integration with future applications.

LA T

It’s not mobile-ready.

So, how should an organization proceed with the modernization of a legacy application and program code project? The best
place to start is to get all stakeholders on-board and in agreement with the objectives and changes to be made. Next, obtain
the necessary funding for performing the project work, modernizing a legacy application conjures concern from everyone
involved. All too often, stakeholders develop a, “If it’s not broke then leave it alone!” attitude. To help alleviate the issues
associated with modernizing legacy applications and program code, we recommend a five-step modernization approach.

1. Identify mission-critical applications and program code that is/are indispensable to the organization.

2. Review and understand the code associated with the user-interface, the data sources being accessed, the processing
requirements, and finally the output and results.

http://articles.bplans.com/5-signs-you-need-to-modernize-a-legacy-application/

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

3. Identify and modernize older technologies; hard to modify and inflexible code; and inefficient statements, functions,
options and their settings, code constructs, algorithms, and programming techniques with newer and more efficient
methods and techniques.

4. Test, Train and Deploy the modernized application and program code to bring all stakeholders on board.

5. Maintain and Support the modernized applications and program code to ensure their flexibility and adaptability to
changing requirements, environments and technologies.

Conditional Logic Scenarios

A powerful and necessary programming technique in the SAS’ software is its ability to perform different actions depending on
whether a programmer-specified condition evaluates to true or false. The method for accomplishing this is to use one or more
conditional statements, expressions, and constructs to build a level of intelligence in a program or application. Conditional logic
scenarios in the DATA step are frequently implemented using IF-THEN / ELSE and SELECT statements. The SQL procedure also
supports logic scenarios and is implemented with a coding technique known as a CASE expression.

Conditional Logic with IF-THEN / ELSE

The IF-THEN / ELSE construct in the DATA step enables a sequence of conditions to be assigned that when executed proceeds
through the sequence of logic conditions until a match in an expression is found or until all conditions are exhausted. The
example shows a character variable Movie_Length being assigned a value of either “Shorter Length”, “Average Length”, or
“Longer Length” based on the mutually exclusive conditions specified in the IF-THEN and ELSE conditions. Although not
required, an ELSE condition serves as an effective technique for continuing processing to the next specified condition when a
match is not found. An ELSE condition can also be useful as a “catch-all” to prevent a missing value from being assigned.

IF-THEN / ELSE Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;

DATA IF_THEN_EXAMPLE ;
ATTRIB Movie_Length LENGTH=$14 LABEL=’Movie Length’ ;
SET MYDATA.MOVIES ;
IF LENGTH < 120 THEN Movie_Length = ‘Shorter Length’ ;
ELSE IF LENGTH > 160 THEN Movie_Length = ‘Longer Length’ ;
ELSE Movie_Length = ‘Average Length’ ;

RUN ;

PROC PRINT DATA=IF_THEN_EXAMPLE NOOBS ;
VAR TITLE LENGTH Movie_Length ;

RUN ;

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

IF-THEN / ELSE Results:

Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 103 | Shorter Length
Christmas Wacation @7 | Shorter Length
Coming to America 115 | Shorter Length
DOraculza 130 | Awerage Length
DOressed to Kil 105 | Shorter Length
Fomest Gump 142 | Awerage Length
Ghost 127 | Average Length
Jaws 126 | Awerage Length
Juraszic Park 127 | Awerage Length
Lethal Weapon 110 | Shorter Length
Michae 105 | Shorter Length
Mational Lampoon's Wacation 88 | Shorter Length
Puoltergeist 115 | Shorter Length
Rocky 120 | Average Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Awerage Length
The Hunt for Red October 135 | Awerage Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Shorter Length
Titanic 124 | Longer Length

Conditional Logic with SELECT-WHEN / OTHERWISE

Another form of conditional logic available to users is a SELECT statement. Its purpose is to enable a sequence of logic
conditions to be constructed in a DATA step by specifying one or more WHEN conditions and an optional OTHERWISE
condition. When executed, processing continues through each WHEN condition until a match is found that satisfies the
specified expression. Typically one or more WHEN conditions are specified in descending frequency order representing a series
of conditions. The next example shows a value based on the mutually exclusive conditions specified in the sequence of logic
conditions of “Shorter Length”, “Average Length”, or “Longer Length” being assigned to the character variable Movie_Length.
Although not required, the OTHERWISE condition can be useful in the assignment of a specific value or as a “catch-all” to
prevent a missing value from being assigned.

SELECT-WHEN / OTHERWISE Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
DATA SELECT_EXAMPLE ;
SET MYDATA.MOVIES ;
SELECT ;
WHEN (LENGTH < 120) Movie_Length = ‘Shorter Length’ ;
WHEN (LENGTH > 160) Movie_Length = ‘Longer Length’ ;
OTHERWISE Movie_Length = ‘Average Length’ ;
END ;
RUN ;

PROC PRINT DATA=SELECT_EXAMPLE NOOBS ;
VAR TITLE LENGTH Movie_Length ;
RUN ;

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

SELECT-WHEN / OTHERWISE Results:

Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 103 | Shorter Length
Christmas Wacation 97 | Shorter Length
Coming to America 116 | Shorter Length
Dracula 130 | Awerage Length
Dressed to Kil 105 | Shorter Length
Fomest Gump 142 | Awerage Langth
Ghost 127 | Awerage Length
Jaws 125 | Awerage Length
Jurazsic Park 127 | Awerage Length
Lethal Weapon 110 | Ehorter Length
Michae 106 | Shorter Length
Mational Lampoon's Wacation 98 | Shorter Length
Puoltergeist 115 | Shorter Length
Rocky 120 | Awerage Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Awerage Length
The Hunt for Red October 136 | Average Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Shorter Length
Titanic 124 | Longer Length

Conditional Logic with CASE Expressions

Another form of conditional logic available to users is a case expression. Its purpose is to provide a way of conditionally
selecting result values from each row in a table (or view). Similar to an IF-THEN/ELSE or SELECT construct in the DATA step, a
case expression can only be specified in the SQL procedure. It supports a WHEN-THEN clause to conditionally process some but
not all the rows in a table. An optional ELSE expression can be specified to handle an alternative action should none of the
expression(s) identified in the WHEN condition(s) not be satisfied. A case expression must be a valid SQL expression and
conform to syntax rules similar to DATA step SELECT-WHEN statements. Even though this topic is best explained by example, a
quick look at the syntax follows.

CASE <column-name>
WHEN when-condition THEN result-expression
<WHEN when-condition THEN result-expression> ...

<ELSE result-expression>
END

A column-name can optionally be specified as part of the CASE-expression. If present, it is automatically made available to each
when-condition, and is classified as a simple case expression. When it is not specified, the column-name must be coded in each
when-condition, and is classified as a searched case expression. If a when-condition is satisfied by a row in a table (or view),
then it is considered “true” and the result-expression following the THEN keyword is processed. The remaining WHEN
conditions in the case expression are skipped. If a when-condition is “false”, the next when-condition is evaluated. SQL
evaluates each when-condition until a “true” condition is found or in the event all when-conditions are “false”, it then executes
the ELSE expression and assigns its value to the CASE expression’s result. A missing value is assigned to a case expression when
an ELSE expression is not specified and each when-condition is “false”.

In the next example, a searched case expression is illustrated. A searched case expression in the SQL procedure provides users
with the capability to perform more complex comparisons. Although the number of keystrokes can be more than with a simple
case expression, the searched case expression offers the greatest flexibility and is the primary form used by SQL’ers. The

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

noticeable absence of a column name as part of the case expression permits any number of columns to be specified from the
underlying table(s) in the WHEN-THEN/ELSE logic scenarios.

The next example shows a searched case expression being used to assign the character variable Movie_Length with the AS
keyword. A value of “Shorter Length” for movie lengths less than 120 minutes, “Longer Length” for movie lengths greater than
160 minutes, or “Average Length” for all other movie lengths is assigned to the newly created column. Although not required,

|u

an ELSE condition can be useful in the assignment of a specific value or as a “catch-all” to prevent a missing value from being

assigned.

Searched CASE Expression Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
PROC SQL;
SELECT TITLE,
LENGTH,
CASE
WHEN LENGTH < 120 THEN 'Shorter Length'
WHEN LENGTH > 160 THEN 'Longer Length'

ELSE 'Average Length'
END AS Movie_Length
FROM MYDATA.MOVIES ;
QUIT ;

Searched CASE Expression Results:

Title Length | Movie_Length
Brave Heart 177 | Longer Length
Casablanca 102 | Ehorter Length
Christmas Wacation 87 | Shorter Length
Coming to America 118 | Shorter Length
Dracula 130 | Awerage Length
Orassed to Kil 105 | Shorter Length
Fomest Gump 142 | Awerage Length
Ghost 127 | Awerage Length
Jaws 125 | Awerage Length
Jurassic Park 127 | Average Length
Lethal Weapon 110 | Shorter Length
Michae: 108 | Shorter Length
Mational Lampoon's Wacation 88 | Shorter Length
Puoltergeist 115 | Shorter Length
Rocky 120 | Awerage Length
Scarface 170 | Longer Length
Silence of the Lambs 118 | Shorter Length
Star Wars 124 | Average Length
The Hunt for Red October 1356 | Average Length
The Terminator 108 | Shorter Length
The Wizard of Oz 101 | Shorter Length
Titanic 124 | Longer Length

As previously mentioned, searched case expressions provide users with the capability to perform more complex logic
comparisons. Combined with logical and comparison operators, searched case expressions along with their WHERE clause
counterparts, provide the capabilities to construct complex logic scenarios. In the next example a listing of “Action” and
“Comedy” movies are displayed. Using a searched case expression, a value of “Shorter Length” for movie lengths less than 120
minutes, “Longer Length” for movie lengths greater than 160 minutes, or “Average Length” for all other movie lengths is
assigned to the newly created column. A column heading of Movie_Type is assigned to the new column with the AS keyword.

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Searched CASE Expression Code:

LIBNAME MYDATA “E:/WORKSHOPS/WORKSHOP DATA” ;
PROC SQL;
SELECT TITLE, RATING, LENGTH, CATEGORY,
CASE
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND LENGTH < 120 THEN 'Action Short'
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND LENGTH > 160 THEN 'Action Long'
WHEN UPCASE (CATEGORY) CONTAINS 'ACTION' AND
LENGTH BETWEEN 120 AND 160 THEN 'Action Medium’
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND LENGTH < 120 THEN 'Comedy Short'
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND LENGTH > 160 THEN 'Comedy Long'
WHEN UPCASE (CATEGORY) CONTAINS 'COMEDY' AND
LENGTH BETWEEN 120 AND 160 THEN 'Comedy Medium'
ELSE 'Not Interested'’
END AS MOVIE_TYPE
FROM MYDATA.MOVIES
WHERE UPCASE (CATEGORY) CONTAINS 'ACTION' OR 'COMEDY';

QUIT;

Title Rating | Length Category MOVIE_TYPE
Brave Heart R 177 | Action Adventure Action Lang

Cazablanca PG 102 | Drama Mot Interested
Christmas Vacation PG-13 a7 | Comedy Comedy Short
Coming to America R 116 | Comedy Comedy Short
Crracula R 130 | Hosror Mot Interested
Diressad to Kl R 105 | Drama Mystenas Mot Interested
Forrest Gump PG-13 142 | Drama Mot Interested
Ghast PG-13 127 | Drama Romance Mot Interested
Jaws PG 125 | Action Adventure Action Medium
Jurassic Park PG-13 127 | Action Action Medium
Lethal Weapon R 110 | Actlion Cops & Robber | Action Short

Michasl PGE-12 106 | Drama Mot Interestad
Mational Lampoon's Wacaton | PG-13 83 | Comedy Comedy Short
Poltergsist PG 115 | Horror Mot Interestad
Rocky PG 120 | Action Adwenture Action Medium
Scarface R 170 | Action Cops & Robber | Action Long

Silence of the Lambs R 112 | Drama Suspenszs Mot Interestad
SizrWars PG 124 Action Sci-F Action Medium
The Hunt for Red October] 135 | Action Adventure Action Medium
The Terminator R 108 | Action Sci-F Action Short

The Wizard of Oz G 101 | Adventure Mot Interestad
Titanic PE-12 184 | Drama Romance Mot Interested

Subsetting with WHERE Expressions in a PROCedure

Gupta (2006) describes using a subsetting-IF versus a WHERE-statement or WHERE= data set option to subset observations. To
avoid using a subsetting-IF statement in a DATA step, SAS users may be able to specify a WHERE= data set option for subsetting
purposes directly in a procedure. This approach prevents the creation of a data set and, as a result, is more likely to scale better
by reducing CPU and I/0 resources. Gupta emphasizes an important detail that all SAS users should know when specifying a
WHERE condition in a procedure, “Multiple WHERE conditions within SAS procedures are not cumulative as they are in a DATA
step meaning the most recent WHERE condition replaces any, and all, previously specified WHERE condition(s).”

http://www2.sas.com/proceedings/sugi31/238-31.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC PRINT with WHERE Expression Code:

/* WHERE Statement to Subset Observations */
proc print data=sashelp.cars noobs ;

where type=”"SUV” or type="Wagon” ;
run ;

<or >

/* WHERE= Data Set Option to Subset Observations */
proc print data=sashelp.cars(where=(type="SUV” or type="Wagon”)) noobs ;
run ;

Using the IN Operator for Comparisons

Legacy SAS applications and program code often use one, or more, OR comparison operators to handle logic scenarios.
Although syntactically correct, a series of individual comparisons separated by an OR comparison operator is generally less
efficient than using an IN operator. The reason is due to the way an IN operator operates. When an IN operator is specified, SAS
stops making comparisons as soon as it finds a match. This is not the case with an OR operator. In the next example, a number
of individual comparisons are specified using an OR operator.

OR Comparison Operator Code:

PROC SQL ;
SELECT Origin, Type, MSRP
FROM SASHELP.Cars
WHERE Type "Suv"
OR Type "Truck"
OR Type = "Wagon"
ORDER BY MSRP ;
QUIT ;

In the next example, an IN operator is specified to help modernize the process of handling a number of individual comparisons.
The IN operator provides a convenient, and concise, way to specify scenarios with many OR comparisons. A similar example
using DS2 SQLSTMT package approach can be found here.

IN Operator Code:

PROC SQL ;
SELECT Origin, Type, MSRP
FROM SASHELP.Cars
WHERE Type IN ("SUV","Truck", "Wagon")
ORDER BY MSRP ;
QUIT ;

Concatenating Strings and Variables with CAT Functions

SAS functions serve an essential role in the Base SAS software. Representing a variety of built-in and callable routines, functions
serve as the “work horses” in the SAS software providing users with “ready-to-use” tools designed to ease the burden of writing
and testing often lengthy and complex code for a variety of programming tasks. The advantage of using SAS functions is evident
by their relative ease of use, and their ability to provide a more efficient, robust and scalable approach to simplifying a process
or programming task. In this example, we show how the TRIM and LEFT functions along with the concatenate operator to
concatenate strings and variables together can be replaced with the CAT functions.

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

CAT Function Code:

data _null_ ;
length NUM 3. ABCDEY$ 8 BLANK $ 1 ;
A = 'The' ;
NUM = 5 ;
B ="' Cats' ;
C="'n" ;
D ="' the' ;
E = 'Hat' ;
BLANK = " ' ;

*0ld concatenation approach with TRIM and LEFT functions and concatenation

operator ;

OLD=trim(left(A)) || BLANK || trim(left(NUM)) || BLANK || trim(left(B)) ||
BLANK || trim(left(C)) || BLANK || trim(left(D)) || BLANK || trim(left(E)) ;

* Using the CAT functions to concatenate character and numeric values together ;
CAT = cat (A, NUM, B, C, D, E) ;

CATQ = catq(BLANK, A, NUM, B, C, D, E) ;

CATS = cats(A, NUM, B, C, D, E) ;

CATT = catt(A, NUM, B, C, D, E) ;

CATX = catx(BLANK, A, NUM, B, C, D, E) ;

put OLD= / STRIP= / CAT= / CATQ= / CATS= / CATT= / CATX= / ;

run ;

CAT Function Results:

0LD=The 5 Cats in the Hat

CAT=The 5 Cats in the Hat

CATQ="The " 5 " Cats " "in " " the " "Hat "
CATS=The5CatsintheHat

CATT=The5 Catsin theHat

CATX=The 5 Cats in the Hat

In the example, above, a single numeric variable, NUM, and six character variables: A, B, C, D, E, and BLANK are defined with
their respective values as: NUM=5, A="The’, B=" Cats’, C="in’, D=’ the’, E="Hat’ and BLANK=" ‘. The oldest way of concatenating
two or more strings or variables together is then specified, using the TRIM and LEFT functions with the concatenation operator

ll| |u

9000 Q

in an assighment statement. As an alternative, a newer and more robust concatenation approach is specified using the CAT
family of functions: CAT, CATQ, CATS, CATT, and CATX.

O CAT, the simplest of concatenation functions, joins two or more strings and/or variables together, end-to-end producing the
same results as with the concatenation (double bar) operator.

@ CATQ is similar to the default features of the CATX function, but the CATQ function adds quotation marks to any
concatenated string or variable.

© CATS removes leading and trailing blanks and concatenates two or more strings and/or variables together.

@ CATT removes trailing blanks and concatenates two or more strings and/or variables together.

10

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

© CATX, perhaps the most robust CAT function, removes leading and trailing blanks and concatenates two or more strings
and/or variables together with a user-specified delimiter between each.

Concatenating (or Appending) Data Sets

Concatenating data sets is the process of combining two, or more, data sets, one after the other, with the purpose of creating a
single data set. The number of observations in the new data set is the sum total of observations in all the original input data
sets. The order of observations in the concatenated data set is arranged sequentially with the observations from the first data
set, followed by the observations from the second data set, and so on. The concatenated data set contains the same variables
as the input data sets. Should an input data set contain different variables from the other input data sets, the concatenated
data set will have missing values assigned to the variables from the other input data sets.

Concatenating with the DATA-SET-RUN Construct

SAS provides users with a few ways to concatenate data sets. In the first example, below, an old-style DATA-SET construct is
specified to concatenate the two data sets, RUGs_2015 and RUGs_2016. Although syntactically correct, this approach does not
scale well because it forces SAS to incur heavy 1/0 (input/output) because the observations in each input data set must be read
and written to the concatenated data set.

DATA-SET-RUN Code:

data Concatenated_Results ;
set RUGs_2015
RUGs_2016 ;

DATA-SET-RUN Results:

=
c
=]

RUG Number_Papers | Year

MWSUG 85 | 2015
SCSUG 25 2015
SESUG 148 | 2015
Wuss 102 | 2015
MWSUG 124 2018
SCSUG 82 | 2018
SESUG 148 2018
Wuss 112 | 2018

Concatenating with a PROC SQL Outer Union CORR
A second approach uses PROC SQL to concatenate data sets. In this next example, an OUTER UNION CORR set operator is
specified, and SQL reads and processes the tables in each query producing a new concatenated table of results.

PROC SQL Code:

proc sql ;
create table Concatenated_Results as
select * from RUGs_2015
outer union corr
select * from RUGs_2016 ;
select * from Concatenated_Results ;
quit ;

11

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC SQL Results:

RUG Humber_Papers | Year

MWSUG 895 | 2015
SCSUG 28 2015
SESUG 148 | 2015
Wuss 102 2015
MWSUG 124 | 2016
SCSUG 62 2018
SESUG 148 | 2018
Wuss 112 2018

Concatenating with PROC APPEND (or PROC DATASETS — APPEND Statement)
A third, and more efficient, concatenation approach is available to SAS users. Using PROC APPEND (or the APPEND statement in

PROC DATASETS), an input data set can be appended to another data set. The advantage of using this approach is reduced 1/0,
since SAS does not have to read the observations in the base data set. Appending this way offers a way to scale an application.
As the number of observations in the base data set grows, the advantage of using this approach can become huge. In the next
example, two PROC APPEND:s are specified to concatenate the observations in the RUGs_2015 and RUGs_2016 data sets.

PROC APPEND Code:

proc append base=Concatenated_Results
Data=RUGs_2015 ;

run ;

proc append base=Concatenated_Results
Data=RUGs_2016 ;

PROC APPEND Results:

-
c
=}

RUG Number_Papers | Year

WMWsUG %6 215
SCSUG 23 2015
SESUG 148 | 2015
Wuss 102 2015
WMWSUG 124 | 2018
SCSUG 62 2018
SESUG 148 | 2018
Wuss 12 2018

Processing Multiple TABLE Statements with PROC FREQ

Benjamin (2012) describes a common problem programmers have when using PROC FREQ to produce multiple table results.
Programmers will often code two, or more, individual PROC FREQ and TABLE statements even for the same input data set.
Although the PROC FREQ code, illustrated below, is syntactically correct, invoking PROC FREQ multiple times in this way can
result in an increase in the amount of time for processing the request.

12

http://support.sas.com/resources/papers/proceedings12/257-2012.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC FREQ Code:

proc freq data=sashelp.cars ;
table Origin / list out=work.Origin_Freql ;
run ;
proc freq data=sashelp.cars ;
table Origin * Type / list out=work.Origin_Freq2 ;
run ;
proc freq data=sashelp.cars ;

table Origin * Type * Cylinders / list out=work.Origin_Freq3 ;
run ;

To optimize the code, programmers can force a single pass over the input data set and as a result reduce the amount of
processing time needed to produce the resulting data sets, as follows.

Optimized PROC FREQ Code:

proc freq data=sashelp.cars ;

table Origin / list out=work.Origin_Freql ;

table Origin * Type / list out=work.Origin_Freq2 ;

table Origin * Type * Cylinders / list out=work.Origin_Freq3 ;
run ;

List of Procedures Supporting a CLASS Statement

Procedures are classified as the “workhorses” in the SAS System. The CLASS statement specifies one, or more, character or
numeric variables used to group data into classification levels. A virtue of using a CLASS statement is that a SORT procedure is
not required to arrange and group the data, because the stats and other information is collected in memory and reported at
the end of the procedure. A partial list of SAS procedures, below, supports the use of a CLASS statement.

SAS Procedures Supporting a CLASS Statement

PROC ANOVA PROC MEANS PROC REPORT PROC TTEST
PROC DISCRIM PROC MIXED PROC SUMMARY PROC UNIVARIATE
PROC GENMOD PROC NESTED PROC SURVEYMEANS
PROC GLM PROC PHREG PROC TABULATE
PROC LOGISTIC PROC REG PROC TIMEPLOT

Producing Page Numbers with ODS RTF Pagination Functions

Page numbering is the process of applying a sequence of numbers, Roman numerals, or letters on reports, spreadsheets,
documents, books or other multi-page files. Legacy applications and program code frequently use counters or code routines to
generate and display page numbers. Simple page numbering routines may resemble something similar to the following code.

13

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

DATA Step Code:

FILENAME REPORT DISK 'c:\DATA_NULL_Report.LST'
DATA _NULL_ ;
SET SASHELP.CARS END=EOF ;
FILE REPORT HEADER=Hl1 ; /* Execute Page_Header Routine */
PUT @1 Origin $6.
@10 Make $13.
@25 MSRP DOLLAR12. ;
RETURN ;

H1: ; /* Page Header */
Page_CTR + 1 ;
PUT @15 DATA _NULL_ Detail Report
// @22 'Page Number ' Page_CTR ;
RETURN ;
RUN ;

Page numbers can be produced and displayed in RTF output by specifying an escape character with an ODS RTF statement, any
of the following functions, and an ODS RTF CLOSE ; statement:

v' {thispage}
v' {lastpage}
v {pageof}

Page Counters with ODS RTF Functions

Output Delivery System (ODS) provides powerful features that users can use when producing output. In the next example, an
escape character is specified with the ODS RTF destination, where the functions: {thispage}, {lastpage}, and {pageof} are
specified in the title and footnote statements to produce the page numbers and the total number of pages in the report.

ODS RTF Code:

ods escapechar='""' ;
ods RTF file='c:\Print-Report.rtf' ;
proc print data=sashelp.cars noobs ;
title 'Page ~{thispage} of ~{lastpage}' ;
footnote '“{pageof}' ;
run ;
ods RTF close ;

14

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

ODS RTF Results:

S Wl 'Page "thispage} of A{lastpage}'

Page 1 af 24

Make Mlode] Urigin | DriveTrain | M3EP| Imoeice | Enginedire
Acura MDX SUV |Aza | Al s
Acua BEX Type 31de 3edas | Asia | From 10
Acura TEK e Sedan | Asia | From 14
Acura TL 4dr Sedan | Azia | Fromn 130,199 iz
Acura ISRL 44 Sedan | Az | Fromm 238,014 s
Acura 3.3 RL w/Navigation 44 Sedan | Asia | From 241,100 s
Acera WX coope Idrmaaal 5 Sporss | Asia | Rear 79978 3
Andi Ad LET 44 Sadan | Europs| From 113,508 13
Andi A4LET comenible I Sedan | Euwrope | From 831 306 13
Andi A4 30 4d Sedan | Europe | From 818546 9
Andi Ad 3.0 Cronstin ddr ol Sadan | Europs| All 9
Asdi At 3.0 Crasino Sdrmn 3edas | Ewrope| All 30
Andi Ab 30 4d Sedan | Europe | From 9
Andi Al 3.0 Cromtino 4dr Sedan | Europe| All 9
Al A4 3.0 comvesible Idr Zedax | Europe | From 30
Andi A4 3.0 Qratino ooeventible Idr Sedan | Europe| All 844,240 | 240,073 0
Andi AS 1T Torbo Groasino 44 Sedan | Europe| All 341540 | 235,340 L7
Andi Al 42 Cronsire ddr Sedan | Furops| Al $40.600 | 844,936 b
Andi AS L Qoo hir Sedan | Europe| All 269,190 | 564,740 41
Andi 54 Croatino hir Sedan | Europe| All B45.040 | 843,556 1
Andi B 6l Sports | Ewerope | From £54.600| 876,417 1
Andi TT 1.5 comvesiide Do (come) Sports | Ewerope | From 835,540 832512 13
Andi TT 1.5 Croatiro 2dr {jooervesiihie) Sports | Europe| All

Andi TT 3.2 compe I (comesibls) Sports | Burope | Al

Andi AS 30 Avam Crommira Wagon| Earops| Al

Asd 3 Avam Qroanro Wagon| Eurcpe| Al

EMOW X330 UV | Ewrope| All

BAIR Hid4d SUV | Euwrope| Al

EMOW et Sedan | Ewwope| Rear

EMOW 315G 2dr Sedan | Euerope| Rear

BMW 3230 comvertible Idr Sedan | Burops| Rear

EMORT i e Sadan | Europs| All

BNV 3304 e Sedan | Ewrope| Rear

EMOW 330Ci Idr Sedan | Euerope| Rear

BAIR 330 4dr Sedan | Furops| Al

EMOW st - Sedan | Ewwope| Rear

EMOW 3300 comventible Idr

'‘Mpageof}'

Automating the Process of Creating Multiple HTML Files

The Web offers incredible potential that impacts all corners of society. With its increasing popularity as a communications
medium, Web publishers have arguably established the Web as the greatest medium ever created. Businesses, government
agencies, professional associations, schools, libraries, research agencies, and a potpourri of society’s true believers have
endorsed the Web as an efficient means of conveying their messages to the world.

The SAS software provides users with the capability to create results and deploy selected pieces of output as HTML output files.
Using the Output Delivery System (ODS) HTML destination, output can be created that anyone can view using a web browser.
Syntactically correct HTML code is automatically produced and made ready for deployment using one of the Internet browser
software products (e.g., Internet Explorer, Google Chrome, Mozilla FireFox, Safari, etc.). As a result, the SAS System and the
HTML destination create a type of “streaming” or continuous output by adding elevator bars (horizontal and/or vertical) for
easy navigation.

In the following example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of
unique (or distinct) values of the Origin column exist and once known are assigned to single-value and value-list macro
variables. With the unique values assigned to two macro variables, an iterative %DO statement is specified to control the
propagation of one, or more, HTML files containing one-way frequency results. The results of the three distinct HTML files that
were created are also displayed, below.

15

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

ODS HTML Code:

/* Output HTML Files Location */
filename odsout "E:\" ;

options symbolgen ;
%macro multfiles ;
proc sql noprint ;
select count(distinct origin)
into :morigin_cnt /* derive number of origins */
from sashelp.cars
order by origin ;
select distinct origin
into :morigin_list separated by "~" /* derive unique origin values */
from sashelp.cars
order by origin ;
quit ;

%do i=1 %to &morigin_cnt ;
ods html path=odsout (URL=NONE)
file="%SCAN(&morigin_list,&i,~)_FrequencyReport (MultiHTMLFiles).html"
style=styles.barrettsblue ;
title "Cars with Origin in %SCAN(&morigin_list,&i,~)" ;
proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin_list,&i,~)")) ;
tables type ;
format msrp dollarl2.0 ;
run ;
quit ;
title ;
ods html close ;
%end ;
%put &morigin_list ;
%mend multfiles ;

%multfiles ;

ODS HTML Results:

Automating the Process of Creating Multiple Excel Files

Statistics show that the world’s most used software application is Microsoft Excel®. Due to this dominance, SAS provides users
with several ways to send results, tables, statistics, images and other output directly to an Excel spreadsheet. In the next
example, redundant code and hardcoding issues are avoided by using PROC SQL to determine the number of unique (or
distinct) values of the Origin column and, once known, are assigned to single-value and value-list macro variables. With the
values assigned to the two macro variables, an iterative %DO statement is specified to control the propagation of Excel files
containing one-way frequency results. The results of the three distinct Excel files that were created are also displayed, below.

16

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

ODS Excel Code:

%macro multExcelfiles ;
proc sql noprint ;
select count(distinct origin)
into :morigin_cnt /* derive number of origins */
from sashelp.cars
order by origin ;
select distinct origin
into :morigin_list separated by "~" /* derive unique origin values */
from sashelp.cars
order by origin ;
quit ;

%do i=1 %to &morigin_cnt ;
ods Excel file="e:/%SCAN(&morigin_list,&i,~)_FreqReport (MultiExcelFiles) .xlsx"
style=styles.barrettsblue ;
title "Cars with Origin in %SCAN(&morigin_list,&i,~)" ;
proc freq data=sashelp.cars(where=(origin = "%SCAN(&morigin_list,&i,~)")) ;
tables type ;
format msrp dollarl2.0 ;
run ;
quit ;
title ;
ods Excel close ;
%end ;
%put &morigin_list ;
%mend multExcelfiles ;

%multExcelfiles ;

ODS Excel Results:

Discovering the Number of Occurrences of a Value in a Data Set
Discovering the number of occurrences of individual values in a data set is useful information, particularly when constructing
data-driven approaches. SAS provides several ways to count and determine the number of occurrences of a value in a data set.

Discovering the Number of Occurrences of a Value in a DATA Step
One approach for discovering the number of occurrences of a variable’s value(s) is to construct a DATA step counting routine. In

the next example, individual counters for the number of females and males are created, and after the last observation is read
and processed, the results for each counter is output to the Counts data set, and the results displayed with PROC PRINT.

17

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

DATA Step Code:

data Counts(drop=Sex) ;
set sashelp.Heart (keep=Sex) end=EOF ;
if Sex = "Female" then Number_Females + 1 ;
else if Sex = "Male" then Number_Males + 1 ;

if EOF then do ;
Total = Number_Females + Number_Males ;
format Number_Females Number_Males Total comma7. ;
output ;
end ;
run ;
proc print data=Counts noobs ;
run ;

DATA Step Results:

Mumber_Females | Number_Males = Total

2,873 2,316 | 5200

Discovering the Number of Occurrences of a Value with the PROC FREQ NLEVELS Option
Another approach for counting the number of occurrences of a variable’s value(s) is to specify the NLEVELS option in PROC

FREQ. In this example, the variable SEX is kept and the NLEVELS option is specified for the SASHELP.Heart data set. The results
show there are two levels for the variable, SEX, with 2,873 females and 2,336 males.

PROC FREQ Code:

proc freq data=sashelp.Heart (keep=sex) NLEVELS ;
run ;

PROC FREQ Results:

The FREQ Procedure

Number of Variable Levels
Variable Levels

Sex 2

Cumulative | Cumulative

Sex Frequency | Percent | Freguency Percent
Female 2873 55.15 2873 55.15
Male 2336 4485 5209 100.00

Discovering the Number of Occurrences of a Value with PROC SQL
Another approach for counting the number of occurrences of a variable’s value is to use the SUM function with an equality

expression in PROC SQL. PROC SQL’s data access and query capabilities offer SAS users with a powerful approach to summing
down rows and across columns. In this example, a SELECT query is specified with a SUM function for counting the number of
“Females”, “Males” and their combined totals that are found in the SASHELP.HEART data set. An optional FORMAT=COMMA?7.

parameter is also specified to make the results easier to read.

18

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC SQL Code:

proc sql ;
select SUM(sex=“Female”) AS Number_Females format=comma7.,
SUM (sex=“Male”) AS Number_Males format=comma7.,
SUM(sex IN (“Female”, “Male”)) AS Total format=comma7.
from sashelp.Heart ;
quit ;

PROC SQL Results:

Mumber_Females = Number_Males = Total

2873 2,335 | 5208

Using Metadata to Determine the Number of Observations in a Data Set
Metadata is everywhere and is defined as information that describes data. Other definitions include information about data, or
information about the design and specification of objects and data structures. In its most basic form, metadata is found in the
cataloging systems of every academic library, public library, school library, and special library in the world. The typical book,
magazine, microfiche, digital file, image, or object’s metadata is stored in cataloging systems. These cataloging systems are not
composed of words, sentences, paragraphs, or chapters, but contain information about its author(s), title, subject, keyword(s),
description, publisher, publication date, ISBN, format, resource identifier, copyright, and other information.

Older Methods of Determining the Number of Observations in a Data Set

Before the availability of metadata in the SAS System, users developed and included code routines that determined the number
of observations in a data set. An often used DATA step approach, since the beginning of SAS-time, constructs a variable that
counts the number of observations. Although syntactically correct, this approach does not “scale” well — due to the amount of
1/0 incurred and the sizes of data sets — when computing the counter. The the next example, a DATA step approach computes
the total number of “Sedans” found in the SASHELP.CARS data set, and displays the results using PROC PRINT.

DATA Step Code:

data sedans_counter (keep=type obs_ctr)
cars_sedans (drop=obs_ctr) ;
set sashelp.cars(keep=origin type make MSRP) end=eof ;
where upcase (type) = “SEDAN” ;
obs ctr + 1 ;
output cars_sedans ;
if eof then output sedans_counter ;
run ;

proc print data=sedans_counter noobs ;
run ;

DATA Step Results:

Type obs_ctr
Sedan 262

19

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Using DICTIONARY.TABLES Metadata to Determine the Number of Observations in a Data Set

The SAS System collects and populates valuable metadata about SAS libraries, data sets (tables), catalogs, indexes, macros,
system options, titles, views and other useful information in a collection of read-only tables called Dictionary tables. Dictionary
tables serve a special purpose for SAS users by providing system-related information about the current SAS session’s SAS
databases and applications. When a query processes a Dictionary table, SAS automatically launches a discovery process at
runtime to collect information pertinent to that table. This information is made available any time after a SAS session is started.

When users need more information about SAS data sets the TABLES Dictionary table can be very helpful. The TABLES Dictionary
table provides detailed information about the library names, the member (or data set) names, the date a data set was created

and last modified, the number of observations in a data set, and much more. The next example illustrates a popular approach
that accesses the metadata content from the DICTIONARY.TABLES table to determine the number of observations in any SAS

data set.

PROC SQL Code:

title

"Number of Rows

proc sql ;

select libname, memname,

in a Table" ;

from Dictionary.Tables

quit

title

’

where nobs NE .

PROC SQL Results:

nobs format=commalO.

Humber of Rows in a Tahle SAZHELE CUAKES 15,57
|.||]I'ﬁr!||' Hame | Mamibsr Hama Humber ETF"'I}'3|BE| DOosarvations fﬁi "ELF mENT II:
| :
MYTATA ATTORS 13 cammr e — .
MYDATA ACTORS VWTH_MEZSY_DAT ig asHELE SAEED .
IMTSATA a2 1= SASHELF SASMEG 794
MTSATA = 2 SASHELR SHOES 385
IMTSATA = e SASHELF | SLKWUL 1703
MYSATA MOWiES = SASHELF SMEMEG 34
MYDATA MOWIES_VWITH_MESSY_DATA 31 camELE e =
SAZHELR AKDOMA 2020 cAZHELF sTEL u
SAEHELF AARFM TeE SASHELP STOCHS £9g
SAZHELR ADEMSS 426 TASHELE e e
SASHELP | AFMSG 1090 SAZHELF | SWRTOIST 2372
SAZHELF AIR 144 SAZHELR SYRI0AT 105
SASHELF APPLIANC 156 SASHELR TAELE :
ZAZHELR ASECIMGR 40z SASHELR e s
ZAZHEF SAZESALL 22 ZAZHELR TIMEDATA, 40,330
ZAZHELP =z 24,205 SASHELR TOURISM 20
SAZHELR SMIMEN 3264 zAZ-ELR Jz=con 52
SAZHELF BMT 137 SASHELF WEPLAYRS 1
ZAZHELR SURROWE 24,591 ZAZHELF VERSMGR 15
SASHELF SUY 11 TASHELR VIDMSG 7
ZAZHELP SWEISHT 50,000 SAEHELP WOTE1980 3107
SAZHELR CASE 428 SASHELF WEBMES 345
ZAZHELP CITIDAY 1,068 SASHELF WORKERS &7
ZATHELR CITIMON 145 ZAZHELP ¥R1001 126
SASHELF CITIZTR 48 SAZHELR ¥R 126
ZAZHELR CITIVIK 3B SAZHELF ZHE 748
SASHELF CITIYR 10 ZAZHELR ZIPCoDs 41,232
ZAZHELP CLAZE 15 SASHELP e 15,157
SAZHELR CLASEFIT 15 SAZHELF _CMPIDX_ 24

20

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Using SASHELP.VTABLE Metadata to Determine the Number of Observations in a Data Set

SAS also provides users with metadata content in a number of SASHELP views. In this next example the number of observations
in any SAS data set can be determined by accessing the NOBS metadata content in the SASHELP.VTABLE view. This metadata
content can be displayed using any output-producing SAS procedure, as shown below.

PROC PRINT Code:

title "Number of Rows in a Table" ;

proc print data=sashelp.vtable noobs ;
var libname memname nobs ;
format nobs commalO. ;
where nobs NE . ;

run ;

title ;

PROC PRINT Results:

Humber of Rows in a Table SASHELD | QUAXES 15573
lioname | memname nobe i:z::z::: :fr_d':"- 15;
wioms EoLNTE ! SASHELP | REWVHUG2 T2
MYDATA | ACTORS - SAEHELP | ROCKAT -]
MYDATA | ACTORE WITH_MESSY_DATA 15 SASHELR | SAsMEC a
MYDATA | A2 1 EAEHELP | SASMSGE Tos
MYDATA | DM 2 SASHELP | BHOESS 35
MYDATA Ex 148 SASHELP | SLEMDL 1,703
MYDATA | MOMES = SAEHELP | EMEMEG]
MYDATA | MOVIES WATH_MESEY_DATA Edl ZASHELD | ZEmNGE 15T
SASHELP | AACOMP 2020 SASHELD | 2TEEL 12
SASHELP | AARFM 185 SASHELD | 2TOCKS e
SASHELP | ADSMSG o SASHEL® | STTMSE 335
SASHELP | APMSG 1090 SASHEL® | SVATDIET 2373
SASHELF | AIR 1as SASHELR | SYR100T 105
SASHELD | APPLIANG 125 SASRELF | TAELE s
SASHELD | ASSCMGR 202 SAERELF | THicK =
SASHEL® | BASESALL 32z SASHELS | TIMEDATA 40,330
SASHELP | BEI 24205 SASHEL® | TOUSISM =]
SAEHEL® | BMIMEN 32684 SASHELD | USECOM 252
SASHELP | BMT 137 SAEHELD | WSOLAYRS 11
SASHELR | BURROWS 24,581 SASHELT | WESSMER 19
SASHELP | BUY 1 SASHELP | VIDMESG 7
SAEHELR | BWEIGHT 50,000 SASHELD | WOTS1530 a.ior
SASHELP | CARE 425 SASHELR | WEBMEZE 345
SASHELP | CITIDAY 1,063 SASHELP | WORKERE &7
SASHELRP | CITIMON 145 SASHELP | YR1001 125
SASHELP | CITIQTR 43 SAEHELR | YR 125
SASHELR | CITIVU 319 SASHELP | ZHG T.245
SASHELP | CITIVR 10 SAEHELP | ZIPCOOE 41232
SASHELP | CLASE 13 SAEHELP | ZTC 18,161
SASHELR | CLASSFIT 13 SASHELS | _CMRIDN_ 4z

Using PROC PRINT with Style

Hecht (2011) describes the appearance of PROC PRINT output can be customized with colors, backgrounds, fonts, justifications,
and other report components using styles. Styles can be specified for all destinations (e.g., RTF, PDF, HTML, Excel, etc.) except
the Listing destination. In the next example, the SASHELP.CARS data set is sorted in ascending order by the variables Origin,
Type, Make and MSRP; the HTML destination is opened with the HTMLBIlue style selected for output; and background and
foreground styles selected for the data, obs and total parts of the PROC PRINT report output.

21

https://support.sas.com/resources/papers/proceedings11/270-2011.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC PRINT Code:

proc sort data=sashelp.Cars(keep=0rigin Type Make MSRP)
out=work.Cars_Sorted ;
where MSRP < 20000 ;
by Origin Type Make MSRP ;
run ;

ods HTML path="/folders/myfolders" (url=none)
file="PROC-PRINT-with-Style.html"
style=HTMLBlue ;
proc print data=work.Cars_Sorted
style (data) = [background=Blue foreground=white]
style (obs) = [background=red foreground=white]
style (total) [background=yellow foreground=black] ;
by Origin Type ;
id Origin Type Make ;
format msrp dollarl2.0 ;
sum MSRP ;
run ;
ods HTML close ;

PROC PRINT Results:

Origin | Type | Make M3RP Origin | Type | Make MSRP Origin | Type | Make | MSRP
[T CREEEIE
Origin | Type Make MSRP Origin | Type | Make MSRP

=

Europe | Sedan §75,538
Origin | Type Make M5RP
mm m Volkswagen | 510,005 Truck $ET,3I]5
Asia suv
Europe §04 543
Origin | Type | Make MSRP el Y e (AR e CESE

Origin | Type | Make M5RP

T 51550
usa £495 400

$1.564,372

Asia Truck 563,614

USA | Wageon 34,520

Crigin | Type Make MSRP

Asia | Wagon §76,757

Asia $974,429

22

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Using Available Memory with Hash Object Programming

Dorfman (2009) describes a SAS hash object as, “a high-performance look-up table residing completely in the DATA step
memory.” Due to the costs and availability of memory resources in today’s computing environments, software vendors are
doing everything they can to develop language constructs that capitalize on memory-resident operations. Dorfman further
describes that, “The hash object is implemented via a Data Step Component Interface (DSCI), meaning that it is not a part of the
DATA step proper. Rather, picture it as a black-box device you can manipulate from inside the DATA step to ask it for lightning-
quick data storage and retrieval services.”

Lafler (2016) describes a SAS hash object as, “a data structure that contains an array of items that are used to map identifying
values, known as keys (e.g., employee IDs), to their associated values (e.g., employee names or employee addresses). As
implemented, a hash object in the SAS System is used as a DATA step construct and is not available to any SAS Procedures.” A
hash object reads the contents of a data set into memory once allowing the SAS system to repeatedly access the data, as
necessary. The contents of a hash object can be saved to a SAS data set (or table), but at the end of the DATA step the hash
object and all its contents disappear. Since memory-based operations are typically faster than their disk-based counterparts,
users often experience faster and more efficient table lookup, merge, sort and transpose operations.

Users with DATA step programming experience will find the hash object syntax relatively straight forward to learn and use.
Available in all operating systems running SAS 9 or greater, the hash object is called using methods. The syntax for calling a
method involves specifying the name of the user-assigned hash table, a dot (.), the desired method (e.g., operation) by name,
and finally the specification for the method enclosed in parentheses. The following example illustrates the basic syntax for
calling a method to define a key.

MatchTitles.DefineKey (‘Title’);

where MatchTitles is the name of the hash table, DefineKey is the name of the called method, and ‘Title’ is the specification
being passed to the method.

In the next example, an essential operation frequently performed by users is the process of table lookup or search. The hash
object as implemented in the DATA step provides users with the necessary tools to conduct match-merges (or joins) of two or
more data sets. Data does not have to be sorted or be in a designated sort order before use as it does with the DATA step
merge process. The following code illustrates a hash object with a simple key (TITLE) to merge (or join) the MOVIES and ACTORS
data sets to create a new data set (MATCH_ON_MOVIE_TITLES) with matched observations. The same operation is handled in a
DS2 section example here.

Hash Object Code:

data match_on_movie_titles(drop=rc) ;

©® if 0 then set mydata.movies
mydata.actors ; /* load variable properties into hash tables */

if _n_ =1 then do ;
(2] declare Hash MatchTitles (dataset:'mydata.actors') ; /* declare the name
MatchTitles for hash */

(3] MatchTitles.DefineKey ('Title') ; /* identify variable to use as key */
MatchTitles.DefineData (‘Actor_Leading’,
‘Actor_Supporting’) ; /* identify columns of data */
MatchTitles.DefineDone () ; /* complete hash table definition */
end ;

set mydata.movies ;

® if MatchTitles.find(key:title) = 0 then output ; /* lookup TITLE in MOVIES table
using MatchTitles hash */
run ;

23

http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017
Tile l Length | Category | Year [Studio] Rating | Actor_Leading Actor_Supporting
1 |Brave Heat 177 Action Adventure 1995 Paramount Pictures R Mel Gibson Sophie Marceau
2 |Christmas Vacation 97 Comedy 1989 Wamer Brothers PG13 Chevy Chase Bevery D'Angelo
3 |Comingto America 116 Comedy 1988 Paramourt Pictures R Eddie Muphy Arsenio Hal
4 |Fomest Gump 142 Drama 1994 Paramount Pictures PG13 Tom Hanks Saly Field
5 |Ghost 127 Drama Romance 1990 Paramount Pictures PG13 Patick Swayze Demi Moore
6 | Lethal Weapon 110 Action Cops & Robber 1987 Wamer Brothers R Mel Gibson Danny Glover
7 | Michael 106 Drama 1997 Wamer Brothers PG-13 John Travokta Andie MacDowel
8 | National Lampoon's Vacation 98 Comedy 1383 Wamer Brothers PG13 Chevy Chase Beverly D'Angelo
9 |Rocky 120 Action Adventure 1976 MGM / UA PG Sylvester Stallone Talia Shire
10 |Sience of the Lambs 118 Drama Suspense 1991 Orion R Anthony Hopking Jodie Foster
11 | The Hunt for Red October 135 Action Adverture 1989 Paramourt Pictures PG Sean Connery Aec Baldwin
12 | The Teminator 108 Action Sci-Fi 1984 Live Entertainment R Amold Schwarzenegge Michael Biehn
13 |Thanic 194 Drama Romance 1997 Paramount Pictures PG13 Leonardo DiCaprio Kate Winglet

User-developed Macros

There are 2 kinds of user developed macros, single use “through away” code and special purpose, multi-use macros. The latter

should be stored in a central repository (or directory) for a particular project, department or an entire organization. These
macros should be completely documented from top to bottom. Including an explanation of the macros purpose, its input
parameters and expected output along with a sample test run, as shown in the example below. (A FCMP Subroutine that

accomplishes the same character stripping but for a datastep variable is found here) A contents readme file documenting the

macros in the collection should be kept in the directory with the macros so users can see what’s available. For more
information about the SAS macro language, see Carpenter's Complete Guide to the SAS® Macro Language, Third Edition.

MSTRIPCHR Macro:

LR R R R R R R R R R R R R R R R R R R LR E R R E R E R ER R

MACRO: MSTRIPCHR removes a specified character recursively from the beginning or
end of a given macro character string. %, &, ' and " are not allowed for
any resolved parameter value and will cause an ERROR!!!

/

By: Clark Roberts, Decision Analytics
2003 Program written.
2017 Added _LOC parameter and logic to

strip _CHR from the end of _STR

Copyright Decision Analytics 2003 - 2017
All rights reserved

*
*
*
*
*
*
*
* Updates:
*
*
*
*
*
*
IR E R E R EEEEEEEEEEEEEE R R R R E RRRRRERE R R R R R R RRRE R EE R R EREXEDE] */

%macro mstripchr (_str , /* <REQUIRED> */

_chr /* <REQUIRED> */
_h , /* <REQUIRED> */
_loc =S

)

/* IR R R R E R SR EEEE R EEE SRR R R EEE R EREEEEEEEE SRR R R R R EEEEEEEEEREEEEEEREREREERSERSERESEREE.]

* PARAMETERS: _STR: Name of a macro variable within the scope of the calling
* program that contains the string of characters to be
* processed. After the macro executes any leading characters
* specified in the _CHR parameter.
* _CHR: Name of a macro variable within the scope of the calling
* program that contains the character to be stripped. It’s
* value does not change as a result of the macro execution.
* _N: Name of a macro variable within the scope of the calling
*

program that will contain the number of _CHR values that

24

https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

* were removed. It must be initialized to 0 (zero) before
* calling STRIPCHR.

* _LOC Location of the character (_CHR) to be stripped from

* (_STR). S -> beginning (default), E -> end.

LR R R AR AR R R R ER AR SRR EREREEE SRR ERREEREREEEEREE SRR R REEREESE RS EREEEREREREEREESREEERERERERSEREEREERKESS] */

%let _loc = %upcase (%substr(&_loc,1,1));
%if & loc = E and & loc *= S %then %let _loc = S;
%if &_1oc = E %then %let & str = %qsysfunc(reverse(%nrbquote(&&& str)));
%let & chr = %qsubstr (%nrbquote (&&& chr),1,1);
%if %length (%nrbquote (&&& str)) > 1 %then %do;
%if %qsubstr (%qtrim(%qleft (¥nrbquote (&&& str))),1,1) = %nrbquote (&&& chr)
%then %do;
%let & n = %eval (&&& n + 1);
%let & str = %qsubstr (¥nrbquote (&&& str),2);
%mstripchr (& str, & chr, & n, _loc=S);
%end;
%end;
%if & loc = E %then %let & str = %qsysfunc(reverse (&&& str));

%mend mstripchr;

MSTRIPCHR Macro Log Results:

66 * options symbolgen macrogen mlogicnest source source2;
67 %macro testmstripchr();

68 %local var chr loc n ;

69 %let n = 0;

70 %let var = -----------mmmmm e testval2;
71 %let chr = -;

72 %let loc = s;

73 %put before mstr1pchr called &n &var &chr &loc;

74 %mstripchr(var, chr, n, _loc=&loc);

75 %put after mstripchr called &n &var &chr &loc;

76 %let var = testval3: iy,

77 %let chr = :;

78 %let loc = e;

79 %let n = 0

80 %put before mstripchr called &n &var &chr &loc;

81 %¥mstripchr(var, chr, n, _loc=&loc);

82 %put after mstripchr called &n &var &chr &loc;

83 %mend testmstripchr;

84 %testmstripchr();

before mstripchr called 0 ------=-=-======-----“---o-m-"--- testval?2 - s
after mstripchr called 38 testval? - s

before mstripchr called 0 testval3:::::zorrrrrrcorrrrriiorrril e

arfter mstripchr called 27 testval3 : e

PC Windows Environment

SAS provides the MODULExy family of call routines and functions (including MODULE, MODULEN, MODULEC, MODULEI,
MODULEIN, and MODULEIC) to access system related API functions and other DLL function calls. It’s a very powerful tool, but
somewhat obscure so it’s not widely used currently.

The use of these SAS MODULExy functions requires creation of a text file (SASCBTBL) that describes the API/DLL routine to be
invoked. This file can be permanently created or created in-line with FILE and PUT statements, as the following example
demonstrates. Download the Win32 API Declarations for Visual Basic reference or for a version updated for 64 bit office go to
this Microsoft Office site. Scroll down and, under the “Links” section, click the link associated with “Office 2010 Help Files:
Win32API_PtrSafe with 64-bit Support” to automatically download the Win32API_PtrSafe with 64-bit Support. Then, run the
downloaded EXE file to install the TXT and related files. These references will give you the information you need to help build
the SAS SASCBTBL file. Many of the 32 bit Win32API functions will work in a 64 bit environment without modification (refer to

25

https://hwiegman.home.xs4all.nl/downloads/Win32API.Txt
http://www.jkp-ads.com/articles/apideclarations.asp?AllComments=True

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Langston 2015 for information on MODULExy 64 bit usage). It seems that pointers are the main issue and the above reference
to the Win32API_PtrSafe functions should hopefully resolve any of those issues.

In the following example, the OPENWORD macro opens Microsoft Word for a DDE session. It uses the Win32API calls
“FindExecutableA” to find the location of Word for Windows (WinWord) and “WinExec” to execute WinWord. The authors are
using the SAS University Edition which runs in a Linux virtual machine, but this macro needs direct access to Windows so an
example of its use was not possible. There are a number of other good examples in the articles in the WIN32API References and
Suggested Reading section.

MODULExy functions are available in other operating systems (eg. UNIX, VMS, etc.). Refer to the SAS Companion for these
operating systems for details.

MODULEN Function Example Code:

LA AR AR R R AR AR R R R AR AR SRR R RR AR R R R R RS R R R ERERERE SRR EEEREEEREREREREERERSEEEEEEESESREEESRSESREESS:S]

**%* Source: OPENWORD.SAS (MS Word 95/97 under Win95/98 SAS 6.12 Product Version)
* %k %

*** Type: Include Module

* kK

*** Function: Opens MS Word for a SAS to Word DDE session

* %%

*** Note: This version has been tested in MS Word 95 and 97 under Windows 95
* ok and 98 in SAS 6.12 (TS025 and above)

* %%

*** Parameters: None

* %%

**% By: Clark Roberts, Decision Analytics

* kK

*** Updates: 5-30-97 Program written.

* ok 10-7-99 Added logic to build the SAS modulen control table

* ok in the OPENWORD macro.

* kK

* ok Copyright Decision Analytics 1997 - 2017.

*kk All rights reserved

LR R EE AR R R EREEEEEE SRR R A SR EE R AR R R EEEEEEE AR EEEE SRR E R R EEEEEEE R EEEEE SRR EEREEEEEERE I
’

%macro openword() ;

(R AR AR E R EEE A SRR E R EEEE R R EE AR AR R EEEEE R E R EEE R AR SRR EEEEEEEEEEEEEEEEEEEEEEE RS EEE]

*** Define a global macro variable for the return code to be tested by the
*** calling program. If the operation is successful then the return code
*** will be > 0, If it fails then the return code will be O.

LR R R AR R R R R R AR EEEEEE LSRR EEREEEEEEEEREEEEREEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES I
’

%global rcword;

%let rcword = 1;

IR AR R R R EEE AR SR R RS A SRR R A AR EEEEEEE R SR EE R E AR E R R E SRR R EEEEEEEEEEEEEEEEE R EEEER]
* % %

*** Define the parameter settings for the Win API calls that will be used by
*** the SAS modulen function for this program. These can be stored permanently
*** in a text file for better performance, if required. Also create an empty
*** DOC file for the FindExecutableA API call to use to find the path to the
*** MS Word executable WINWORD.EXE.

* %k

*** Win32API Visual Basic Declarations

* %k

* %k

*** Declare Function WinExec Lib "kernel32" Alias "WinExec"
* ook (Byval 1pCmdLine As String, ByVal nCmdShow As Long)

*okk As Long

*** Declare Function FindExecutable Lib "shell32.d1l1" Alias
*kk "FindExecutableA" (Byval 1pFile As String,

*kk ByVal lpDirectory As String, ByVal lpResult As String)

26

http://support.sas.com/resources/papers/proceedings15/SAS1572-2015.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

*okk As Long

* % %

khkkhkhkdkhhhhkdhkdhdhhddhdhdhdddhdrdrdddhddhdrdddddrdrdrdddddrddddddhdddddddddrdxdbdxddddrxdxdd.
’

filename modtabl ’'c:\modtabl. txt"’;
data _null_;
file modtabl,

put @2 'routine WinExec';

put @5 'maxarg=2';

put @5 'minarg=2';

put @5 'stackpop=called’',

put @5 'module=KERNEL32',

put @5 'returns=ushort;’';

put @7 'arg 1 input char format=$cstr200.,;’';

put @7 'arg 2 input num byvalue format=pib4.,;' //;

put @2 'routine FindExecutableA’;

put @5 'maxarg=3';

put @5 'minarg=3';

put @5 'stackpop=called’,

put @5 'module=shell32’;

put @5 'returns=ushort;’;

put @7 'arg 1 input char format=$cstr200.;’';
put @7 'arg 2 input char format=$cstr200.;';
put @7 'arg 3 output char format=$cstr200.,’;

run;
filename modtabl clear,
filename wordtemp 'c:\system.doc';

data _null_;
file wordtemp;
put 'this is a dummy .doc file for the FindExecutableA API';
put 'to use to locate the MS Word .EXE file. It is created’;
put 'by the SAS OPENWORD macro';

run;

filename wordtemp clear;

IR AR SRR R EEE AR SR R RS A SRR R AR AR EEEEEEE R SR EE R E AR E R AR SRR EEEEEEEE R EEEEEEE R EEEER]

*** If MS Word is already open, then close it and allow the user to save

*** their work.
IR EREE SR EEEEEESREEEEE SRR E R R EE R R EEE R EEEREE R RERERRZSEZSESE
’

filename wordchk dde 'winword|system!selected' command;
%let status = %sysfunc(fopen(wordchk,S));

%if &status %then %do;
data _null_;
file wordchk;
put '[FileExit 1]°';
run;
%let rc = %sysfunc(fclose (&status));
filename wordchk clear;
%end;

LR R R R R R R R AR R R R R R R R R EEEEREEREEEEEREEEEEEEREEEEEEEEEEEREEEE RS EEEEEEEEREEEEEESLES]

* ook Start a MS Word session if requested. SAS calls to the Windows APU are
*okk used to find the location of MS Word and if found, starts a session.

*** The modtabl.txt file, which contains the parameters for each system call
*** and the system.doc file, which is used as a trigger for the

* ook FindExecutableA API function to locate MS Word on the system. The SAS

27

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

*okk MODULEN function is used for the API interface. If MS Word fails to open,
* ok then set the RCWORD return code to 0, The Word session is started in

* ok ok minimized state.

khkkhkhkdkhhhhkdhkdhdhhddhdhdrdddhdddddhddhddhdhddddhddodhddddhdodhdxdddhdddddddddrdxddxddxddrxdxdd.
’

filename sascbtbl "c:\modtabl.txt",

data _null_;
length sysdir wordpath $200;
wordpath = '';
sysdir = 'c:\";

rcl = modulen('*ei’, 'FindExecutableA’', 'system.doc’, sysdir, wordpath) ;
if rcl > 32 then do;
rc2 = modulen('*ei’, 'WinExec', wordpath, 2) ;
if rc2 <= 0 then call symput('rcword','0');
end;
else do;
put 'OPENWORD ERROR: Could not find the MS Word executable';
call symput('rcword','0');
end;
put rcl= rc2= wordpath=;
run;

filename sascbtbl clear;
filename wordsys dde 'Winword|System';

%mend openword;

/***

*EE END OF MODULE
*EE OPENWORD . SAS

***/

User-developed Functions with the FCMP and PROTO Procedures

In version 9.2, SAS added the ability to create user-written functions and call routines, utilizing the SAS DATA step and DS2
programming languages, using the PROC FCMP and its cousin, PROC PROTO. PROC PROTO is used to incorporate C language
functions into SAS, while PROC FCMP compiles SAS DATA Step and DS2 language elements for use in those environments.
“FCMP routines are stored in a data set and can be called from several SAS/STAT®, SAS/ETS®, and SAS/OR® software
procedures, like the NLIN, MODEL, and NLP procedures. In SAS 9.2, FCMP routines can be called from a DATA step.” (Secowski

2007).

User-written routines are defined using PROC FCMP and can be either a function or a CALL routine. A function is a subroutine
that returns a value and accepts either zero or more arguments passed by value and will not modify the value in the calling
routine. On the other hand a CALL routine is a subroutine that does not return a value explicitly and normally receives one or
more arguments passed by value, or also by reference. When passed by reference one copy of the data is shared between the
calling routine and the subroutine. This is how information is returned to the calling program. The next example illustrates a
user-defined function and its related subroutine that converts yards to meters. The function is contained with a larger
collection of functions stored in the ExampleFunctions library. To view the use of these functions in a DS2 package refer here.

FCMP User-defined Function and Subroutine:

libname cr "/folders/myfolders/CR" ; /* permanently store functions in*/
/* ExampleFunctions library for */
/* reuse */

/**

Functions and Subroutines to convert various units of measurement

**/

options cmplib = cr.ExampleFunctions ;

28

http://www2.sas.com/proceedings/forum2007/008-2007.pdf
http://www2.sas.com/proceedings/forum2007/008-2007.pdf

Modernizing Legacy SAS® Applications and Program Code, continued

proc fcmp outlib=cr.ExampleFunctions.Yards2Meters ;

function Yards2Meters (inUnits) ;
return(inlnits / 0.9144)
endsub ;

proc fcmp outlib=cr.ExampleFunctions.Yards2Meters_sub ;

subroutine Yards2Meters_sub(inUnits, outUnits);
outargs outUnits ;
outUnits = Yards2Meters (inUnits) ;
return ;

endsub ;

proc fcmp outlib=cr.ExampleFunctions.Inches2Centimeters ;
function Inches2Centimeters (inUnits) ;

return(inUnits * 2.54) ;
endsub ;
proc fcmp outlib=cr.ExampleFunctions.Centimeters2Inches ;
function Centimeters2Inches(inUnits) ;

return(inUnits / 2.54) ;
endsub ;
proc fcmp outlib=cr.ExampleFunctions.Kilograms2Pounds ;
function Kilograms2Pounds (inUnits) ;

return(inUnits * 2.2046226218) ;
endsub ;

quit ;

/**

Test program for yards to meters function and subroutine

**/

data _null_;
length invar outvar 8;
invar = 5;
outvar = Yards2Meters (invar) ;
put "function call " outvar=;
invar = 5;
call Yards2Meters_sub(invar, outvar);
put "subroutine call " outvar= ;
run;

FCMP User-defined Function and Subroutine Log Results:

84 /**

85

Test program for yards to meters function and subroutine

86 **/

87 data _null_;

88 length invar outvar 8;

89 invar = 100;

90 outvar = Yards2Meters (invar);

91 put "function call " outvar=;

92 invar = 100;

93 call Yards2Meters_sub(invar, outvar);
94 put "subroutine call " outvar= ;

95 run;

function call outvar=109.36132983
subroutine call outvar=109.36132983

29

SCSUG 2017

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

PROC FCMP routines can be recursive. Sekowski (2007) describes “Recursion as a problem-solving technique that reduces a
problem to a smaller one that is simpler to solve and then combines the results of the simpler solution(s) to form a complete
solution. A recursive function is a function that calls itself, either directly or indirectly.” The next example demonstrates the
concept of recursion by using the character stripping paradigm, only this time a PROC FCMP subroutine is used to modify a
DATA step variable instead of a macro variable (refer to the earlier macro example in the User Developed Macros section). The

next example illustrates a user-defined FCMP routine and the result from the test program is illustrated, below.

Recursive User-defined FCMP Routine:

/**

FCMP subroutine to recursively strip character _CHR from the
Beginning or end of a character string _STR

**/

options cmplib = work.ExampleFunctions;
proc fcmp outlib=work.ExampleFunctions.stripchr;

subroutine stripchr(_str $, _chr $, _n, _loc $, origloc $);
outargs _str, _chr, _n, _loc, origloc;
_loc = upcase(substr(_loc,1,1));
if _loc = 'E' and _loc *= 'S' then do;

_loc = 'S";
origloc = _loc;
end;
if _loc = 'E' then do;
_str = trim(left(reverse(_str)));
_loc = "S";
end;

_chr = substr(_chr,1,1);
if length(_str) > 0 then do;
if substr(trim(left(_str)),1,1) = _chr then do;
_hn=_n+1;
_str = substr(_str,2);
call stripchr(_str, _chr, _n, _loc, origloc);
return;
end;
end;
if upcase(origloc) *= 'S' then do;
_str = reverse(_str);
_10(: llEll;
end;
return;
endsub;
quit;

Test Program for the STRIPCHR FCMP Function:

/***

* Test program for stripchr FCMP subroutine

***/

data before after ;
length _str $200 _chr $5 loc $5 n 4 ;

_chr
_loc

30

http://www2.sas.com/proceedings/forum2007/008-2007.pdf

Modernizing Legacy SAS® Applications and Program Code, continued

_Str = mmmmmmmmm e e
link process ;
_Chr = ll>ll ;
_loc = "e" ;
_str = "testval2>>>>>>>>>>>>>>>>>>>"
link process ;
_chr = "$" ;
_10C - llSll ;
_str = "$353553553535%3%%testval3"” ;
link process ;
_chr = "2"
_loc = "e" ;
_str = "testval4??22?22222222222222222222222"
link process ;
_chr =".";
_loc = "s" ;
= v
link process ;
goto exit ;
process:
output before ;
_n=20;
origloc = upcase(substr(_loc,1,1)) ;

call stripchr(_str, _chr,

output after ;
return ;

exit
run ;

proc

print data=before ;

var _str _chr _loc ;
title "Values before function call" ;

run ;

proc

print data=after ;

var _str _n _loc ;
title "Values after function call" ;

run ;

Recursive User-defined FCMP Routine Results:

Values before function call

Obs _str _chr _loc
1 testvall x
2 | testval2>>>>>>53>5>5>3>335535>> > e
3 SS855555555555%8Stestval3 S s
4 testvald??222222222222?22222?22222227? ? e
D testvals s

Values after function call

Obs _str _n _loc
1 testvall 47 S
2 testval2 19 E
3 testval3 17 S
4 testval4 27 E
5 testval5 39 S

_n, _loc, origloc)

testvall'

testvals" ;

31

SCSUG 2017

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

PROC FCMP provides the special function named RUN_MACRO that enables a user-written routine to run a macro. There is no
restriction as to what the macro can generate in terms of SAS code: it can include a number of DATA steps and PROC steps.
Since a user-written routine is callable from within a DATA step then RUN_MACRO makes it’s possible to have nested DATA
steps. References by Carpenter (2016) and Deguire (2013) provide more detail on the use of RUN_MACRO.

Beginning with SAS® 9.3, hashing became available to user-defined subroutines through the FCMP Procedure. “Hashing is an
important construct often used to improve performance of operations such as merging, filtering and searching. Hashing has
been supported in the DATA step for more than a decade... Subroutines have always encapsulated and modularized code,
making programs reusable, and the addition of hashing allows users to extend the scope of their programs, tackling larger
problems without sacrificing simplicity.” (Henrick 2017). For more information about the DATA step hash construct, see Lafler
(2016) and Dorfman / Henderson (2017).

PROC DS2
Introduced in SAS Version 9.4 in 2013, DS2 is a data step like programming language redesigned from the ground up with the
following goals in mind:

e Process ANSI SQL natively for integration with external data sources.

e Provide syntax for multi-threaded processing for accelerated execution of CPU intensive tasks.

e Provide just enough Object Oriented Programming (OOP) constructs, including method overloading, for reusability of
DS2 code. Method overloading consists of having 2 or more methods with the same name, but with different
signatures. Signatures consist of the methods name and ordered list of parameter data classes.

The differences between the data step and DS2 are:

e DS2 supports ANSI native numeric data types and multi-byte character types to directly access DBMS data.

e DS2is multi-threaded whereas the data step is single threaded providing acceleration for CPU bound processing by
DS2. If the process is /0 bound the multi-threading in DS2 will not help reduce run times.

e DS2 programs can take advantage of the SAS In-Database Code Accelerator by allowing DS2 programs to execute on
the Massively Parallel Processing (MPP) capabilities on the DBMS hardware with the SAS Embedded Process.

e There are almost no reserved words in the data step language. In DS2 all keywords are reserved word

e Variables referenced in a data step are global in scope, Variables referenced in a DS2 program can be either global or
local in scope.

e Allvariables referenced in the data step are in the Program Data Vector, while DS2 variables of local scope are not in
the PDV.

e Creating reusable data step code with variable encapsulation requires PROC FCMP. Reusable code in DS2 with
variable encapsulation is possible using PROC DS2 syntax in a ‘package’ program.

e The data step can consume a table produced by an SQL query as input to a set statement. While DS2 can directly
accept the result set of an SQL query as input to the set statement.

Some of the prerequisites for using DS2 include:

. DATA step programming experience

e Accessing data with a LIBNAME statement

e The role of the program data vector (PDV) in DATA step processing

e Conditional processing with IF-THEN-ELSE, SELECT-WHEN, etc. statements
e DO loop processing

e Array processing

e SAS Macro language

e SQL

32

https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html
http://support.sas.com/resources/papers/proceedings13/505-2013.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf
http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Within a DS2 block you can define and execute three types of program blocks:

Program Block Brief Description

Data The heart of the DS2 language, data programs manipulate input datasets to produce output result
sets. They can receive input from tables, SQL result sets or thread program result sets.

Package A package programming block or package refers to the stored library of variables and methods
bounded by PACKAGE...ENDPACKAGE statements. The variables and methods of a package can be
used by DS2 programs, threads, or other packages, enabling an object oriented approach to
development.

Thread Thread programs manipulate input datasets to produce output result sets that are returned to a
data program. Used to simultaneously process several rows of data in parallel threads. A thread
programming block, or thread program, refers to a stored program that is bounded by the
THREAD...ENDTHREAD statements. The thread program can be called by the SET FROM statement
ina DS2 program or package.

Methods

A method programming block or method block refers to a sub-block of programming statements that are bounded by the in
methods. METHOD and END statements. User methods need to be defined before the 3 internal built-in methods INIT, RUN
and TERM. The INIT method runs first where any initializations takes place. The RUN method executes next and finally the
TERM method runs last. If the user doesn’t define these then DS2 automatically creates them. User methods can be called
from any of the internal built-packages.

Packaging

A package is a collection of methods and variables that can be used in DS2 programs. “... packages are analogous to classes in
other object-oriented languages such as C# or Ruby and can be used to massively improve your programming effectiveness.”
(Brooks 2016) Packages should be stored in a data set within a SAS library for re-use. The first example below provides an
example of defining and storing a package. To use a package; a DS2 program, another package, or a thread instantiates the
package to access its methods.

“With the addition of user-defined packages to the SAS DS2 programmer’s toolbox SAS have opened up a new way of designing
and programming our SAS applications. If we, as SAS developers, use this facility in a true object-oriented way we can
significantly improve code re-use, encourage standardization of techniques and remove much of the routine coding which is
part and parcel of the traditional procedural programming paradigm.” (Brooks 2016)
Built-in Packages (refer to Jordan 2016 for detailed coverage of built-in packages):

SQLSTMT Package

Provides a way to pass FedSQL statements to a DBMS for execution and to access the result set returned by the DBMS.
There are performance benefits of using DS2 over PROC SQL. “The SQLSTMT package and the SQLEXEC function enable
DS2 programs to dynamically generate, prepare, and execute FedSQL statements to update, insert, or delete rows from a
table. With an instance of the SQLSTMT package or the SQLEXEXC function, the FedSQL statement allocate, prepare,
execute, and free occurs at run time.” (Kaufmann 2014)

MATRIX Package

The MATRIX package provides you with a powerful and flexible matrix programming capability.

HTTP and JSON Packages

The HTTP package provides the vehicle to construct an HTTP client to retrieve and post data on the internet. You can
also retrieve status codes to log traffic between the client and server using the SAS Logging facility.

The JSON (JavaScript Object Notation) package gives you a means for creating and parsing JSON text.

HASH AND HASH ITERATOR Packages

These packages provide data hashing capability to DS2 routines like their data step equivalents.

33

http://support.sas.com/resources/papers/proceedings16/7280-2016.pdf
http://support.sas.com/resources/papers/proceedings16/7280-2016.pdf
https://www.sas.com/store/books/categories/examples/mastering-the-sas-ds2-procedure-advanced-data-wrangling-techniques/prodBK_68181_en.html
http://support.sas.com/resources/papers/proceedings16/4342-2016.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

FCMP Package

The Function Compiler procedure (FCMP) supports calls to FCMP functions and subroutines from within the DS2
language.

TIMEZONE (TZ) Package

The TZ package allows DS2 to process ANSI date, time and timestamp values from different time zones more easily.

LOGGER Package

Provides a basic interface (open, write, and level query) to the SAS logging facility.

The first example uses the SET statement of the SQLSTMT package. This is the same example as the DATA step version
demonstrated earlier. In the case of the SET statement, no package instantiation is required. The SASHELP cars dataset is
subset on the variable TYPE for records containing SUV, Truck or Wagon. For some reason SAS didn’t like the SASHELP libname
in the DS2 block, so we created a copy in WORK first.

DS2 SQLSTMT Package Example:

data cars;
set sashelp.cars;
run;

proc ds2;
Data work.vehicles / overwrite=yes;
method run();
set {select origin, type, msrp from work.cars
where upcase (type) in ('SUV', 'TRUCK', 'WAGON')
order by msrp};
end;
enddata;
run;
quit;

proc print data=vehicles(obs=17);
format msrp dollar8.;

run;
Log Results from Package Example:
62 data cars;
63 set sashelp.cars;
64 run;

NOTE: There were 428 observations read from the data set SASHELP.CARS.
NOTE: The data set WORK.CARS has 428 observations and 15 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds
65
66 proc ds2;
67 Data work.vehicles / overwrite=yes;
68 method run() ;
69 set {select origin, type, msrp from work.cars
70 where upcase(type) in ('SUV', 'TRUCK', 'WAGON')
71 order by msrp};

34

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

72 end;
73 enddata;
74 run;
NOTE: Execution succeeded. 114 rows affected.
75 quit;
NOTE: PROCEDURE DS2 used (Total process time):
real time 0.05 seconds
cpu time 0.05 seconds
76
77 proc print data=vehicles (obs=17);
78 format msrp dollar8.;
79 run;

NOTE: There were 17 observations read from the data set WORK.VEHICLES.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.05 seconds

cpu time 0.05 seconds

Partial PROC PRINT Output from Program:

Obs | ORIGIN | TYPE MSRP
1 | Asia Wagon 511,905
2 | Asia Truck 512,800
3 | Asia Wagon | $14.165
4 | UsA Truck $14,385
5 | Asia Truck 514,840
6 | Asia Truck 516,495
T | Asia Wagon | $16.497
8 USA Truck $16.,530
9 | Asia Wagon 516,695

10 | USA Wagon $17.045
11 | Asia sSuUwv $17.163
12 | USA Wagon B17.475
13 | Asia Wagon B17,.495
14 | USA Truck $17,630
15 | Asia sSuUwv 515,690
16 | USA Truck 518,760
17 | Asia SUW 518,892

The second example is an example of the use of the HASH package that duplicates the datastep merge example in DATA step
hash example merging leading actors and supporting actors with their corresponding movie titles to provide additional
information. The key, data and dataset name, etc. is entered with the package instantiation statement instead of separate
statements for each of these to reduce the lines of code. The additional fields in the instantiation statement are hashexp (1),
ordered (a for ascending), action for duplicate key entries (error) and multidata (no}.

DS2 Hash Package Example:

libname mydata '/folders/myfolders/CR';
proc ds2;
data match_on_movie_titles / overwrite=yes;
dcl varchar (20) ActorLeading ActorSupporting;
dcl varchar (30) Title;
/* Define Hash Table MatchTitles */
dcl package hash MatchTitles ([Title], [ActorLeading ActorSupporting],l,
'mydata.actors', 'a', 'error', '', 'no');
Method run();
set mydata.movies ;
/* lookup TITLE in MOVIES table using MatchTitles hash */

35

if MatchTitles.find() = 0;

End;
enddata;
run;
quit;

Modernizing Legacy SAS® Applications and Program Code, continued

proc print data=match_on_movie_titles;

var Title Length Category Year Studio Rating ActorlLeading

ActorSupporting;
run;

Output from DS2 Hash Package Example:

SCSUG 2017

Obs Title Length | Category Year | Studio Rating | ActorLeading ActorSupporting
1 | Brave Heart 177 | Action Adventure 1995 | Paramount Pictures R Mel Gibson Sophie Marceau
2 Christmas Vacation 97 | Comedy 1989 | Warner Brothers PG-13 | Chevy Chase Beverly D'Angelo
3 Coming to America 116 | Comedy 1988 | Paramount Pictures R Eddie Murphy Arsenio Hall
4 | Forrest Gump 142 | Drama 1994 | Paramount Pictures PG-13 | Tom Hanks Sally Field
5 Ghost 127 | Drama Romance 1950 | Paramount Pictures PG-13 | Patrick Swayze Demi Moore
6 Lethal Weapon 110 | Action Cops & Robber = 1987 | Wamner Brothers R Ml Gibson Danny Glover
T | Michael 106 | Drama 1997 | Warner Brothers PG-13 | John Travolta Andie MacDowell
8 National Lampoon's Vacation 98 | Comedy 1983 | Warner Brothers PG-13 | Chevy Chase Beverly D'Angelo
9 Rocky 120 | Action Adventure 1976 | MGM/UA PG Sylvester Stallone Talia Shire

10 Silence of the Lambs 118 | Drama Suspense 1991 | Crion R Anthony Hopkins Jodie Foster
11 The Hunt fer Red Octaber 135 | Action Adventure 1989 | Paramount Pictures PG Sean Connery Alec Baldwin
12 | The Terminator 108 | Action Sci-Fi 1984 | Live Entertainment R Amold Schwarzenegge = Michael Bighn
13 | Titanic 194 | Drama Romance 1997 | Paramount Pictures PG-13 | Leonardo DiCaprio Kate Winslet

User Defined Packages

e These are packages that you can use to store methods for any purpose. A user can store methods that they create in
user-defined packages.

e These packages can be thought of as libraries of your methods. Any type of method can be saved in a package. Once
you have stored methods in a package (using the PACKAGE statement), you can access them by creating an instance
of the package with only a DECLARE statement or with the _NEW__ operator.

The following example is taken from the first FCMP example, the stored functions in ExampleFunctions in the CR library. The
wrapper routine creates a package containing the stored functions for use in DS2. The test program instantiates the package as
Convertlt and calls the Kilograms2Pounds function.

By storing the “function library” as a package the routines can then be used in both a DATA step program and data program in
DS2. A little confusing at first, but eventually it’ll become clearer.

DS2 FCMP Wrapper Proaram for Permanent Function Storage:

/* Wrap the FCMP functions in a DS2 package */
libname cr "/folders/myfolders/CR"
proc ds2;
package cr.fcmp_converters / overwrite=yes language='fcmp'
table='cr.ExampleFunctions’' ;
run;
quit;

36

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Test Program for DS2 FCMP Function Call:

/**

Test program for unit conversion FCMP DS2 package
**/
proc ds2;

data _null_;

dcl package cr.fcmp_converters convertIt(),

dcl double invar having format 12.6;

dcl double outvar having format 12.6;

method run();
invar=13.6;
outvar = convertIt.Kilograms2Pounds (invar),
put 'Kilograms2Pounds ' invar= outvar= ;

end;

enddata;

run;
quit;
62 /**
63 Test program for unit conversion FCMP DS2 package
gg **/
66 proc ds2;
67 data _null_;
68
69 dcl package cr.fcmp_converters convertIt();
70 dcl double invar having format 12.6;
71 dcl double outvar having format 12.6;
72
73 method run();
74 invar=13.6;
75 outvar = convertIt.Kilograms2Pounds (invar);
76 put 'Kilograms2Pounds ' invar= outvar= ;
77 end;
78
79 enddata;
80 run;

Kilograms2Pounds invar= 13.600000 outvar= 29.982868

NOTE: Execution succeeded. No rows affected.

81 quit;

NOTE: PROCEDURE DS2 used (Total process time):
real time 0.39 seconds
cpu time 0.23 seconds

Introduced in SAS® 9.3 the High-performance version of the DS2 procedure, PROC HPDS2, executes DS2 language statements in
a SAS High-Performance Analytics environment for parallel execution. It is an efficient method for moving big data to the
servers or network workstations for distributed processing. PROC HPDS2 is most useful when significant amounts of
computationally intensive, row-independent logic must be applied to the data. The HPDS2 procedure offers the following
features:

37

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

e Enables DS2 code to be executed on a local client machine or on the SAS High-Performance Analytics grid

e Enables control of the level of parallelism per execution node and the number of nodes to engage

e Performs a syntax check of the DS2 code on the local client machine before sending it to the grid for execution
e Manages data migration to the location of execution and movement back to the client machine as needed

e Runs within the framework of SAS Embedded Process

Parallel Processing

One of the key reasons for developing DS2 was to provide parallel processing capability to SAS. Parallel execution is
accomplished by executing a program/process in DS2 on either a single machine running multiple threads or to a distributed
computing environment if SAS GRID is licensed. Threads refer to the tasks a CPU core can process simultaneously. For
instance, many modern PCs have at least 2 cores, and some have 4. Today each of these cores can run up to 2 threads.

When the SAS process is CPU bound the SAS log will indicate REAL time (CPU time is essentially the same) as Running time.
Multiple threads in this case can decrease CPU time. If, however, the process is /0 bound, and REAL time is greater than CPU
time, then no amount of additional threads will improve efficiency. In fact, adding more threads may decrease overall
performance.

The next example was taken from Chapter 6, Example 6.3.1 in Jordan (2016) and modified. The next example illustrates a
modified version of the SASHELP.CARS data set and adds some computations to increase processing time using parallel
processing. The number of observations was increased 1000 fold to provide a better test for threading. This ran on a Windows
8.1 PC with 4 cores and we specified 4 threads to spread around the processing. The log indicates that all 4 threads were
utilized, but thread number 3 received the majority of the action. In general, parallel processing of data programs in DS2 can
dramatically reduce the required CPU time if the application is not I/0 bound.

Parallel Processing Code:

data cars(drop=i) ;
set sashelp.cars(keep=make model type) ;
do i =1 to 1000 ;
output;
end ;
run ;

proc ds2 ;
thread work.myThread(double flag)/overwrite=y ;
dcl int ThreadNo ;
dcl int Count ;
method run() ;
set work.cars ;
count+l ;
end ;
method term() ;
ThreadNo=_threadid_ ;
put ThreadNo= Count= ;
end ;
endthread ;
run ;
quit ;

proc ds2 ;
data cars3 / overwrite=yes ;
dcl double i j k ;
dcl thread work.myThread t ;
method init() ;
t.setparms(l) ;
end ;
method run() ;
set from t threads=4 ;
do i =1 to 100 ;
do j =1 to 50 ;
k = (j*i)**3 ;

38

https://www.sas.com/store/books/categories/examples/mastering-the-sas-ds2-procedure-advanced-data-wrangling-techniques/prodBK_68181_en.html

Modernizing Legacy SAS® Applications and Program Code, continued

end ;
end ;
end ;
enddata ;
run ;
quit ;

Parallel Processing Log:

62 data cars(drop=i);

63 set sashelp.cars(keep=make model type);
64 do i =1 to 1000;

65 output;

66 end;

67 run;

NOTE: There were 428 observations read from the data set SASHELP.CARS.
NOTE: The data set WORK.CARS has 428000 observations and 3 variables.

NOTE: DATA statement used (Total process time):

real time 0.06 seconds
cpu time 0.06 seconds
68
69 Proc ds2;
70 thread work.myThread(double flag)/overwrite=y;
71 dcl int ThreadNo;
72 dcl int Count;
73 method run();
74 set work.cars;
75 count+l;
76 end;
77 method term() ;
78 ThreadNo=_threadid_;
79 put ThreadNo= Count=;
80 end;
81 endthread;
82 run;

NOTE: Created thread mythread in data set work.mythread.

NOTE: Execution succeeded. No rows affected.
83 quit;

NOTE: PROCEDURE DS2 used (Total process time):

SCSUG 2017

real time 0.05 seconds
cpu time 0.04 seconds

84

85 proc ds2;

86 data cars3 / overwrite=yes;

87 dcl double i j k;

88 dcl thread work.myThread t;

89 method init();

90 t.setparms (1) ;

91 end;

92 method run() ;

93 set from t threads=4;

94 do i =1 to 100;

95 do j =1 to 50;

96 k = (j*i)**3;

97 end;

98 end;

99 end;

100 enddata;

101 run;

ThreadNo=3 Count=220640

ThreadNo=4 Count=120240

ThreadNo=1 Count=25440

ThreadNo=2 Count=61680

39

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

NOTE: Execution succeeded. 428000 rows affected.

102 quit;
NOTE: PROCEDURE DS2 used (Total process time):
real time 19.59 seconds
cpu time 20.80 seconds
SAS Grid

Introduced in SAS 9.1.3, the separately licensed SAS Grid Manager adds to the parallel processing capabilities of SAS/CONNECT
and many other capabilities required by large data, enterprise grid deployments. It provides efficient resource allocation, load
balancing and prioritization for SAS solutions running in a shared grid environment. It also separates the SAS applications from
the infrastructure executing the applications. This allows hardware resources to grow or shrink as needed, and provides
tolerance for hardware failures in the grid system. The SAS Grid Manager can modernize your existing SAS environment.

e Multiple users - SAS® Enterprise Guide users can submit their SAS programs and tasks to a SAS grid for execution.

e Parallel workloads — Some SAS applications consists of sub-tasks that are independent units of work and can be
distributed across a grid and executed in parallel.

e Enterprise scheduling - Scheduling production jobs is an important function in just about every enterprise. SAS
provides the Schedule Manager plug-in with SAS® Management Console for creating SAS workflows and schedule
them.

SAS Grid Manager integrates the resource management and scheduling capabilities of the Platform Suite for SAS with the SAS
4GL syntax, and subsequently with several SAS products, like Enterprise Miner, SAS® Forecast Server, SAS/STAT, SAS/OR and
SAS/ETS. This enables you to create a managed, flexible, and shared environment to efficiently process and analyze data.
According to Galati (2008), “SAS/OR takes advantage of SAS Grid functionality in solving some of the following problems:"

e Monte Carlo methods (Fishman 1995)
e Decomposition methods such as Dantzig-Wolfe, Benders, Lagrangian relaxation (Galati and Ralphs 2005)

e Multi-start methods for global optimization (Horst and Tuy 1993)

e Genetic and evolutionary algorithms (Levine 1994)
e Simulation (Robinson 2004)
e Location problems (Pierre, et al 2007)

With the SAS In-Database Code Accelerator processing of the data on the server can be transferred to high performance host
database systems like HADOOP or TERADATA.

Exploring PROC SCAPROC - The SAS Code Analyzer

Rabb (2010) describes PROC SCAPROC — the SAS Code Analyzer as an effective tool for maintaining and modifying legacy
applications and program code. Users are able to capture information about input, output, and macro variables from an
executing SAS job with the SCAPROC procedure. In this next example, a file is created with the RECORD statement and the
content of the SAS Code Analyzer is written to the file with the WRITE statement.

PROC SCAPROC Code:

proc scaproc ;
record '/folders/myfolders/PROC SCAPROC with Record and Write.txt' ;
run ;

proc sort data=sashelp.Cars(keep=0rigin Type Make MSRP)
out=work.Cars_Sorted ;
where MSRP < 20000 ;
by Origin Type Make MSRP ;
run ;

40

http://www2.sas.com/proceedings/forum2008/203-2008.pdf
http://www.springer.com/us/book/9780387945279
http://coral.ie.lehigh.edu/~ted/files/papers/DECOMP04.pdf
https://books.google.com/books/about/Global_Optimization.html?id=usFjGFvuBDEC
https://pdfs.semanticscholar.org/3e4f/073bea0caaa66eff52ae26937054750417d9.pdf
http://197.14.51.10:81/pmb/GENIE_DES_PROCEDES/Simulation%20The%20Practice%20of%20Model%20Development%20and%20Use.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7096&rep=rep1&type=pdf
http://support.sas.com/resources/papers/proceedings10/313-2010.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

ods HTML path="/folders/myfolders" (url=none)
file="PROC-PRINT-with-Style.html"
style=HTMLBlue ;
proc print data=work.Cars_Sorted
style (data) = [background=Blue foreground=white]
style (obs) = [background=red foreground=white]
style (total) [background=yellow foreground=black] ;
by Origin Type ;
id Origin Type Make ;
format msrp dollarl2.0 ;
sum MSRP ;
run ;
ods HTML close ;

proc scaproc ;
write ;
run ;

PROC SCAPROC Results:

/* JOBSPLIT: JOBSTARTTIME 09JUL2017:07:10:42.53 */

/* JOBSPLIT: TASKSTARTTIME 09JUL2017:07:10:42.53 */

/* JOBSPLIT: DATASET INPUT SEQ #C00003.CARS.DATA */

/* JOBSPLIT: LIBNAME #C00003 V9 '/opt/sasinside/SASHome/SASFoundation/9.4/sashelp' */
/* JOBSPLIT: CONCATMEM #C00003 SASHELP */

/* JOBSPLIT: LIBNAME SASHELP V9 '(
"/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sascfg'
'/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sashelp"’
"/opt/sasinside/SASHome/SASFoundation/9.4/nls/en/sascfg'
'/opt/sasinside/SASHome/SASFoundation/9.4/sashelp')' */

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.CARS_SORTED.DATA */

/* JOBSPLIT: LIBNAME WORK V9
"/tmp/SAS_workEF5700002373_localhost.localdomain/SAS_work98EC00002373_localhost.locald
omain' */

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.SORTTMP000000000000000000012.DATA */

/* JOBSPLIT: LIBNAME WORK V9
"/tmp/SAS_workEF5700002373_localhost.localdomain/SAS_work98EC00002373_localhost.locald
omain' */

/* JOBSPLIT: ITEMSTORE INPUT WORK.TEMPLAT */

/* JOBSPLIT: ITEMSTORE INPUT SASUSER.TEMPLAT */

/* JOBSPLIT: FILE OUTPUT /folders/myfolders/PROC-PRINT-with-Style.html */

/* JOBSPLIT: SYMBOL GET SYSSORTDETAILS */

/* JOBSPLIT: SYMBOL GET SYSSORTTRACELEVEL */

/* JOBSPLIT: SYMBOL GET SYSSORTTRACE */

/* JOBSPLIT: ELAPSED 222 */

/* JOBSPLIT: SYSSCP LIN Xe64 */

/* JOBSPLIT: PROCNAME SORT */

/* JOBSPLIT: STEP SOURCE FOLLOWS */

proc sort data=sashelp.Cars (keep=0rigin Type Make MSRP)
out=work.Cars_Sorted ;
where MSRP < 20000 ;
by Origin Type Make MSRP ;
run ;
ods HTML path="/folders/myfolders"
(url=none)
file="PROC-PRINT-with-Style.html"
style=HTMLBlue ;

/* JOBSPLIT: TASKSTARTTIME 09JUL2017:07:10:42.75 */
/* JOBSPLIT: DATASET INPUT MULTI WORK.CARS_SORTED.DATA */

41

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

/* JOBSPLIT: LIBNAME WORK V9
"/tmp/SAS_workEF5700002373_localhost.localdomain/SAS_work98EC00002373_localhost.locald
omain' */
/* JOBSPLIT: CATALOG INPUT #C00003.COREPRN.AFM_COM 1.PSL */
/* JOBSPLIT: LIBNAME #C00003 V9 '/opt/sasinside/SASHome/SASFoundation/9.4/sashelp' */
/* JOBSPLIT: CONCATMEM #C00003 SASHELP */
/* JOBSPLIT: LIBNAME SASHELP V9 '(
"/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sascfg'
'/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sashelp"’
"/opt/sasinside/SASHome/SASFoundation/9.4/nls/en/sascfg'
'/opt/sasinside/SASHome/SASFoundation/9.4/sashelp')' */
/* JOBSPLIT: CATALOG INPUT #CO0003.COREPRN.AFM TIB 1.PSL */
/* JOBSPLIT: LIBNAME #C00003 V9 '/opt/sasinside/SASHome/SASFoundation/9.4/sashelp' */
/* JOBSPLIT: CONCATMEM #CO00003 SASHELP */
/* JOBSPLIT: LIBNAME SASHELP V9 '(
'/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sascfg'
'/opt/sasinside/SASHome/SASFoundation/9.4/nls/u8/sashelp"’
'/opt/sasinside/SASHome/SASFoundation/9.4/nls/en/sascfg’
'/opt/sasinside/SASHome/SASFoundation/9.4/sashelp')' */
/* JOBSPLIT: FILE INPUT /opt/sasinside/SASHome/ReportFontsforClients/9.4/saswalb.ttf
*/
/* JOBSPLIT: FILE INPUT /opt/sasinside/SASHome/ReportFontsforClients/9.4/saswcur.ttf
*/
/* JOBSPLIT: ITEMSTORE UPDATE Work.SASTMP-000000013 */
/* JOBSPLIT: FILE OUTPUT /folders/myfolders/PROC SCAPROC with Record and Write.txt */
/* JOBSPLIT: ELAPSED 277 */
/* JOBSPLIT: PROCNAME PRINT */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc print data=work.Cars_Sorted

style (data) [background=Blue foreground=white]

style (obs) [background=red foreground=white]

style (total) [background=yellow foreground=black] ;

by Origin Type ;

id Origin Type Make ;

format msrp dollarl2.0 ;

sum MSRP ;
run ;
ods HTML close ;

/* JOBSPLIT: JOBENDTIME 09JUL2017:07:10:43.03 */
/* JOBSPLIT: END */

Conclusion

Large inventories of SAS applications and program code have been developed and supported by organizations since the mid-
1970s. In many organizations, novice and experienced SAS® programmers have been tasked with the responsibility to support
their organization’s legacy applications, programs and code. This paper explores many tips, techniques and examples to help
guide the modernization of applications and program code well into the 21* century and beyond. The recommended
techniques and approaches are designed to provide a foundation of things to consider during the modernizing process. We also
provide guidance on the use of the SCAPROC procedure — the SAS code analyzer — to analyze metadata about the contents of
SAS code, and to streamline, scale and modernize code constructs, algorithms, functions, and legacy application program code.

References

DS2 References and Suggested Reading
Barnes, Arila; Jared Peterson; Saratendu Sethi (2013). “Unleashing the Power of Unified Text Analytics to Cateqgorize Call Center
Data,” Proceedings of the 2013 SAS Global Forum (SGF) Conference.

Brooks, Chris (2016). “Tips and Techniques for User-Defined Packages in SAS® DS2,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

42

http://support.sas.com/resources/papers/proceedings13/103-2013.pdf
http://support.sas.com/resources/papers/proceedings13/103-2013.pdf
http://support.sas.com/resources/papers/proceedings16/7280-2016.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Eberhardt, Peter and Xue Yao (2015). “DS2 with Both Hands on the Wheel,” Proceedings of the 2015 SAS Global Forum (SGF)
Conference.

Eberhardt, Peter and Xue Yao (2014). “/ Object: SAS® Does Objects with DS2,” Proceedings of the 2014 SAS Global Forum (SGF)
Conference.

Jordan, Mark (2016). “Mastering the SAS® DS2 Procedure: Advanced Data Wrangling Techniques,” SAS Press, SAS Institute,
Cary, NC, USA.

Jordan, Mark L (2014). “Using Base SAS® to Extend the SAS® System,” SAS® Institute Inc, Cary NC, Proceedings of the 2014 SAS
Global Forum (SGF) Conference.

Kaufmann, Shaun (2016). “High-Performance Data Access with FedSQL and DS2,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Kaufmann, Shaun (2014). “A Paradigm Shift: Complex Data Manipulations with DS2 and In-Memory Data Structures,
Proceedings of the 2014 SAS Global Forum (SGF) Conference.

Kumbhakarna, Viraj R., (2017). “PROC DS2: What’s in it for You?,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Lal, Rajesh, Experis (2014). “DS2: The New and Improved DATA Step in SAS®,” Proceedings of the 2014 MidWest SAS Users
Group (MWSUG) Conference.

Massey, J. Gregory; Radhikha Myneni, M.; Adrian Mattocks; and Eric C. Brinsfield (2014). “Extracting Key Concepts from
Unstructured Medical Reports Using SAS® Text Analytics and SAS® Visual Analytics,” Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

Matsey, Bob and Tho Nguyen (2015), “The Power of DS2 Programming,” Proceedings of the 2015 SouthEast SAS Users Group
(SESUG) Conference.

SAS Institute Inc. (2016). SAS® 9.4 DS2 Language Reference, Sixth Edition. Cary, NC

Secosky, Jason; Robert Ray; and Greg Otto (2014). “Parallel Data Preparation with the DS2 Programming Language,”,
Proceedings of the 2014 SAS Global Forum (SGF) Conference.

Efficiency and Performance Tuning References and Suggested Reading
Brown, Tony and Margaret Crevar (2016). “Architecting Your SAS Grid®: Networking for Performance,” Proceedings of the 2016
SAS Global Forum (SGF) Conference.

Cohen, Robert A. and Robert N. Rodriguez (2013). “High-Performance Statistical Modeling,” Proceedings of the 2013 SAS Global
Forum (SGF) Conference.

Kaufmann, Shaun (2016). “High-Performance Data Access with FedSQL and DS2,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2016). “Top Ten SAS® Performance Tuning Techniques,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lavery, Russ (2013). “Fast Access Tricks for Large Sorted SAS Files,” Proceedings of the 2013 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2017). “SAS Advanced Programming with Efficiency in Mind: A Real Case Study,” Proceedings of the 2017 Michigan
SAS Users Group (MISUG) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

Williams, Michael; Gretel Easter and Steve Bradsher (2009). “Troubleshoot Your Performance Issues: SAS® Technical Support
Shows You How,” Proceedings of the 2009 SAS Global Forum (SGF) Conference.

General References and Suggested Reading
Ford, Andrew P.; Troy B. Wolfe; and Shiva Srinivasan (2008). “Reinvent Legacy Software with SAS®, the Web, and OLAP
Reporting,” Proceedings of the 2008 SAS Global Forum (SGF) Conference.

Green, Adam (2017). “5 Signs You Need to Modernize a Legacy Application,” BPlans, owned and operated by Palo Alto
Software.

Jordan, Mark L. (2014). “Using Base SAS® to Extend the SAS® System,” SAS® Institute Inc, Cary NC, Proceedings of the 2014 SAS
Global Forum (SGF) Conference.

Techopedia.com (June 30“‘, 2017). Legacy Code Definition from Techopedia.com.

43

http://support.sas.com/resources/papers/proceedings15/2523-2015.pdf
http://support.sas.com/resources/papers/proceedings14/1283-2014.pdf
https://www.sas.com/store/books/categories/examples/mastering-the-sas-ds2-procedure-advanced-data-wrangling-techniques/prodBK_68181_en.html
https://support.sas.com/resources/papers/proceedings14/SAS013-2014.pdf
http://support.sas.com/resources/papers/proceedings16/4342-2016.pdf
http://support.sas.com/resources/papers/proceedings14/1797-2014.pdf
http://support.sas.com/resources/papers/proceedings17/0916-2017.pdf
https://www.mwsug.org/proceedings/2014/BB/MWSUG-2014-BB10.pdf
http://support.sas.com/resources/papers/proceedings14/SAS165-2014.pdf
http://support.sas.com/resources/papers/proceedings14/SAS165-2014.pdf
http://support.sas.com/documentation/cdl/en/ds2ref/69739/PDF/default/ds2ref.pdf
https://support.sas.com/resources/papers/proceedings14/SAS329-2014.pdf
http://support.sas.com/resources/papers/proceedings16/SAS6760-2016.pdf
http://support.sas.com/resources/papers/proceedings13/401-2013.pdf
http://support.sas.com/resources/papers/proceedings16/4342-2016.pdf
http://www.lexjansen.com/mwsug/2016/SA/MWSUG-2016-SA01.pdf
https://www.mwsug.org/proceedings/2013/HW/MWSUG-2013-HW02.pdf
http://www.misug.org/uploads/8/1/9/1/8191072/lliu_macro_efficiencies.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
http://support.sas.com/resources/papers/proceedings09/333-2009.pdf
http://www2.sas.com/proceedings/forum2008/025-2008.pdf
http://www2.sas.com/proceedings/forum2008/025-2008.pdf
http://articles.bplans.com/5-signs-you-need-to-modernize-a-legacy-application/
https://support.sas.com/resources/papers/proceedings14/SAS013-2014.pdf
https://www.techopedia.com/definition/25326/legacy-code

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Hash Object References and Suggested Reading
Burlew, Michele M. (2012), “SAS® Hash Object Programming Made Easy,” SAS Press, SAS Institute, Cary, NC, USA.

Dorfman, Paul M. and Don Henderson (2017). “Beyond Table Lookup: The Versatile SAS® Hash Object,” Proceedings of the 2017
SAS Global Forum (SGF) Conference.

Dorfman, Paul M. (2016). “Using the SAS® Hash Object with Duplicate Key Entries,” Proceedings of the 2016 SAS Global Forum
(SGF) Conference.

Dorfman, Paul and Peter Eberhardt (2010). "Two Guys on Hash," Proceedings of the 2010 South East SAS Users Group (SESUG)
Conference.

Dorfman, Paul (2009). "The SAS’ Hash Object in Action," Proceedings of the 2009 South East SAS Users Group (SESUG)
Conference.

Lafler, Kirk Paul (2016). “An Introduction to SAS® Hash Programming Technigues,” Proceedings of the 2016 SouthEast SAS Users
Group (SESUG) Conference.

Loren, Judy (2008). “How Do | Love Hash Tables? Let Me Count The Ways!,” Proceedings of the 2008 SAS Global Forum (SGF)
Conference.

Mazloom, Dari (2017). “SAS Hash Objects, Demystified,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Sakya, Daniel (2012). “SAS® HASH Programming Basics,” Proceedings of the 2012 South Central SAS Users Group (SCSUG)
Conference.

Schacherer, Chris (2015). “Introduction to SAS® Hash Objects,” Proceedings of the 2015 SAS Global Forum (SGF) Conference.

Secosky, Jason and Janice Bloom (2007). “Getting Started with the DATA Step Hash Object,” Proceedings of the 2007 SAS Global
Forum (SGF) Conference.

Warner-Freeman, Jennifer K. (2007). “I Cut My Processing Time By 90% Using Hash Tables - You Can Do It Too!,” Proceedings of
the 2007 North East SAS Users Group (NESUG) Conference.

Macro References and Suggested Reading
Carpenter, Art (2016). Carpenter's Complete Guide to the SAS® Macro Language, Third Edition, SAS Institute Inc., Cary, NC.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

Operations Research (OR) References and Suggested Reading
Fishman, G. (1995), Monte Carlo: Concepts, Algorithms, and Applications, New York: Springer Verlag.

Galati, M.V. and Ted K. Ralphs (2005), “Decomposition in Integer Linear Programming,” in J. Karlof, ed., Integer Programming:
Theory and Practice, The Pennsylvania State University: CRC Press.

Horst, R. and Tuy, H. (1993), Global Optimization: Deterministic Approaches, New York: Springer-Verlag.

Levine, D. (1994), A Parallel Genetic Algorithm for the Set Partitioning Problem, Ph.D. thesis, lllinois Institute of Technology,
Chicago, IL.

Robinson, Stewart (2004). Simulation—The Practice of Model Development and Use, John Wiley & Sons.

Hansen, Pierre, Nenad ML ADENOVIC, and Eric Taillard (2007), “Location Problems - Heuristic Solution of the Multisource Weber
Problem as a p-Median Problem,” (February 4, 2008).

Wicklin, Rick (2016). “Solve linear programming problems in SAS,” blogs.sas.com.

PROC FCMP References and Suggested Reading
Adams, John H. (2010). “The new SAS 9.2 FCMP Procedure, what functions are in your future?,” Proceedings of the 2010
PharmaSUG Conference.

Carpenter, Art. (2013). “Using PROC FCMP to the Fullest: Getting Started and Doing More”, Proceedings of 2013 SAS Global
Forum (SGF) Conference.

Deguire, Yves, Xiyun (Cheryl) Wang (2013). “Using SAS® PROC FCMP in SAS® System Development - Real Examples,” Proceedings
of the 2010 SAS Global Forum (SGF) Conference.

Eberhardt, Peter (2010). ”Functioning at an Advanced Level: PROC FCMP and PROC PROTO,” Proceedings of the 2010 SAS Global
Forum (SGF) Conference.

44

https://www.sas.com/store/books/categories/usage-and-reference/sas-hash-object-programming-made-easy/prodBK_62230_en.html
http://support.sas.com/resources/papers/proceedings17/0821-2017.pdf
http://support.sas.com/resources/papers/proceedings16/10200-2016.pdf
http://analytics.ncsu.edu/sesug/2010/HOW05.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2009/HOW009.Dorfman.pdf
http://analytics.ncsu.edu/sesug/2016/BB-115_Final_PDF.pdf
http://www2.sas.com/proceedings/forum2008/029-2008.pdf
http://support.sas.com/resources/papers/proceedings17/1479-2017.pdf
http://www.lexjansen.com/scsug/2012/HASH-Programming-basics.pdf
https://support.sas.com/resources/papers/proceedings15/3024-2015.pdf
http://www2.sas.com/proceedings/forum2007/271-2007.pdf
http://www.lexjansen.com/nesug/nesug07/bb/bb16.pdf
https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
http://www.springer.com/us/book/9780387945279
http://coral.ie.lehigh.edu/~ted/files/papers/DECOMP04.pdf
https://books.google.com/books/about/Global_Optimization.html?id=usFjGFvuBDEC
https://pdfs.semanticscholar.org/3e4f/073bea0caaa66eff52ae26937054750417d9.pdf
http://197.14.51.10:81/pmb/GENIE_DES_PROCEDES/Simulation%20The%20Practice%20of%20Model%20Development%20and%20Use.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7096&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.7096&rep=rep1&type=pdf
http://blogs.sas.com/content/iml/2016/12/19/solve-linear-programming-problems-sas.html#comment-245208
http://www.lexjansen.com/pharmasug/2010/ad/ad02.pdf
http://support.sas.com/resources/papers/proceedings13/139-2013.pdf
http://support.sas.com/resources/papers/proceedings13/505-2013.pdf
http://support.sas.com/resources/papers/proceedings10/024-2010.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Eberhardt Peter (2009). “A Cup of Coffee and Proc FCMP: | Cannot Function Without Them,” Proceedings of the 2009 SAS Global
Forum (SGF) Conference.

Eckler, Lisa (2013). “FCMP — Why?,” Proceedings of the 2013 SAS Global Forum (SGF) Conference.

Henrick, Andrew, Mike Whitcher, and Karen Croft (2017). “Dictionaries: Referencing a New PROC FCMP Data Type,”
Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Henrick, Andrew, Donald Erdman, and Karen Croft (2015). “Helping You C What You Can Do with SAS®,” Proceedings of the
2015 SAS Global Forum (SGF) Conference.

Henrick, Andrew, Donald Erdman, and Stacey Christian (2013). “Hashing in PROC FCMP to Enhance Your Productivity,”
Proceedings of the 2013 SAS Global Forum (SGF) Conference.

Rithy, Danny (2015). “Getting Started with PROC FCMP,” Proceedings of the 2015 Western Users of SAS Software (WUSS)
Conference.

Secosky, Jason (2012). “Executing a PROC from a DATA Step,” Proceedings of the 2012 SAS Global Forum (SGF) Conference.

Secosky, Jason (2007). “User-Written DATA Step Functions,” Proceedings of the 2007 SAS Global Forum (SGF) Conference.

PROC SCAPROC References and Suggested Reading
Rabb, Merry (2010). “Thoroughly Modern SAS®: The SAS Code Analyzer Helps Bring Programs Up to Date,” Proceedings of the
2010 SAS Global Forum (SGF) Conference.

Thies, Eric and Rick Langston (2008). “Introducing the SAS® Code Analyzer,” Proceedings of the 2008 SAS Global Forum (SGF)
Conference.

SAS Grid References and Suggested Reading
Bosso, Marlos A. (2016). “Creating a Strong Business Case for SAS® Grid Manager: Translating Grid Computing Benefits to
Business Benefits,” Proceedings of the 2016 SAS Global Forum (SGF) Conference.

Brown, Tony and Margaret Crevar (2016). “Architecting Your SAS Grid®: Networking for Performance,” Proceedings of the 2016
SAS Global Forum (SGF) Conference.

Cohen, Robert A. and Robert N. Rodriguez (2013). “High-Performance Statistical Modeling,” Proceedings of the 2013 SAS Global
Forum (SGF) Conference.

Doninger, Cheryl, Zhiyong Li, and Bryan Wolfe (2014). ”Best Practices for Implementing High Availability for SAS® 9.4,”
Proceedings of the 2014 SAS Global Forum (SGF) Conference.

Doninger, Cheryl and Glenn Horton (2008). “SAS® Grid 101: How It Can Modernize Your Existing SAS® Environment,”
Proceedings of the 2008 SAS Global Forum (SGF) Conference.

Galati, Matthew, Doug Haigh, Rob Pratt, and lvan Oliveira (2008). “Using SAS/OR® and SAS® Grid Manager to Solve
Optimization Problems on the Grid,” Proceedings of the 2008 SAS Global Forum (SGF) Conference.

Leonard, Michael, Cheryl Doninger, and Udo Sglavo (2014). “High-Performance Forecasting Using SAS® Grid Manager,”
Proceedings of the 2014 SAS Global Forum (SGF) Conference.

Nitschinger, Manuel and Phillip Manschek (2014). “SAS® Grid — What They Didn’t Tell You,” Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

Oliveira, Ivan, Rob Pratt, and Charles Dulaney (2009). “Using the SAS/OR® OPTMODEL Procedure to Assign Students to Schools
in the Wake County Public School System,” Proceedings of the 2008 SAS Global Forum (SGF) Conference.

SAS Institute Inc., SAS/CONNECT® 9.4 User’s Guide, Fourth Edition., Cary NC.
SAS Institute Inc., SAS/GRID®, Grid Computing in SAS® 9.4, Fifth Edition., Cary NC.

SAS Programming Techniques References and Suggested Reading
Benjamin, William E. Jr. (2012). “Leave Your Bad Code Behind: 50 Ways to Make Your SAS® Code Execute More Efficiently,”
Proceedings of the 2012 SAS Global Forum (SGF) Conference.

Cassidy, Deb (2003). “Keeping Up With the FUN: New Functions in SAS 9,” Proceedings of the 2003 SouthEast SAS Users Group
Conference.

Cody, Ron (2012). “A Survey of Some of the Most Useful SAS® Functions,” Proceedings of the 2012 SAS Global Forum (SGF)
Conference.

Gupta, Sunil (2006). “WHERE vs. IF Statements: Knowing the Difference in How and When to Apply,” Proceedings of the 2006
SAS Users Group International (SUGI) Conference.

45

http://support.sas.com/resources/papers/proceedings09/147-2009.pdf
http://support.sas.com/resources/papers/proceedings13/298-2013.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf
https://support.sas.com/resources/papers/proceedings15/SAS1747-2015.pdf
http://support.sas.com/resources/papers/proceedings13/129-2013.pdf
http://www.lexjansen.com/wuss/2015/54_Final_Paper_PDF.pdf
http://support.sas.com/resources/papers/proceedings12/227-2012.pdf
http://www2.sas.com/proceedings/forum2007/008-2007.pdf
http://support.sas.com/resources/papers/proceedings10/313-2010.pdf
http://www2.sas.com/proceedings/forum2008/006-2008.pdf
http://support.sas.com/resources/papers/proceedings16/SAS4240-2016.pdf
http://support.sas.com/resources/papers/proceedings16/SAS4240-2016.pdf
http://support.sas.com/resources/papers/proceedings16/SAS6760-2016.pdf
http://support.sas.com/resources/papers/proceedings13/401-2013.pdf
http://support.sas.com/resources/papers/proceedings14/SAS305-2014.pdf
http://www2.sas.com/proceedings/forum2008/046-2008.pdf
http://www2.sas.com/proceedings/forum2008/203-2008.pdf
http://www2.sas.com/proceedings/forum2008/203-2008.pdf
https://support.sas.com/resources/papers/proceedings14/SAS068-2014.pdf
http://support.sas.com/resources/papers/proceedings14/1684-2014.pdf
https://support.sas.com/resources/papers/proceedings09/297-2009.pdf
https://support.sas.com/resources/papers/proceedings09/297-2009.pdf
http://support.sas.com/documentation/cdl/en/connref/69581/PDF/default/connref.pdf
http://support.sas.com/documentation/cdl/en/gridref/69583/PDF/default/gridref.pdf
http://support.sas.com/resources/papers/proceedings12/257-2012.pdf
http://analytics.ncsu.edu/sesug/2003/SE10-Cassidy.pdf
http://support.sas.com/resources/papers/proceedings12/241-2012.pdf
http://www2.sas.com/proceedings/sugi31/238-31.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Hecht, Darylene (2011). “PROC PRINT and ODS: Teaching an Old PROC New Tricks,” Proceedings of the 2011 SAS Global Forum
(SGF) Conference.

Horstman, Joshua M. (2017). “Beyond IF THEN ELSE: Techniques for Conditional Execution of SAS® Code,” Proceedings of the
2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2017). “Best Practice Programming Techniques for SAS® Users,” Proceedings of the 2017 SAS Global Forum
(SGF) Conference.

Lafler, Kirk Paul (2017). “Removing Duplicates Using SAS®,” Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2014). “Conditional Processing Using the Case Expression in PROC SQL,” Proceedings of the 2014 South Central
SAS Users Group (SCSUG) Conference.

Lafler, Kirk Paul (2013). PROC SQL: Beyond the Basics Using SAS, Second Edition, SAS Institute Inc., Cary, NC, USA.

Lafler, Kirk Paul (2009). “SAS® Macro Programming Tips and Techniques,” Proceedings of the 20009 SAS Global Forum (SGF)
Conference.

Lavery, Russ (2016). “An Animated Guide: The Internals of PROC REPORT,” Proceedings of the 2016 MidWest SAS Users Group
(MWSUG) Conference.

Lui, Lingqun (2007). “Passing Data Set Values into Application Parameters,” Proceedings of the 2007 MidWest SAS Users Group
(MWSUG) Conference.

Repole Jr, Warren (2009). “Don’t Be a SAS® Dinosaur: Modernizing Programs with Base SAS 9.2 Enhancements,” Proceedings of
the 2009 SAS Global Forum (SGF) Conference.

Riba, S. David (1996). “Redesigning a Legacy: Techniques of a Quality Partner,” Proceedings of the 1996 SAS Users Group
International (SUGI) Conference.

Roberts, Clark; Deborah Testa and Russell Holmes (19997). “Audit Trail Plug-ins for SAS® Software Applications,” Proceedings of
the 1999 Western Users of SAS Software (WUSS) Conference.

Roberts, Clark (1997). “Building and Using Macro Variable Lists,” Proceedings of the 1997 SAS Users Group International (SUGI)
Conference.

Shapiro, Mira (2016). “SAS® Functions You May Have Been MISSING,” Proceedings of the 2016 PharmaSUG Conference.

Sun, GuanGhui (Brian) (2011). “Why Dummy Variable Makes You SMART, and How to Do it SEXY,” Proceedings of the 2011
Western Users of SAS Software (WUSS) Conference.

Venam, Srinivas; Manvitha Yennam; and Phaneendhar Vanam (2016). “Good Programming Practice [GPP] in SAS® & Clinical
Trials,” Proceedings of the 2016 Western Users of SAS Software (WUSS) Conference.

Wang, Hui (2015). “Creating Data-Driven SAS® Code with CALL EXECUTE,” Proceedings of the 2015 PharmaSUG Conference.

Whitlock, lan (1998). “CALL EXECUTE: How and Why,” Proceedings of the 1998 SAS Users Group International (SUGI)
Conference.

Text Analytics References and Suggested Reading
Barnes, Arila; Jared Peterson; Saratendu Sethi (2013). “Unleashing the Power of Unified Text Analytics to Categorize Call Center
Data,” Proceedings of the 2013 SAS Global Forum (SGF) Conference.

Massey, J. Gregory; Radhikha Myneni, M.; Adrian Mattocks; and Eric C. Brinsfield (2014). “Extracting Key Concepts from
Unstructured Medical Reports Using SAS® Text Analytics and SAS® Visual Analytics,” Proceedings of the 2014 SAS Global
Forum (SGF) Conference.

WIN32API References and Suggested Reading
Appleman, Dan (1999), Dan Appleman's Visual Basic Programmer's Guide to the Win32 API, Sams.

Cody, Ron, (2010). SAS Functions by Example, Second Edition, SAS Press, Cary, NC., SAS On-line Doc., SAS Institute, Cary, NC.

Cody, Ron (2012). “A Survey of Some of the Most Useful SAS® Functions,” Proceedings of the 2012 SAS Global Forum (SGF)
Conference.

DeVenezia ,Richard A., and Judy Loren (2008). “Using CALL MODULE in SAS® on Linux, or | get by with a little help from my
friends,” Proceedings of the 2008 SAS Global Forum (SGF) Conference.

Foster, Edward (2006). “Using the WIN32 API from SAS,” PhUSE 2006.

Lal, Rajesh (2014). “Using Microsoft Windows DLLs within SAS® Programs,” Proceedings of the 2014 SAS Global Forum (SGF)
Conference.

46

https://support.sas.com/resources/papers/proceedings11/270-2011.pdf
http://support.sas.com/resources/papers/proceedings17/0326-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0175-2017.pdf
http://support.sas.com/resources/papers/proceedings17/0188-2017.pdf
http://www.lexjansen.com/scsug/2014/Conditional-Processing-Using-the-Case-Expression-in-PROC-SQL.pdf
https://www.sas.com/store/books/categories/usage-and-reference/proc-sql-beyond-the-basics-using-sas-second-edition/prodBK_62432_en.html
http://support.sas.com/resources/papers/proceedings09/151-2009.pdf
https://www.mwsug.org/proceedings/2016/TT/MWSUG-2016-TT13.pdf
https://www.mwsug.org/proceedings/2007/appdev/MWSUG-2007-A02.pdf
http://support.sas.com/resources/papers/proceedings09/143-2009.pdf
http://www.lexjansen.com/sugi/sugi21/qp/221-21.pdf
http://www.lexjansen.com/wuss/1999/WUSS99010.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER78.PDF
https://www.pharmasug.org/proceedings/2016/TT/PharmaSUG-2016-TT06.pdf
http://www.lexjansen.com/wuss/2011/analy/Papers_Sun_B_74902.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
http://www.lexjansen.com/wuss/2016/126_Final_Paper_PDF.pdf
https://www.pharmasug.org/proceedings/2015/BB/PharmaSUG-2015-BB15.pdf
http://www2.sas.com/proceedings/sugi22/CODERS/PAPER70.PDF
http://support.sas.com/resources/papers/proceedings13/103-2013.pdf
http://support.sas.com/resources/papers/proceedings13/103-2013.pdf
http://support.sas.com/resources/papers/proceedings14/SAS165-2014.pdf
http://support.sas.com/resources/papers/proceedings14/SAS165-2014.pdf
https://www.amazon.com/Applemans-Visual-Basic-Programmers-Guide/dp/0672315904
http://support.sas.com/publishing/pubcat/tocs/62857.pdf
http://support.sas.com/resources/papers/proceedings12/241-2012.pdf
http://www2.sas.com/proceedings/forum2008/211-2008.pdf
http://www2.sas.com/proceedings/forum2008/211-2008.pdf
http://www.lexjansen.com/phuse/2006/cs/CS07.pdf
http://support.sas.com/resources/papers/proceedings14/2081-2014.pdf

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

Langston Rick (2015). “When I'm 64-bit: How to Still Use 32-bit DLLs in Microsoft Windows,” Proceedings of the 2015 SAS Global
Forum (SGF) Conference.

Langston, Richard D. (1995). “Examples Using The MODULE Routines In PC Environments,” Proceedings of the 1995 SAS Users
Group International Conference.

Microsoft Office Site (2010), Microsoft Office 2010 Win32API_PtrSafe for Visual Basic to download the Win32API_PtrSafe.txt file
and related information, then install it).

Microsoft Corporation (1994-1999). Win32 API Declarations for Visual Basic (win32api.txt).

Microsoft Corporation, MDSN: Develop desktop applications and drivers.

SAS Institute, Inc., SAS® 9.4 Companion for Windows, Fifth Edition.

Acknowledgments
The authors thank Clarence Jackson and Greg Gengo, SouthCentral SAS Users Group (SCSUG) Conference Co-Chairs for

accepting our abstract and paper; the SouthCentral SAS Users Group (SCSUG) Executive Board; and SAS Institute for organizing

and supporting a great conference!

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective

companies.

Data Sets Used in Examples
The examples presented in this paper include the RUGs_2015 and RUGs_2016 data sets; and several in the SASHELP library

including the CARS, HEART, SHOES, and STOCKS data sets You’ll be able to use these data sets for example purposes and for
testing the enclosed code examples.

The RUGs_2015 data set consists of 4 observations and 3 variables, illustrated below.

RUG ‘ Number_Papersl Year |
1 MWSUG 96 2015
2 SCsUG 23 2015
3 SESUG 148 2015
4 Wuss 102 2015

Data Set #1. RUGs_2015

The RUGs_2016 data set consists of 4 observations and 3 variables, illustrated below.

RUG ‘ Numher_Papersl Year |
1 MWsUG 124 2016
2 SCsUG 62 2018
3 SESUG 143 2016
4 Wuss 12 2018

Data Set #2. RUGs_2016

The MOVIES data set consists of 22 observations and 6 variables, illustrated below.

47

http://support.sas.com/resources/papers/proceedings15/SAS1572-2015.pdf
http://www.sascommunity.org/sugi/SUGI95/Sugi-95-231%20Langston.pdf
https://www.microsoft.com/en-us/download/confirmation.aspx?id=9970
https://hwiegman.home.xs4all.nl/downloads/Win32API.Txt
https://msdn.microsoft.com/library/windows/desktop/bg125389
http://support.sas.com/documentation/cdl/en/hostwin/69955/PDF/default/hostwin.pdf

Modernizing Legacy SAS® Applications and Program Code, continued

Data Set #3. MOVIES

The ACTORS data set consists of 13 observations and 3 variables, illustrated below.

T | Actor Leading Actor_Supporting
1 |BraveHeat Mel Gbson Soptie Matceau
2| Chismas Vacation Chewy Chase Bevery D'dngelo
3 |ConingloAneica Eade Mughy Asenio Hall
; Farrest Gump TomHanks Sal Feld
6 |Ghoy Patick Swayze Demibaore
_ b |LehdWezpon MelGibson Day Glover
1 |Michael Jobn Travolka Andie MacDowel
8 {National Lampoon's Vaealion Chewy Chase Beverly D'dngelo
9 |Rocky SylvesterStalone Talia Shire
10| Slence of theLanbs Anihony Hopkins Jode Foster
I | TheHurtfr Red Octber Sean Comnery Alec Baldin
12| The Temingy Amold Schwerzeneqge MichaelBiehn
18 [Thanic Leonardo DiCapi Kate Winglet

Data Set #4. ACTORS

The SASHELP.CARS data set consists of 428 observations and 15 variables, illustrated below.

Title I Length | Category | Year I Studio I Rating

1 Brave Heart 177 Action Adventure 1995 Paramount Pictures R

2 Casablanca 103 Drama 1942 MGM 7 UA PG

5 Christmas Yacation 97 Comedy 1989 Warner Brothers PG13
4 Coming to &merica 116 Comedy 1988 Paramount Pictures R

5 Dracula 130 Horror 19393 Columbia TriStar R

B Dressed to Kill 105 Drama Mysteries 1980 Filmways Pictures R

7 Farrest Gump 142 Drama 1994 Paramount Pictures PG-13
8 Ghost 127 Drama Romance 1930/ Paramount Pictures PG-13
9 |Jaws 125 Action Adventure 1975 Universal Studios PG
10 |Jurassic Park 127 Action 1993 Universal Pictures PG-13
11 Lethal Weapon 110 Action Cops & Robber 1987 Warner Brothers R

12 |Michael 106 Drama 1997 Wamer Brothers PG-13
13 [National Lampoon's Vacation 98| Comedy 1983 Warner Brothers PG13
14 | Poltergeist 115 Horror 1982 MGM / UA PG
15 [Rocky 120 Action Adventure 1976 MGM / Ua PG
16 |Scarface 170 Action Cops & Robber 1983 Universal Studios R

17 |Silence of the Lambs 118 Drama Suspense 1991 Orion R

18 | StarWars 124 Action SciFi 1977 Lucas Film Ltd PG

19 | The Hunt for Red Octaber 135 Action Adventure 1989/ Paramount Pictures PG
20| The Teminator 108 Action Sci-Fi 1984 Live Entertainment R

21 | The Wizard of Oz 101 Adventure 1939 MGM / UA G

22 |Titanic 134 Drama Romance 1997 Paramount Pictures PG-13

SCSUG 2017

Make Model | Type | Origin | DriveTrain | MSRP | Invoice | EngineSize | Cyfinders | Horsapawerl MPG_Cty | MPG_Highway | Weight | Wheelbase | Length |
1 Acurs MDX SUV Asia Al §36945 533,337 35 3 265 17 23 4451 106 189
2 Acura RSX Type S 2dr Sedan Asia Front 823820 s$21.761 2 4 200 24 31 27 10 172
3 Acura TSXddr Sedan Asia Front 526990 524,647 24 4 200 2 25 3230 105 183
4 Acurs TL ddr Sedan Asia Frort 533195 530.299 32 3 270 20 28 3575 108 186
5 Acurs 35RL ddr Sedan Asia Frort 843755 535,014 35 3 225 13 24 3880 15 197
[Acurs 3.5 RL w/Navigation 4dr Sedan Asia Front 546100 341,100 35 3 225 13 24 3893 15 157
7 Acure NSX coupe 2dr manual S Sports Asia Rear 285,765 875.578 iz [230 7 24 3153 100 74
8 Audi Ad 18T 4dr Sedan Europe Front $25.340 523.508 18 4 170 22 K} 3252 104 173
3 Audi A41.8T convertible 2dr Sedan Europe Front $35.340 532,506 18 4 170 23 0 3638 105 180
10 | Audi A4 3.0 4dr Sedan Europe Front 531,840 528,846 3 6 220 20 28 3462 104 173
1 Audi A4 3.0 Quattro 4dr manual Sedan Europe Al $33430 530,366 3 6 220 7 26 3583 104 173
12 | Audi Ad 3.0 Quattro 4dr aute Sedan Europe Al 534480 531388 3 3 220 it 25 3627 104 179
13 | Audi A6 3.0 4dr Sedan Europe Front 836640 533129 3 3 220 20 7 3561 108 152
14 | Audi A6 3.0 Quattro 4dr Sedan Europe Al 535,640 535992 3 3 220 it 25 3830 108 152
15 | Audi Ad 3.0 convertible 2dr Sedan Europe Front 842450 538325 3 3 20 20 7 3814 105 180
16 | Audi A4 3.0 Quattro convertible 2dr Sedan Europe Al 544240 540,075 3 13 20 it 25 4013 105 180
17 | Audi AB 2.7 Turbo Quattro 4dr Sedan Europe Al 542840 538,840 7 13 250 it 25 3836 109 192
18 | Audi A6 4.2 Quattro 4dr Sedan Europe Al 549690 544,936 42 8 300 7 24 4024 109 193
19 | Audi AB L Quattro 4dr Sedan Europe Al 869,190 564,740 432 8 330 7 24 4399 121 204
20 |Audi 54 Quattro 4dr Sedan Europe Al 548040 543,556 432 8 340 14 20 3825 104 179
21 Audi RS 6 4dr Sports Europe Front 584600 576417 42 8 450 15 22 4024 109 19
22 Audi TT 1.8 convertible 2dr {coupe) Sports Europe Front 235,540 832512 18 4 180 20 28 313 95 159
23 |Audi TT 1.8 Quattro 2dr (convertible) Sports Europe Al §37390 $33.891 18 4 225 20 28 N 96 159
24 Audi TT 3.2 coupe 2dr {convertible) Sports Europe Al 240,550 836735 iz [250 pal 25 3351 56 159
25 |Audi A6 3.0 Avant Quattro Wago Europe Al 540,840 537.060 3 3 220 18 25 4035 109 152
26 |Audi 54 Avant GQuattro Wago Europe Al 543050 544445 42 8 340 15 21 3936 104 173
27 |BMW X330 SUV Europe Al $37.000 533.873 3 6 225 16 23 4023 10 180
28 |BMW X544 SUV Europe Al §52195 847720 44 8 325 16 22 4824 1M 184

Data Set #5. SASHELP.CARS

48

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

The SASHELP.HEART data set consists of 5,209 observations and 17 variables, illustrated below.

Status | DeathCause |AgeCHDdiag| Sex ‘AgeﬂtStartl Height ‘Weight | Diastolic ‘Systolicl MRW ‘Smok\nglﬂgeﬁdDeath‘Chalasteml ‘Cth_Status‘ BP_Status |Weight_Staius| Smoking_Status |
1 Dead Cther . Female pac) £25 140 78 124 12 0 55 MNormal Overweight Mon-smoker
2 Dead Cancer . Female 41 5375 154 52 144 183 0 57 181 Desirable High Overweight Mon-smoker
3 Alive Female 57 8235 132 50 170 114 10 250 High High COverweight Moderate (6-15)
4 Alive Female 33 6575 158 80 128 123 0 242 High MNormal COverweight Mon-smoker
5 Hive Male 42 66 156 76 110 116 20 281 High Optimal Overweight Heavy (16-25)
6 Hive . Female 58 6175 13 92 176 117 0 196 Desirable High Overweight Mon-smoker
7 Hive . Female 36 6475 136 80 112 110 15 196 Desirable Mormal Overweight Moderate (6-15)
8 Dead Cther . Male 53 65.5 130 80 114 99 0 77 276 High Mormal MNormal Non-smoker
k] Hive . Male 35 71 194 68 132 124 0 211 Borderine Mormal Qverweight Mon-smoker
10 Dead Cersbral Vascular Disease . Male 52 625 12% 78 124 106 5 82 284 High Mormal Mormal Light (1-5)
1 Alive . Male 39 6625 173 76 128 133 30 225 Borderine Mormal Overweight ;g;y Heavy (>
12 Alive 57 Male 33 6435 151 68 108 118 0 221 Borderiine Optimal Owverweight Mon-smoker
13 Alive 55 Male 33 70 17, 50 142 114 0 188 Desirable High Overweight Mon-smoker
14 Alive 75 Male 7 E7Z5 165 76 128 118 15 MNormal Overweight Moderate (6-15)
15 |Aive 66 Male 44 69 155 S0 130 105 30 292 High High MNomal ;’g;v Heavy (>
16 Hive Female 7 645 134 76 120 108 10 196 Desirable Mormal Normal Moderate (6-15)
17 Alive . Male 40 6625 151 72 132 12 30 192 Desirable Mormal COwverweight \2";;? Heavy (>
18 Dead Cancer 56 Male 5 6725 122 7 120 87 15 72 194 Desirable Mormal Underweight Moderate (6-15)
19 Hive . Female 42 G717 162 96 138 1158 1 200 Borderine High Overweight Light (1-5)
20 Dead Coronary Heart Disease 74 Male 46 665 157 84 142 116 30 76 233 Borderine High COverweight ;g;y Heavy (>
21 Hive . Female 7 BBZ5 148 78 110 112 15 192 Desirable Optimal Qverweight Moderate (6-15)
22 Alive . Female 45 64 147 74 120 118 5 209 Borderine Mormal Overweight Light (1-5)
= Alive . Female 59 6575 156 74 156 122 0 200 Borderine High Cwerweight Mon-smoker
24 Hive . Female 6 8375 122 a4 132 102] 184 Desirable Mormal MNomal Non-smoker
5] Alive . Female 50 E75 185] 150 136 15 228 Borderine High Overweight Moderate (6-15)

Data Set #6. SASHELP.HEART

The SASHELP.SHOES data set consists of 395 observations and 7 variables, illustrated below.

Region | Product | Subsidiary | Stores | Sales | Inventory | Retums
1 Africa Boot Addis Ababa 12 £29761 515181 5769
2 Africa Men's Casual Addis Ababa 4 867242 5118036 £2.204
3 Africa Men's Dress Addis Ababa 7 876793 5136273 £2433
4 Africa Sandal Addis Ababa 10 562819 52042384 £1.861
] Africa Slipper Addis Ababa 14 S6BE41 8279795 £1,771
& Africa Sport Shoe Addis Ababa 4 £1,6590 516,634 £75
7 Africa Women's Casual Addis Ababa 2 851541 558,641 5540
] Africa Women's Dress Addis Ababa 12 5108942 s311.07 £3.233
9 Africa Boot Algiers 21 sA.297 §7373 710
10 Africa Men's Casual Algiers 4 563206 2100582 222
11 Africa Men's Dress Algiers 13 8123743 8428575 23621
12 Africa Sandal Algiers 25 825158 sB4 447 £1.530
13 Africa Slipper Algiers 17 s64.891 5248158 1,823
14 Africa Sport Shoe Alaiers 9 22,617 29372 2168
15 Africa Women's Dress Algiers 12 550648 52662805 22 650
16 Africa Boot Cairo 20 24846 518965 8275
17 Africa Men's Casual Cairo 25 5360205 %1.063.251 59424
18 Africa Men's Dress Cairo 5 $4.051 245962 £97
19 Africa Sandal Cairo % 510532 550430 598
20 Africa Slipper Cairo 5 513732 sh4 117 21,216
21 Africa Sport Shoe Cairo 3 52,255 520,815 44
22 Africa Women's Casual Cairo 14 5328474 5540851 510124
23 Africa Women's Dress Cairo 31 514095 551145 5745
24 Africa Boot Johannesburg 14 28,365 £33.011 5483
25 Africa Sandal Johanmnesburg 13 817337 263,003 %805
26 Africa Slipper Johannesburg 12 539452 £130.025 21565
27 Africa Sport Shoe Johannesburg g 5,172 525,368 5139
28 Africa Women's Dress Johannesburg 4 242682 2120127 2966

Data Set #7. SASHELP.SHOES

49

Modernizing Legacy SAS® Applications and Program Code, continued SCSUG 2017

The SASHELP.STOCKS data set consists of 699 observations and 8 variables, illustrated below.

Stou:k| Date | Open | High | Low |Close| Volume |Adelose

1 IBM 01DECD5 $89.15 $89.92 58156 $B220 5976252 58137
2 IBM 0TNOVDS $81.85 8594 58064 $BBS0 5556471 58301
3 IEM 030CTO0S $80.22 8460 57870 s$81.88 7019666 580.86
4 IEM 015EPDS 88016 s8211 s$7693 88022 5772280 2§92
5 IEM 01AUGDS 58300 8420 57987 sBD6Z 4801386 57962
6 IBM 01JULDS §7430 88511 57416 §B346 8056530 58223
7 IBM 01JUNDS §7557 S$7773 57345 §7420 6439536 57310
8 IBM 0ZMAYDS $76.88 $7811 57250 §7555 6896904 57443
9 IEM 0TAPRDS 59143 89176 57185 §76.38 10709200 57505
10 IEM 0TMARDS 89264 859373 s83.09 §91.38 5020627 58379
il IBM 01FEEDS 89367 89497 59155 89258 4455657 53097
12 IEM 03JANDS 898.97 859510 59144 §5342 5960545 59162

13 IBM 01DECD4 $5450 9500 59447 £9858 5043800 59662
14 IBM DTNOVD4 $89.33 S$9663 58923 §9424 5754876 59242
15 IBM 010CT04 88595 $90.27 58429 $B9.75 5839742 58785
16 IEM 01SEFD4 $84.05 8728 58324 s8b.74 419252 58393
17 IEM 02AUGD4 886.87 88739 s8190 SB4E9 4298600 58290
18 IBM 01JuLD4 58328 8344 58342 s8B707 5529023 58505
19 IEM 01JUND4 $88.00 89121 s87.30 $8815 4604409 58610
20 IBM D3MAYD4 $8813 8975 58512 $BBARY 5395555 5B653
21 IBM 01APRD4 $91.67 $9455 58801 $83.17 5507214 58595
22 IBM DTMARD4 $96.50 S$9760 55028 §91.84 5612921 58953
IEM 0ZFEBD4 $99.15 §100.43 59520 $96.50 5392468 59407
24 IEM 0ZJAND4 89286 $99.86 $89.01 §99.23 72Z/h3D5 89657
IBM 01DECO3 890.50 894712 55003 £5268 5492235 55020
IBM 03NOVD3 58990 59148 $8772 89054 5271663 58812
IBM 010CT03 38875 $9454 58751 $B948 6999200 58693
28 IBM 025EP03 $8240 $9347 58230 $83.33 8523800 58581

Data Set #8. SASHELP.STOCKS

Author Bios

Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using SAS since
1979. Kirk is a SAS application developer, programmer, certified professional, provider of SAS consulting services, mentor,
advisor and professor at UC San Diego Extension, educator to SAS users around the world, and emeritus sasCommunity.org
Advisory Board member. As the author of six books including Google® Search Complete (Odyssey Press. 2014) and PROC SQL:
Beyond the Basics Using SAS, Second Edition (SAS Press. 2013); Kirk has written hundreds of papers and articles; been an
Invited speaker and trainer at hundreds of SAS International, regional, special-interest, local, and in-house user group
conferences and meetings; and is the recipient of 25 “Best” contributed paper, hands-on workshop (HOW), and poster awards.

Clark Roberts is the principle consultant and founder of Decision Analytics and has been a SAS user since 1979. As a SAS
application developer, data analyst, and programmer; Clark is the author of several published papers at SAS International,
regional, special-interest, and local user group conferences; and is the recipient of a “Best” contributed paper award.

Comments and suggestions can be sent to:

Kirk Paul Lafler
SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
Software Intelligence Corporation
E-mail: KirkLafler@cs.com
LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

Clark Roberts
Principle SAS® Consultant and Programmer
Decision Analytics
E-mail: dacmr@hotmail.com

50

http://www.linkedin.com/in/KirkPaulLafler

