Data Analysis and Storytelling – Communicating Analytical Results with Clarity, Precision and Efficiency

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract

The data analysis process involves the gathering and collection, cleansing, transforming, and modeling of data from various sources. The purpose is to discover, evaluate, understand and derive useful information from the data to support decision-making. Unfortunately, and all too often, data analysts omit a very crucial step – the development of a narrative, or story, of the data analysis process and outcome. This omission not only fails to bring context, insight and interpretation of the data analysis results to stakeholders, it neglects to bring meaning, relevance and interest to the "key" points of the data analysis results. This presentation describes the importance, considerations and steps needed in developing a compelling narrative, along with the necessary visual analytics, to communicate a convincing point-of-view to help persuade others to understand the complexities associated with the data analysis results.

Introduction

Considerable effort and resources are expended by data analysts in the performance of analyzing data to discover, evaluate, understand and derive meaningful and useful information to assist the decision-making process. Unfortunately, the data analysis process doesn't always include a narrative, or storyline, to convey information about the discovery, evaluation, and understanding of the data analysis results. The omission or failure to bring context, insight and interpretation of the data analysis results to stakeholders, denies an audience meaning, relevance and interest to the "key" points of the data analysis results. This paper describes the importance, considerations and steps involved in performing a comprehensive data analysis along with the development of a compelling narrative to persuade others to understand the complexities of their data analysis results. Examples are illustrated using the SASHELP.HEART data set which consists of 5,209 observations and seventeen columns, illustrated below.

Obs	Status	DeathCause	AgeCHDdlag	Sex	AgeAt Start	Height	Weight	Diastolic	Systolic	MRW	Smoking	AgeAtDeath	Cholesterol	Chol_Status	BP_Status	Weight_Status	Smoking_Status
1	Dead	Other		Female	29	62.50	140	78	124	121	0	55			Normal	Overweight	Non-smoker
2	Dead	Cancer		Female	41	59.75	194	92	144	183	0	57	181	Desirable	High	Overweight	Non-smoker
3	Allve			Female	57	62.25	132	90	170	114	10		250	High	High	Overweight	Moderate (6-15)
4	Allve			Female	39	65.75	158	80	128	123	0		242	High Normal Overw		Overweight	Non-smoker
5	Allve			Male	42	66.00	156	76	110	116	20		281	High Optimal Overweig		Overweight	Heavy (16-25)
6	Allve			Female	58	61.75	131	92	176	117	0		196	Desirable High		Overweight	Non-smoker
7	Allve			Female	36	64.75	136	80	112	110	15		196	Desirable	Normal	Overweight	Moderate (6-15)
8	Dead	Other		Male	53	65.50	130	80	114	99	0	77	276	High	Normal	Normal	Non-smoker
9	Allve			Male	35	71.00	194	68	132	124	0		211	Borderline	Normal	Overweight	Non-smoker
10	Dead	Cerebral Vascular Disease		Male	52	62.50	129	78	124	106	5	82	284	High	Normal	Normal	Light (1-5)
11	Allve			Male	39	66.25	179	76	128	133	30		225	Borderline	Normal	Overweight	Very Heavy (> 25)
12	Allve		57	Male	33	64.25	151	68	108	118	0		221	Borderline	Optimal	Overweight	Non-smoker
13	Allve		55	Male	33	70.00	174	90	142	114	0		188	Desirable	High	Overweight	Non-smoker
14	Alive		79	Male	57	67.25	165	76	128	118	15				Normal	Overweight	Moderate (6-15)
15	Allve		66	Male	44	69.00	155	90	130	105	30		292	High	High	Normal	Very Heavy (> 25)
16	Allve			Female	37	64.50	134	76	120	108	10		196	Desirable	Normal	Normal	Moderate (6-15)
17	Allve			Male	40	66.25	151	72	132	112	30		192	Desirable	Normal	Overweight	Very Heavy (> 25)
18	Dead	Cancer	56	Male	56	67.25	122	72	120	87	15	72	194	Desirable	Normal	Underweight	Moderate (6-15)
19	Allve			Female	42	67.75	162	96	138	119	1		200	Borderline	High	Overweight	Light (1-5)
20	Dead	Coronary Heart Disease	74	Male	46	66.50	157	84	142	116	30	76	233	Borderline	High	Overweight	Very Heavy (> 25)
21	Alive			Female	37	66.25	148	78	110	112	15		192	Desirable	Optimal	Overweight	Moderate (6-15)
22	Alive			Female	45	64.00	147	74	120	119	5		209	Borderline	Normal	Overweight	Light (1-5)
23	Alive			Female	59	65.75	156	74	156	122	0		200	Borderline	High	Overweight	Non-smoker
24	Alive			Female	36	63.75	122	84	132	102	0		184	Desirable	Normal	Normal	Non-smoker
25	Alive			Female	50	67.50	185	88	150	136	15		228	Borderline	High	Overweight	Moderate (6-15)
26	Alive			Female	35	66.00	123	76	132	93	0		150	Desirable	Normal	Normal	Non-smoker
27	Alive			Male	42	72.25	182	78	136	113	0		221	Borderline	Normal	Overweight	Non-smoker
28	Dead	Coronary Heart Disease	71	Female	49	60.50	153	110	196	140	5	73	221	Borderline	High	Overweight	Light (1-5)
29	Allve		68	Male	40	70.00	189	78	124	124	0		319	High	Normal	Overweight	Non-smoker
30	Alive			Female	41	61.75	139	72	116	124	0		194	Desirable	Optimal	Overweight	Non-smoker
31	Dead	Unknown		Female	59	67.75	153	82	172	113	0	79	263	High	High	Overweight	Non-smoker
32	Allve		68	Male	40	70.00	195	76	132	128	20		205	Borderline	Normal	Overweight	Heavy (16-25)
33	Allve			Female	41	62.00	114	78	112	98	15		267	High	Optimal	Normal	Moderate (6-15)
34	Alive			Female	39	63.00	144	80	120	120	0		196	Desirable	Normal	Overweight	Non-smoker
35	Allve		43	Male	33	66.50	172	106	146	127	0		247	High	High	Overweight	Non-smoker
36	Allve			Male	41	69.25	159	96	142	107	0		209	Borderline	High	Normal	Non-smoker
37	Dead	Coronary Heart Disease	67	Female	49	61.00	142	92	138	127	30	75	276	High	High	Overweight	Very Heavy (> 25)
38	Allve			Male	51	69.50	181	98	144	122	20		223	Borderline	High	Overweight	Heavy (16-25)
39	Dead	Cancer		Male	43	65.50	172	78	118	131	10	63	150	Desirable	Optimal	Overweight	Moderate (6-15)
40	Allve			Male	48	66.75	142	72	108	105	30		292	High	Optimal	Normal	Very Heavy (> 25)

Data Analysis and Storytelling – Communicating Analytical Results with Clarity, Precision and Efficiency, continued SCSUG 2017

Data Analysis and Data Storytelling

Data analysis involves inspecting, cleansing, transforming and discovering useful information from a variety of data sources. Considerable effort should be spent on the quality of data and the data cleaning effort. From determining the frequency counts, the minimum, maximum, mean, standard deviation, and variance can all lend credence to the assessment of data quality. Once this is accomplished, the process of storytelling attempts to express and communicate complex ideas, data and statistics with clarity, precision and efficiency. Storytelling uses visuals, graphs and charts to help an audience gain greater insight and which supports the underlying data. The following table illustrates eight tips for better data analysis and storytelling.

	Tips for Better Data Analysis and Storytelling
Tip #1:	Storyboard a detailed outline of your thoughts and ideas.
Tip #2:	Communicate creatively, clearly and understandably.
Tip #3:	Create a "water cooler moment" using headlines, tweets and images.
Tip #4:	Stimulate your audience's senses with a compelling story.
Tip #5:	Talk to and engage your audience with a relatable human interest story.
Tip #6:	Make your story memorable and impactful.
Tip #7:	Determine the best type of visuals to use.
Tip #8:	Create an impactful message using graphs, charts and other visuals.

The Base SAS software provides users with a number of powerful procedures to help with data analysis activities. The following table illustrates the names of popular Base SAS procedures along with their purpose.

Procedure	Purpose
PROC FREQ	Produces one-way to n-way frequency and cross-tabular results in a tabular layout.
PROC MEANS	Produces data summaries by computing descriptive statistics across all observations and within groups of observations.
PROC PRINT	Produces data in a simple, detail and organized layout.
PROC SQL	Produces detail, summary and statistical results in an organized layout.
PROC SUMMARY	Like PROC MEANS, this procedure computes descriptive statistics across all observations and within groups of observations.
PROC TABULATE	Produces descriptive statistics in a tabular layout.
PROC UNIVARIATE	Produces descriptive statistics including moments, quantiles (or percentiles), frequency tables, and extreme values.

Data Analysis Programming Techniques

Data analysis involves the process of inspecting, cleaning, transforming and discovering information from a variety of structured and unstructured data sources. Data is collected, processed and analyzed to answer questions and make decisions. A few data analysis techniques will be explored to illustrate popular programming techniques. In the first data analysis example, a PROC FREQ with the NLEVELS option is specified to determine the number of distinct groups (or levels) that exist for the SEX and STATUS variables.

```
proc freq data=sashelp.heart
        (keep=sex ageatstart height weight status)
        nlevels ;
    tables sex status ;
run ;
```

	Num	ber of Varia	able Levels			
	Varia	ble	Levels			
	Sex		2			
	Statu	IS	2			
Sex	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
Female	2873	55.15	2873	55.15		
Male	2336	44.85	5209	100.00		
Circle 1		Description	Cumulative	Cumulative		
Status	Frequency Percen		Frequency	Percent		
Alive	3218	61.78	3218	61.78		
	lead 1991		5000	100.00		

In the next data analysis example, a PROC FREQ is specified to illustrate a two-way interaction table (or cross-tabulation) between the SEX and STATUS variables.

```
proc freq data=sashelp.heart(keep=sex status) ;
  tables sex * status ;
run ;
```

The FREQ Procedure										
Frequency	Tab	us								
Percent Row Pct			Status							
Col Pct	Sex	Alive	Dead	Total						
	Female	1977 37.95 68.81 61.44	896 17.20 31.19 45.00	2873 55.15						
	Male	1241 23.82 53.13 38.56	1095 21.02 46.88 55.00	2336 44.85						
	Total	3218 61.78	1991 38.22	5209 100.00						

In the next data analysis example, a PROC MEANS is specified to illustrate the descriptive statistics N, MIN, MAX, MEAN, Standard Deviation, and Variance for the SEX and STATUS variables.

						The MEANS	Procedure			
proc means data=sashelp.heart	Sex	Status	N Obs	Variable	Ν	Minimum	Maximum	Mean	Std Dev	Variance
(keep=sex height weight status)	Female	Alive	1977	Height Weight	1976 1974	54.7500000 85.0000000	70.7500000 300.0000000	62.7057186 138.9701114	2.4342883 24.3559226	5.9257597 593.2109663
n min max mean std var ;		Dead	896	Height Weight	893 895	51.5000000 67.0000000	69.7500000 300.0000000	62.2779955 146.7229050	2.4679958 29.4343633	6.0910035 866.3817455
run ;	Male	Alive	1241	Height Weight	1241 1241	56.0000000 111.0000000	76.5000000 260.0000000	67.8890008 167.2312651	2.7498566 24.3621968	7.5617116 593.5166346
		Dead	1095	Height Weight	1093 1093	56.5000000 99.0000000	76.000000 276.000000	67.2021958 167.7328454	2.6664703 26.3139330	7.1100639 692.4230685

In the final data analysis example, a PROC UNIVARIATE with a CLASS statement, for grouping the results by the SEX variable, is specified to illustrate a slew of descriptive statistics including Moments, Basic Measures, Test for Location, Quantiles, Extreme Observations, and Missing Values for the HEIGHT and WEIGHT variables.

```
proc univariate data=sashelp.heart ;
class sex ;
var height weight ;
run ;
```

Data Analysis and Storytelling – Communicating Analytical Results with Clarity, Precision and Efficiency, continued SCSUG 2017

						(Quantiles	(Definitio	on 5)									Qua	antiles	(Definition	
						L	evel	Qua	ntile									Lev	el	Qua	•
						1	00% Max	(7	0.75									100	% Max	(7	į
	The UNIVA	RIATE Proc	cedure			9	9%	6	8.25		The U	JNIVA	RIATE Pro	ocedure				99%			
Variable: Height				5	95% 65.75					Varia	able: Heigh	ht				95%					
	367	- remaie				9	0%		5.75			38	ex - Male					90%			1
	N	omente				7	5% Q3	6	4.25			M	Momente					75%	Q3		
	286	Sum We	elghte	286	9	5	0% Media	an 6	2.50			2334	4 Sum W	/elghts		2334		50%	Media	an	
In	62.572586	Sum Ob	beervatione	179520.7	5	2	5% Q1		51.00	an	67.56	573736	6 Sum O	bservation	8 1577	02.25		25%	Q1		
Deviation	2.4524111	Variance	e	6.0143205	8	1	0%		9.50	d Deviation	2.732	213662	2 Variand	ce	7.464	57051		10%			
wness	-0.014504	Kurtosli	8	0.116469	2	5	%		8.50	ewness	-0.02	293866	6 Kurtos	18	0.072	01722		5%		6	Ē
orrected SS	11250326.	Correct	ed SS	17249.071	4	1	%		6.75	corrected SS	s 1067	2941.7	7 Correc	ted SS	1741	4.843		1%			
ff Variation	3 9193060	Std Erro	or Mean	0.0457855	1	0	% Min		51.50	eff Variation	4.043	357381	1 Std Err	ror Mean	0.056	55252		0%	Min		
in variation	Deale and				-		Extreme (Observat	one		Baal		italiaal Ma			1		Ext	reme (Observat	
Locatio	Basic Stat	letical Mea Vá	asures ariability				Extreme (Lowest	Observat Hig	ons hest	Locat	Basi ation	c Stat	tietical Me	asures /ariability]		Ext	reme (vest	Observat Hig	
Locatio Mean 62	Basic Stat	latical Mea Va td Devlatio	asures arlability in	2.45241		Val	Extreme (Lowest Ue Obs	Observat Hig s Value	ons hest Obs	Locat	Basi ation 67.5673	IC Stat	tistical Me N Std Deviatio	asures /ariability on	2.73214			Ext Lov Value	reme (vest Obs	Observat Hig s Value	
Locatio Mean 62 Median 62	Baelc Stat on 2.57259 S 2.50000 V	Istical Mea Va td Devlation arlance	asures ariability n	2.45241		Val 51.	Extreme (Lowest ue Obs 50 225(Observat Hig Value 0 69.50	ons hest Obs 3862	Locat Mean (Median (Basi ation 67.5673 67.5000	IC Stat 37 St	tistical Me V Std Devlatio /arlance	asures /ariability on	2.73214 7.46457			Ext Low Value 56.00	vest Obs 2800	Observat Hig Value 0 75.5	
Locatio Mean 62 Median 62 Mode 62	Baelc Stat on 2.57259 S 2.50000 V 2.50000 R	Istical Mea Va td Deviation arlance ange	asures ariability m	2.45241 5.01432 9.25000		Val 51.	Extreme (Lowest ue Obs 50 225(75 3509	Observat Hig 8 Value 0 69.50 9 69.75	ons heat 0bs 3862 3206	Locat Mean (Median (Mode (Bael ation 67.5673 67.5000 68.5000	ic Stat 37 St 10 Va 10 Ra	tistical Me N Std Devlatio /arlance Range	asures /ariability on	2.73214 7.46457 20.50000			Ext Low Value 56.00 56.50	Veet Obs 2800 5038	Observat Hig 8 Value 0 75.5 8 75.5	
Locatio Mean 62 Median 62 Mode 62	Basic Stat on 2.57259 \$ 2.50000 V 2.50000 R	istical Mea Va td Devlation arlance ange terquartile	asures ariability in 1 Range	2.45241 5.01432 9.25000 3.25000		Val 51. 53.	Extreme (lowest ue Obs 50 225(75 3509 75 3024	Observati Hig 8 Value 0 69.50 9 69.75 4 70.00	ons hest Obs 3862 3206 458	Locat Mean (Median (Mode (Basi ation 67.5673 67.5000 68.5000	IC Stat 37 St 10 Va 10 Ra	tistical Me N Std Deviatio /ariance Range nterquartile	asures /ariability on e Range	2.73214 7.46457 20.50000 4.00000			Ext Low Value 56.00 56.50 58.75	reme (vest 2800 5038 4749	Observati Hig Value 0 75.5 8 75.5 9 76.0	
Locatio Mean 62 Median 62 Mode 62	Basic Stat on 2.57259 S 2.50000 V 2.50000 R Ir	istical Mea Va id Deviation arlance ange terquartile	asures ariability in 1 a Range	2.45241 5.01432 9.25000 3.25000		Val 51. 53. 54.	Extreme (Lowest ue Obs 50 225(75 3509 75 3024 75 2772	Observati Hig 8 Value 0 69.50 9 69.75 4 70.00 2 70.50	ons hest Obs 3862 3205 458 3463	Locat Mean (Median (Mode (Basi ation 67.5673 67.5000 68.5000	IC Stat 37 St 10 Va 10 Ri In	tistical Me N Std Deviation /ariance Range nterquartilio	asures /ariability on e Range	2.73214 7.46457 20.50000 4.00000			Ext Low Value 56.00 56.50 58.75 58.75	reme (vest 2800 5038 4749 4222	Observati Hig Value 0 75.5 8 75.5 9 76.0 2 76.0	
Locatio Mean 62 Median 62	Basic Stat on 2.57259 S 2.50000 V 2.50000 R ir	Istical Mea Va Id Devlation arlance ange terquartile	iasures iariability in 1 Range	2.45241 6.01432 9.25000 3.25000		Val 51. 53. 54. 55.	Extreme (Lowest ue Obs 50 2250 75 3509 75 3024 75 2777 00 4632	Observat Hig 8 Value 0 69.50 9 69.75 4 70.00 2 70.50 2 70.75	008 hest Obs 3862 3206 458 3463 1736	Locat Mean (Median (Mode (Bael ation 67.5673 67.5000 68.5000	IC Stat 37 St 10 Vs 10 Ri In	tistical Me Std Deviatio /ariance Range nterquartile	asures /ariability on e Range Mu0=0	2.73214 7.46457 20.50000 4.00000			Ext Lov Value 56.00 56.50 58.75 58.75 58.75	Cobe 2800 5038 4749 4222 4750	Observati Hig Value 0 75.5 8 75.5 9 76.0 2 76.0 0 76.5	
Locatio Mean 62 Median 62 Mode 62	Baelc Stat on 2.57259 S 2.50000 V 2.50000 R Ir Teets for I Sta	Istical Mea Va Id Devlation arlance ange terquartile .ocation: N	ariability in 1 P Range Mu0=0	2.45241 5.01432 9.25000 3.25000		Val 51. 54. 55.	Extreme (.owest ue Obs 50 225(75 3509 75 3024 75 2772 00 4632	Observat Hig Value 0 69:50 9 69:75 4 70:00 2 70:50 2 70:75	008 hest 008 3862 3206 458 3463 1736	Local Mean (Median (Mode (Bael ation 67.5673 67.5000 68.5000 Test	IC Stat 37 St 30 Vi 10 Ri 10 8 for L Stat	tistical Me N Std Devlatio /ariance Range nterquartile Location : i	asures /ariability on e Range Mu0=0	2.73214 7.46457 20.50000 4.00000			Ext Lov Value 56.00 56.50 58.75 58.75 58.75 59.25	reme (vest 2800 5038 4749 4222 4750	Observati Hig 8 Value 0 75.5 8 75.5 9 76.0 2 76.0 0 76.5	
Locatio Mean 62 Median 62 Mode 62	Basic Stat on 2.57259 S 2.50000 V 2.50000 R Ir Tests for 1 Stat	Istical Mea Va td Devlation ange terquartile .ocation: N istic	asures ariability in 1 e Range Mu0=0 p Valu	2.45241 5.01432 9.25000 3.25000		Val 51. 53. 54. 55.	Extreme (.owest ue Obs 50 2250 75 3509 75 3024 75 2772 00 4632 Missin	Observat Hig Value 0 69:50 9 69:75 4 70:00 2 70:50 2 70:75 mg Values	008 hest Obs 3862 3206 458 3463 1736	Local Mean (Median (Mode (Bael ation 67.5673 67.5000 68.5000 Test	ic Stat 37 Si 30 Vi 10 Ri 10 8 for L Stat	tistical Me V Std Deviatio /ariance Range nterquartile Location: 1	asures /ariability on e Range Mu0=0 p Valu	2.73214 7.46457 20.50000 4.00000			Ext Low Value 56.00 56.50 58.75 58.75 59.25	reme (vest 2800 5038 4749 4222 4750 Miseir	Observati Hig Value 75.5 75.5 75.5 76.0 2 76.0 76.5	
Locatic Mean 62 Median 62 Mode 62 Test Student's t Sign	Basic Staton 2.57259 S 2.50000 V 2.50000 R Ir Tests for I Stat t t 1 M	Istical Mea Vi Id Deviation ariance ange terquartile .ocation: N Istic 166.646 P	asures ariability in 1 e Range Mu0=0 p Valu Pr > t Pr >= Mi	2.45241 5.01432 9.25000 3.25000 4.0001		Val 51. 53. 54. 55.	Extreme (.owest ue Obt 50 2250 75 3502 75 3024 75 2772 00 4632 Missin	Observat Hig Value 69.50 9 69.75 4 70.00 2 70.50 2 70.50 2 70.75 Ng Values	ons hest Obs 3852 3206 455 3463 1736	Locat Mean (Median (Mode (Test Student's Sign	Bael ation 67.5673 67.5000 68.5000 Test t's t t	Ic Stat	tietical Me V Std Deviatio /ariance Range nterquartile Location: 1 stistic 1194.772 1 1157	asures Variability on e Range Mu0=0 p Valu Pr > t Pr > = t	2.73214 7.46457 20.50000 4.00000		Mies	Ext Lov Value 56.00 56.50 58.75 58.75 59.25	reme (vest 2800 5038 4749 4222 4750 Missin	Observat Hig Value 0 75.5 8 75.5 9 76.0 2 76.0 0 76.5 0 76.5	

Data Storytelling – Develop a Compelling Narrative

Data storytelling should communicate data insights using data analysis results, visuals, and a strong narrative. The online Oxford Dictionary defines storytelling as,

A narrative consisting of a "spoken or written account

of connected events; a story."

Source: https://en.oxforddictionaries.com/definition/narrative

In Bessler's (2012) paper (see References), organizations must communicate graphics, charts and other images effectively. Bessler offers the following storytelling insights and suggestions.

- ✓ Deliver image plus precise numbers
- ✓ Provide ordering Show them what's important
- ✓ Subset the content where appropriate
- ✓ Provide a reliable usable legend
- ✓ Suppress and avoid graphic frills Let your data talk

Successful data storytelling should seek an objectiveness and balance in its narrative. The following suggestions should help to develop a balanced narrative.

- ✓ Avoid introducing Bias into your analysis, statistics, and visualizations
- ✓ Label Axis to avoid ambiguity
- ✓ Make graphic dimensions match data dimensions
- ✓ Use standardized units

Finally, data storytelling should avoid censorship. The following suggestions offer guidelines to consider.

- ✓ Describe missing data and how you dealt with missing
- ✓ Describe outliers and out-of-range values
- ✓ Describe intervals and other important elements

Data Analysis and Storytelling – Communicating Analytical Results with Clarity, Precision and Efficiency, continued SCSUG 2017

Know Your Audience

When conducting data analysis and data storytelling, always keep your audience in mind. At a minimum, ask yourself these questions.

- ✓ Who is my audience?
- ✓ Who are the decision makers in the audience?
- ✓ Who are the novices in the audience?
- ✓ Who are the generalists in the audience?
- ✓ Who are the experts in the audience?
- ✓ Who are the executives in the audience?

Compelling Visualizations to Help Tell a Story

The Base SAS software offers users with powerful procedures to help with the data storytelling narrative. The following table identifies three procedures to help develop compelling visualizations, along with their purpose.

Procedure	Purpose
PROC SGPANEL	Produces a panel of graph cells representing the values of one or more classification variables.
PROC SGPLOT	Produces one or more plots, overlays, histograms, and regression plots using HBAR, HBOX, HISTOGRAM, HLINE, NEEDLE, REG, SCATTER, SERIES, VBAR, VBOX, VECTOR, VLINE and other statements.
PROC UNIVARIATE	Produces descriptive statistics including moments, quantiles (or percentiles), frequency tables, extreme values, and histograms.

A few popular procedures that are used with the data storytelling process are illustrated, below. In the first data visualization example, a PROC UNIVARIATE with CLASS, VAR and HISTOGRAM statements are specified to determine the number of distinct groups (or levels) that exist for the HEIGHT and SEX variables.

```
proc univariate data=sashelp.heart noprint ;
   class sex ;
   var height weight ;
   histogram height weight / nrows=2 ;
   ods select histogram ;
run ;
```


In the next data visualization example, a PROC SGPLOT with a HISTOGRAM statement is specified to display a vertical bar chart for the SEX and WEIGHT variables.

In the next data visualization example, a PROC SGPLOT with a HISTOGRAM statement is specified to display a vertical bar chart for the STATUS and WEIGHT variables.

In the next data visualization example, a PROC SORT is specified to sort the SASHELPHEART data set in ascending order by the SEX variable. Then, a PROC SGPLOT with a HISTOGRAM statement is specified to display a vertical bar chart for the STATUS and WEIGHT variables.

```
proc sort data=sashelp.heart out=heart_sorted ;
    by sex ;
run ;
proc sgplot data=heart_sorted ;
    vbar weight_status / group=status ;
    by sex ;
run ;
```


In the next data visualization example, a PROC SGPLOT with two VBAR statements is specified to display an overlay of vertical bar charts for the SEX, HEIGHT, and WEIGHT variables.

In the next data visualization example, a PROC SGPANEL with the PANELBY and HISTOGRAM statements is specified to display five distinct groups associated with the DEATHCAUSE (Cause of Death) and AGEATDEATH (Age at Death) variables.


```
proc sgpanel data=sashelp.heart ;
  panelby deathcause / rows=5 ;
  histogram ageatdeath / group=deathcause ;
  where deathcause NE '';
run ;
```

In the next data visualization example, a PROC SORT is first specified to sort the SEX, HEIGHT, and WEIGHT variables in ascending order. Then, a PROC SGPLOT with a SERIES statement is specified to display a plot of the HEIGHT and WEIGHT variables grouped by the SEX variable.

In the final data visualization example, a PROC SORT is specified to sort the SEX and AGEATDEATH (Age at Death) variables in ascending order. Then, a PROC SGPLOT with a VBOX statement is specified to display a box plot of the AGEATDEATH variable grouped by the SEX variable.

```
proc sort data=sashelp.heart
    out=heart_sorted;
    by sex ageatdeath ;
run;
proc sgplot data=heart_sorted;
    vbox ageatdeath / group=sex;
run;
```

Conclusion

Considerable resources are expended by organizations in gathering, cleansing, transforming, and modeling data in the production of the data analysis results. Unfortunately, the data analysis process doesn't always include a narrative, or story, to help convey information about the discovery, evaluation, and understanding of the data analysis results. Not only does this omission fail to bring context, insight and interpretation of the data analysis results to stakeholders, it neglects to bring meaning, relevance and interest to the "key" points of the data analysis results. This paper describes and illustrates the importance, considerations and steps needed to develop a compelling narrative, along with the necessary visual analytics, to communicate a convincing point-of-view to help persuade others to understand the complexities associated with the data analysis results.

References

Bessler, LeRoy PhD (2012). "Get the Best Out Of SAS® ODS Graphics and the SG (Statistical Graphics) Procedures: Communication-<u>Effective Charts, Things That SAS/GRAPH® Cannot Do As Well, and Macro Tools To Save Time and Avoid Errors</u>," Proceedings of the 2012 MidWest SAS Users Group (MWSUG) Conference.

Lafler, Kirk Paul (2017). "Removing Duplicates Using SAS," Proceedings of the 2017 SAS Global Forum (SGF) Conference.

Lafler, Kirk Paul (2015). "Basic SAS® PROCedures for Quick Results," Proceedings of the 2015 MidWest SAS Users Group (MWSUG) Conference.

Acknowledgments

The author thanks Clarence Jackson and Greg Gengo, SouthCentral SAS Users Group (SCSUG) Conference Co-Chairs for accepting my abstract and paper; the SouthCentral SAS Users Group (SCSUG) Executive Board; and SAS Institute for organizing and supporting a great conference!

Trademark Citations

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. [®] indicates USA registration. Other brand and product names are trademarks of their respective companies.

About the Author

Kirk Paul Lafler is an entrepreneur, consultant and founder of Software Intelligence Corporation, and has been using SAS since 1979. Kirk is a SAS application developer, programmer, Certified Professional, provider of IT consulting services, advisor and professor at UC San Diego Extension, educator to SAS users around the world, mentor, and emeritus sasCommunity.org Advisory Board member. As the author of six books including Google® Search Complete (Odyssey Press. 2014) and PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS Press. 2013); Kirk has written hundreds of papers and articles; been an Invited speaker and trainer at hundreds of SAS International, regional, special-interest, local, and in-house user group conferences and meetings; and is the recipient of 25 "Best" contributed paper, hands-on workshop (HOW), and poster awards. Comments and suggestions can be sent to:

Kirk Paul Lafler SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author Software Intelligence Corporation E-mail: KirkLafler@cs.com LinkedIn: <u>http://www.linkedin.com/in/KirkPaulLafler</u> Twitter: @sasNerd