
Using INFILE and INPUT Statements to Introduce
External Data into the SAS® System

 Andrew T. Kuligowski, HSN

1

 ABSTRACT / INTRODUCTION

The SAS
®
 System has numerous capabilities to store, analyze, report, and present data. However, those

features are useless unless that data is stored in, or can be accessed by, the SAS System. This
presentation is designed to review the INFILE and INPUT statements. It has been set up as a series of
examples, each building on the other, rather than a mere recitation of the options as documented in the
manual. These examples will include various data sources, including DATALINES, sequential files, and
CSV files.

GETTING STARTED – BASIC INFILE / INPUT with DATALINES

In order to bring data from an external source into your SAS session, the user must provide the answers
to a couple of simple questions: Where is the data, and what does it look like? The INFILE statement will
define the data source and provide a few tidbits of information regarding its form, while the INPUT
statement will define the format of the data to be processed.

In this first example, we are reading in a list of SAS Conferences around the United States from data
actually embedded inside of our code. The INFILE statement references DATALINES as the source of
its data; DATALINES is a special file reference that tells SAS there will be instream data following the
conclusion of the DATA Step. As would be expected, the separation between the SAS routine and the
actual input data is a keyword, also called DATALINES. (Veteran SAS users may be familiar with the
original name for this keyword: CARDS. CARDS is a throwback to the early days of data processing,
when routines and data were fed into the computer via physical punched cards. It is still valid syntax
under Release 9 of the SAS System.) Please note that DATALINES is very useful when trying to
illustrate an example in a SUGI paper or related publication, but it has the built-in disadvantage in the real
world that the data are hard-coded into a routine. Under most circumstances, this limitation is
unacceptable in an professional environment.

When using DATALINES, the DATA step detects that the end of the data has arisen when it encounters a
semicolon in Position 1 on the line following the last line of legitimate data. As an aside … class
attendees often ask what to do if their data contains a semicolon in the 1

st
 position. The early designers

of SAS foresaw this possibility, and created a special command to deal with it. The first line of data must
be preceded by DATALINES4 instead of DATALINES, and 4 consecutive semicolons in Positions 1 to 4,

NOTE: Invalid data for ConfName in

 line 9 1-9.

NOTE: Invalid data for ConfCity in

 line 9 16-18.

NOTE: Invalid data for ConfST in

 line 9 20-28.

RULE: ----+----1----+----2----+----3---

9 SUGI 2006 San Francisco CA

ConfName=. ConfYear=2006 ConfCity=.

ConfST=. _ERROR_=1 _N_=1

NOTE: Invalid data for ConfName in

 line 10 1-9.

NOTE: Invalid data for ConfCity in

 line 9 16-18.

NOTE: Invalid data for ConfST in

 line 9 20-28.

10 PHARMASUG 2006 Bonita Springs FL

ConfName=. ConfYear=2006 ConfCity=.
ConfST=. _ERROR_=1 _N_=2

<… messages repeated for each
line of input data …>

/* INTRO EXAMPLE */

DATA SasConf;

 INFILE DATALINES;

 INPUT ConfName

 ConfYear

 ConfCity

 ConfST ;

DATALINES;

SUGI 2006 San Francisco CA

PHARMASUG 2006 Bonita Springs FL

NESUG 2006 Philadelphia PA

WUSS 2006 Irvine CA

SESUG 2006 Atlanta GA

SCSUG 2006 Irving TX

MWSUG 2006 Dearborn MI

PNWSUG 2006 Seaside OR

SUGI 2007 Orlando FL

;

2

rather than just a single semicolon, must follow the last line of data. (The INFILE statement can be
followed by either DATALINES or DATALINES4 – the command controls how many semicolons that the
DATA step is anticipating, not the file reference.) If the user has a special data situation where the first 4
characters of input data might be semicolons … use another method to process your request, you have
exceeded the capabilities of DATALINES!

The INPUT statement in our example is coded in its simplest form, known as list input. List input simply
says that we are providing a list of variables to the INPUT statement, without any “complications” such as
pointers or formats.

Unfortunately, the first version of our code does not work. SAS will attempt to read everything as numeric
values by default. It will reject the alphabetic values for 3 out of our 4 variables as a result. The
correction is simple – add the Dollar Sign format modifier, so that SAS can distinguish between Character
and numeric data.

OK, upon further review, maybe it wasn’t as simple as first hoped. We’re able to read in the input data
without encountering any error messages, but we’ve encountered two logical issues. First, the embedded
blanks in two of the city names were incorrectly interpreted to represent the delimiters between two
values. (SAS considers the blank (“ “) to be the default delimiter between fields. We will see in a
subsequent example how to override this default.) Secondly, some of the character fields were
incorrectly truncated to 8 characters in length. Both of these problems can be fixed.

Breaking down and going to the manual, we might read about modified list input. The “book” (using a
term which became obsolete in this context, replaced with CDs and .pdf files in the 1990s), says that we
can use a format modifier to provide the DATA step with additional information about the input variable.
In this case, the ampersand (&) should allow us to read a character variable with a single embedded
blank, coupled with a LENGTH Statement to override the 8-character default on the two fields with values
that exceed that length.

The example on the next page will show that this “corrected” version of the routine did not work, either. It
almost worked; the blank between “San” and “Francisco” was treated as part of the whole value, as was
the blank between “Bonita” and “Springs”. However, the INPUT statement also treated the blank
delimiter between “Springs”, and “FL” as an allowable single embedded blank, and kept reading until it
got to the end of the input line. (You don’t see this in the output, because the variable was cut off at 14
characters by the LENGTH statement. This is the type of challenge that can arise during debugging.)
With one more variable still to read, SAS moved to the next line, grabbed the first set of characters it
encountered to complete its processing, and ignored the rest of that input line altogether.

The ideal solution would be to set up the input data with 2 blanks between fields, but such things are not
always within the coder’s control. Therefore, let us assume that changing the data format is not within our
power, and make some additional alterations to our code to bring this example to a successful
completion.

NOTE: The data set WORK.SASCONF has 9

observations and 4 variables.

< Results of a PROC PRINT >

 Conf

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisc

 2 PHARMASU 2006 Bonita Springs

 3 NESUG 2006 Philadel PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

/* INTRO EXAMPLE – 1st Revision */

DATA SasConf;

 INFILE DATALINES;

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

DATALINES4;

SUGI 2006 San Francisco CA

PHARMASUG 2006 Bonita Springs FL

NESUG 2006 Philadelphia PA

WUSS 2006 Irvine CA

SESUG 2006 Atlanta GA

SCSUG 2006 Irving TX

MWSUG 2006 Dearborn MI

PNWSUG 2006 Seaside OR

SUGI 2007 Orlando FL

;;;;

3

Here is the initial attempt to use the “&” format modifier:

Introducing some additional code and concepts, here is the final working version of our first example:

The revised code allows for the Conference City variable to be up to 17 characters long – the length of
the actual variable PLUS the Conference State variable PLUS 1, to allow for the embedded blank. We’ve
had to add some logic so that the value for State is removed from the City and placed into its own
variable in the one instance where that problem was occurring. In addition, we inserted an option on the
INFILE command – TRUNCOVER. The default value, FLOWOVER, is what triggers SAS to move to the
next input line to complete its current INPUT statement. Truncover specifically tells SAS not to jump to
next line; the statement should settle for what it can get, and set the remaining values on the line to
missing values. (MISSOVER is a similar option to TRUNCOVER. The difference occurs when SAS
reaches the end of an input line in the middle of a variable. MISSOVER ignores the partial value and sets
that value to missing, while TRUNCOVER “settles for what it can get” and keeps the partial data.)

As one might expect, there are multiple ways to handle each problem. Quite frankly, this example jumps
through a few extra “hoops and loops” in order to illustrate modified list input. I would normally prefer to
use formatted input in a situation like this; we will address that in the next sections of this presentation.

/* INTRO EXAMPLE – 3rd Revision */

DATA SasConf;

 LENGTH ConfName $ 9. ConfCity $ 17.;

 INFILE DATALINES TRUNCOVER ;

 INPUT ConfName $

 ConfYear

 ConfCity & $

 ConfST $;

 IF ConfST = " " THEN DO;

 ConfST = SUBSTR(ConfCity,16);

 ConfCity = SUBSTR(ConfCity,1,14);

 END;

DATALINES;

SUGI 2006 San Francisco CA

PHARMASUG 2006 Bonita Springs FL

NESUG 2006 Philadelphia PA

WUSS 2006 Irvine CA

SESUG 2006 Atlanta GA

SCSUG 2006 Irving TX

MWSUG 2006 Dearborn MI

PNWSUG 2006 Seaside OR

SUGI 2007 Orlando FL

;

NOTE: SAS went to a new line when INPUT

 statement reached past the end of

 a line.

NOTE: The data set WORK.SASCONF has

 8 observations and 4 variables.

< Results of a PROC PRINT >
 Conf Conf

Obs ConfName ConfCity Year ST

 1 SUGI San Francisco 2006 CA

 2 PHARMASUG Bonita Springs 2006 NESUG

 3 WUSS Irvine 2006 CA

 4 SESUG Atlanta 2006 GA

 5 SCSUG Irving 2006 TX

 6 MWSUG Dearborn 2006 MI

 7 PNWSUG Seaside 2006 OR

 8 SUGI Orlando 2007 FL

/* INTRO EXAMPLE – 2nd Revision */

DATA SasConf;

 LENGTH ConfName $ 9. ConfCity $ 14.;

 INFILE DATALINES;

 INPUT ConfName $

 ConfYear

 ConfCity & $

 ConfST $;

DATALINES;

SUGI 2006 San Francisco CA

PHARMASUG 2006 Bonita Springs FL

NESUG 2006 Philadelphia PA

WUSS 2006 Irvine CA

SESUG 2006 Atlanta GA

SCSUG 2006 Irving TX

MWSUG 2006 Dearborn MI

PNWSUG 2006 Seaside OR

SUGI 2007 Orlando FL

;

NOTE: The data set WORK.SASCONF has 9

observations and 4 variables.

< Results of a PROC PRINT >

 Conf

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisco CA

 2 PHARMASUG 2006 Bonita Springs FL

 3 NESUG 2006 Philadelphia PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

4

CONDITIONAL INPUT

Data does not always come in a straightforward format. Sometimes, the records in a file do not always
share the same layout; most of those files have a “record type” field or other unique identifier to ensure
that the data are read in properly. Our second example contains similar data to our first example, with a
few differences:

a) The data is stored in an external dataset. (Our example uses the MVS operating system for
demonstration purposes). We will use the FILENAME command to assign a file reference to our
dataset. The file reference, which is an alias or nickname for the dataset, will be used in our
INFILE statement.

b) A Record Type has been added in Position 1, denoting if the Conference Type is “I” for
“International”, “S” for “Special Interest”, or “R” for “Regional”. Our example will use records with
a consistent format for clarity sake; the “conditional” aspect will be to selectively process records
for Regional User Group Conferences only.

c) Blank padding between values has been removed.

This example uses a style known as formatted input, with formats and column pointer controls working in
tandem to perform the task of reading data. Note the “@” (known as the “at” sign) column pointer control
accompanying each variable. This symbol causes the DATA step to move the column pointer to an
absolute position on the input dataset, and to continue reading from that point. “@ 1”, for example, tells
SAS to move its internal column pointer to position 1, and read the specified variable beginning at that
location. (This concept will be further addressed in the next section of this presentation.)

The INPUT statement in this example concludes with another “@” sign – which has an opposite effect
from the one just discussed. By default, the internal line pointer will move to the next line of data at the
end of the INPUT statement, as denoted by the semicolon. However, this movement can be suppressed
– the trailing “@”, as it is known, causes the line pointer to remain on the current input line until a
subsequent INPUT statement causes the line to move, or until the RUN statement terminates the current
iteration of the DATA step. Our example shows how the trailing “@” can be used to perform conditional
processing – the value read from the first column of each record is used to determine whether the rest of
the record is read and retained. If the first character is an “R” (for “Regional”), we process the remainder
of the record. If the first character is anything else, we will invoke an INPUT statement that has no
variables associated with it. This null input statement has the sole purpose of freeing the line pointer. (In
this example, it is unnecessary; the RUN statement will automatically cause the line pointer to increment.

NOTE: The infile SASCONF is:

 File Name=USERID.SASCONF.DATA,

 Lrecl=80,Recfm=FB,Blksize=960

NOTE: 9 records were read from the

 infile SASCONF.

NOTE: The data set WORK.SASCONF has

 6 observations and 5 variables.

< Results of a PROC PRINT >

 Record Conf Conf Conf

Obs Type Name Year ConfCity ST

 1 R NESUG 2006 Philadelphia PA

 2 R WUSS 2006 Irvine CA

 3 R SESUG 2006 Atlanta

GA

 4 R SCSUG 2006 Irving TX

 5 R MWSUG 2006 Dearborn MI

 6 R PNWSUG 2006 Seaside OR

 ‘USERID.SASCONF.DATA’

ISUGI 2006San Francisco CA

SPHARMASUG2006Bonita SpringsFL

RNESUG 2006Philadelphia PA

RWUSS 2006Irvine CA

RSESUG 2006Atlanta GA

RSCSUG 2006Irving TX

RMWSUG 2006Dearborn MI

RPNWSUG 2006Seaside OR

ISUGI 2007Orlando FL

/* “RECORD TYPE” EXAMPLE */

FILENAME SASCONF ‘USERID.SASCONF.DATA’;

DATA SasConf;

 INFILE SASCONF ;

 INPUT @ 1 RecordType $CHAR1. @ ;

 IF RecordType = ‘R’ THEN DO;

 INPUT @ 2 ConfName $CHAR9.

 @ 11 ConfYear 4.

 @ 15 ConfCity $CHAR14.

 @ 29 ConfST $CHAR2. ;

 OUTPUT;

 END;

 ELSE INPUT; /* optional */

RUN;

5

There are other instances where the routine’s design may require the coder to release the line pointer
manually, as in the example.)

The inquisitive user might wonder if there might be more flexibility; perhaps they might not want to release
the line of input data even though the routine has hit the RUN statement. SAS, as one might expect,
provides that capability (otherwise I wouldn’t have brought the topic up in the first place!) Two
consecutive “@” signs at the end of the line, known as a “double at”, will keep the line pointer on the
current input line even if RUN is encountered. It becomes the users’ responsibility to release the hold via
a null INPUT statement; otherwise the routine may continue to read and re-read the same input line; this
causes a situation known as an “infinite loop”. People who are using a shared processor and cause this
phenomenon to occur are likely to incur the wrath of their fellow users and the machine’s administrators –
not to imply that the author has any first-hand experience with this situation!

USING COLUMN AND LINE POINTERS

The column pointer keeps track of the physical location on the current input record that SAS is reading.
There are two types of column pointer controls – absolute and relative. We have already touched upon
the absolute column pointer control “@”. Its parallel symbol is “+” (plus sign), which is known as the
relative column pointer. The absolute column pointer control causes the column pointer to be moved to a
specific position, while the relative column pointer control triggers it to be moved to a location relative to
its current position. Please note that the fact that the relative column pointer control shares a symbol with
the representation of positive numbers should not be interpreted to mean that the column pointer can only
move forward. Negative values are allowed. To cite an example, +(-5) is valid syntax, and will cause the
column pointer to be moved 5 positions to the left of its current location. The parentheses are required
when specifying a negative column position, otherwise the DATA step will abend with a syntax error.

It is also possible to control the line pointer, with absolute and relative line pointer controls. The Pound
sign (#) is the absolute line pointer control. It will move the line pointer to a specified line number within
the input buffer. For example, #4 will move to the 4

th
 line of the input buffer. (By default, the input buffer

will contain the maximum number of lines specified by using the Pound sign in an INPUT statement. This
can be overridden by the N= option of the INFILE statement.) The Slash (/) performs the function of
relative line pointer control. It is not very flexible; the Slash simply signifies that the column pointer should
move forward to the next line of input. It is not currently possible to include a parameter with the slash to
represent multiple lines; the code must contain 3 slashes in order to jump down 3 lines for example.
Since parameters are not accepted, it follows that it is not possible to use a relative line pointer to go
backwards in a file. (Note that the column pointer is automatically moved back to Position 1 when the line
pointer is invoked.)

We will look at an example that will exercise the capabilities of the column and line pointers. Please
make note in advance that this is ugly code, and was done specifically to demonstrate a point (no pun
intended). The code will move the column pointer around the record, jumping forwards and backwards
within the current record, and will then skip to the next record and do the same type of thing again! This
scatter-shot approach is NOT recommended for production code! Anyone interested in pursuing this
“coding style” to its logical conclusion and then beyond should seek out one of Art Carpenter’s
presentations on “Programming for Job Security”, which have been offered at numerous SUGI and
Regional User Group conferences.

6

‘USERID.SASCONF2.DATA’

 I SUGI 2006 LOC=San Francisco CA

 S PHARMASUG 2006 LOC=Bonita Springs FL

 R NESUG 2006 LOC=Philadelphia PA

 R WUSS 2006 LOC=Irvine CA

 R SESUG 2006 LOC=Atlanta GA

 R SCSUG 2006 LOC=Irving TX

 R MWSUG 2006 LOC=Dearborn MI

 R PNWSUG 2006 LOC=Seaside OR

 I SUGI 2007 LOC=Orlando FL

 R SESUG 2007 LOC=Hilton Head SC

/* “Pointers” EXAMPLE */

FILENAME SASCONF2 ‘USERID.SASCONF2.DATA’;

DATA UGLYINPUT;

 LENGTH ConfName $ 9. ;

 Pos1 = 9;

 Pos2 = 3;

 Str1 = "LOC=";

 INFILE SASCONF2 ;

 INPUT #1 ConfCity $ 22-35 +1

 ConfST $ +(-39)

 RecordType $ +Pos1

 ConfYear +(-1*(Pos1+6))

 ConfName $

 / @ "20" Year2Digit2

 @ 1 RecordType2 $

 @ Pos2 ConfName2 $ 9.

 @ Str1 ConfCity2 $ 14.

 @ (Pos2*12+1) ConfST2 $;

 ConfYear2 = 2000+Year2Digit2 ;

RUN;

Go to the first record in the current input buffer, and
read a character variable between columns 22next
8 and 35. NOTE: This is called column input.
Move the column pointer 1 position to the right.

Move the column pointer 39 positions to the left.

Move the column pointer 9 positions to the right.
(POS1 is a numeric variable assigned the value 9.)

Move the column pointer 15 positions to the left.
(POS1 is set to 9, add 6 to it and multiply by
negative 1 to get -15.)

Skip down to the next record in the current input.
Locate the character string “20” in the input data,
read the value immediately following that string.
(The initial – and incorrect – reaction from the
casual reader would be to expect the column
pointer to be moved to the 20th position in the input
file.)

Move the column pointer to position 1.

Move the column pointer to Position 3. (POS2 is a
numeric variable assigned the value “3”.)

Locate the character string “LOC=” in the input
data, read the value immediately following that
string. (STR1 is a character variable assigned the
value “LOC=”.)

Move the column pointer to Position 37. (POS2 is
set to “3”, multiply by 12 and add 1 to get 37.)

Convert from a 2-digit to a 4-digit year. (The
INPUT statement used the first two digits to
locate the proper location on the input file – it
never actually read those 2 digits!)

7

There was considerable interest among veteran programmers when SAS implemented the ability to use
character strings as text searches within the INPUT statement. The enhancement seemed to be
overshadowed by many of the other improvements in the SAS System over the years. As such, we will
take the time to review a separate example which truly exercises this feature.

Our earlier example showed two potential pitfalls to using the character string in conjunction with the
column pointer. First of all, the string you are searching for is NOT included in the value read from the file
– if you want it included in the variable’s value, you will have to take extra measures to do so. Secondly,
the string is interpreted very literally. In our case, we looked for numeric characters – the casual reader
might have expected the INPUT statement to move to the column denoted by the number rather than the
character representation of that number, which could cause issues with debugging and with subsequent
maintenance of the routine!

We will read the same input line several times in this example; the character string contains several
different variations of the letters “the”. Make special note of how capitalization and/or the presence /
absence of the trailing blank affects where the column pointer is moved. (In all but one case, we
specifically use the line pointer to control the column pointer – remember, any time the line pointer is
specified, the column pointer is repositioned back to the first column in the specified line, even when the
specified line is still the current line!)

/* Example of Column pointer controls

 using character values. */

DATA THE_data;

 INFILE CARDS;

 INPUT # 1 @"the" NEXT8_1 $CHAR8.

 # 1 @"the " NEXT8_2 $CHAR8.

 # 1 @"The" NEXT8_3 $CHAR8.

 # 1 @"The " NEXT8_4 $CHAR8.

 @"The" NEXT8_5 $CHAR8.;

CARDS;

The theme of the Thebes theater's <etc.>

;

DEALING WITH INFORMATS

A sequential file may contain several types of data. The reader can opt to input this data as ordinary
numeric or character data, then transform it programmatically according to its characteristics. However,
in many cases, this task can be streamlined by reading the data using an informat. Informats provide
instruction for the reading of data into a SAS variable. They specify whether an input value is character
or numeric, its length, the number of decimal places (if applicable), and other special conditions.

We have already addressed the $CHAR. informat, which allows us to distinguish and read character data
as opposed to numeric values. Alert readers will wonder why anyone would want to spell out $CHARw.,

Find the first lower-case occurrence of the string
“the” (lower case without trailing blank), read the
next 8 characters.
 NEXT8_1 = “me of th”

Find the first lower-case occurrence of the string
“the ” (lower case with trailing blank), read the next
8 characters.
 NEXT8_2 = “Thebes t”

Find the first lower-case occurrence of the string
“The” (capitalized without trailing blank), read the
next 8 characters.
 NEXT8_3 = “ theme o”

Find the first lower-case occurrence of the string
“The ” (capitalized with trailing blank), read the next
8 characters.
 NEXT8_4 = “theme of”

Find the next lower-case occurrence of the string
“The” (capitalized without trailing blank), read the
next 8 characters.
 NEXT8_5 = “bes thea”

8

when $ w. works just as well with less keystrokes. (w, of course, represents a positive integer – the width
of the requested value.) The two formats do not function exactly the same way - $ w. ignores leading
blanks, while $CHARw. includes them. Either format could be used in the examples in this presentation.
However, circumstances may dictate that one be selected over the other when processing certain input
fields in the “real world”.

There are two methods to specify an informat for a variable. The first is the method already used in this
presentation, to specify the informat along with the variable on the INPUT statement. The other method
is to use either the INFORMAT or ATTRIB statement. Either of these statements can be specified in the
DATA step to permanently assign an informat to variables within a SAS dataset. The syntax for each of
these statements is:

INFORMAT variables <informat>

 <DEFAULT=default informat>;

ATTRIB variables INFORMAT=informat;

There are five categories of informats available in the SAS System: numeric, character, date/time,
column-binary, and user-defined. A few common examples are listed below; more extensive lists and
descriptions of formats in the first four categories can be found in the SAS Language: Reference manual.
Still more examples that are specific to a given operating system can be found in the SAS Companion for
that operating system. Those options never seem to be sufficient, however – almost everyone has some
shop-specific or routine-specific informats that are not part of the standard set. SAS even provides a tool
for folks who need their own specialized user-defined INFORMATs – PROC FORMAT. As the name
suggests, PROC FORMAT creates user-written formats, and does informats as well. This topic is outside
the scope of this paper; there are several others devoted solely to this topic. One short but informative
presentation that the reader might find useful is “IN & OUT of CNTL with PROC FORMAT”, which can be
found in several SAS conference Proceedings from 1998. (Ignore the age of the article; the topic is
timeless and the material still current.)

 A few selected examples of SAS Informats

INFORMAT DESCRIPTION
$ASCIIw. On IBM Mainframe, convert from ASCII to EBCDIC.

On other systems, treat as $CHAR.
$EBCDICw. On IBM Mainframe, treat as $CHAR.

On other systems, convert from EBCDIC to ASCII.
COMMAw.d Read numeric value, ignore embedded commas (and other

accounting symbols, such as “$”, percent signs, etc.). NOTE: A left
parenthesis at the beginning of the value causes the subsequent
numeric value to be treated as a negative.

DATEw. Read date (ddMMMyy or ddMMMyyyy) into numeric field.
JULIANw. Read Julian date (yyddd or yyyyddd) into numeric field.
w.d Read standard numeric value, total width = w including d decimal

places.

VARIABLE LENGTH FILES

Up to this point, all of our examples have focused on fixed length files where each variable occurs in the
same position on each record of the file. Our next example will deal with variable length files; files in
which the length can change from record to record.

Let us look at a file containing one record for each member of a family. Our routine will be based on a
record format where the 10 characters contain the person’s name, followed by one or more 2-byte state
abbreviations representing each state where that person lived for some period of time in their life.

9

Like in the prior example, the data are stored in an external MVS dataset. Again, we will use the
FILENAME command to assign a file reference to our dataset. However, there is one difference
regarding data storage between these two examples. The current example refers to an "aggregate
storage location", known under MVS as a partition dataset or PDS. (It is my understanding that there are
parallel constructs in some other operating systems). In this case, the INFILE statement is provided with
a file reference to an external file, and which is followed by a specific member reference, enclosed in
parentheses. This allows a single file reference to be used for multiple INFILE statements, each pointing
to a different PDS member.

The last field on the file can contain one or more 2-character values. Our example is set up for a
maximum of 5 such values, which is capped by the ARRAY’s dimension. (As an aside, our routine is
lacking an edit check to handle a situation where we reach the 6

th
 occurrence; true production code would

be prepared for that situation.) We establish the number of occurrences to process by determining the
total length of the input line, then subtracting away the length of the key information at the beginning of
the line. We conclude this process by dividing the resultant number by 2, since each value is 2 bytes
long.

All of this leads into the critical question of this example – how do we determine the length of the current
input line? The answer is amazingly simple; there is a LENGTH=<variable> option available on the
INFILE statement. <variable> is a temporary SAS variable specified by the coder. It is set to the length
of the current line of INPUT when the line is read in. Note that it is a temporary variable, and is not
written to the output dataset.

Our first example using variable length files still maintains the construct of having each field clearly lined
up in the same column in each record, with the only difference being the number of values stored on each
line. It is also possible to encounter a file where the values do not line up neatly in columns. In this case,
SAS provides a useful informat called $VARYING that provides increased flexibility.

NOTE: The infile library FAMILY is:

 Dsname=CUSATK.FAMILY.DATA,

 Unit=3390,Disp=OLD,Blksize=27998,

 Lrecl=80,Recfm=VB

NOTE: The infile FAMILY(STATE) is:

 Dsname=USERID.FAMILY.DATA(STATE),

 Unit=3390,Disp=SHR,Blksize=27998,

 Lrecl=80,Recfm=VB

NOTE: A total of 6 records were read

 from the infile library FAMILY.

 The minimum record length was 12.

 The maximum record length was 20.

NOTE: 6 records were read from the

 infile FAMILY(STATE).

 The minimum record length was 12.

 The maximum record length was 20.

NOTE: The data set WORK.FAM_ST has

 6 observations and 8 variables.

< Results of a PROC PRINT >

Obs ST1 ST2 ST3 ST4 ST5 Person idx loop

 1 NY Angus 1 2

 2 AR NY GA RI OK Trixie 5 6

 3 NY FL Vladmir 2 3

 4 NY MI PA Swen 3 4

 5 NY Petula 1 2

 6 NY PA CA Caleb 3 4

 ‘USERID.FAMILY.DATA(STATE)’

Angus NY

Trixie ARNYGARIOK

Vladmir NYFL

Swen NYMIPA

Petula NY

Caleb NYPACA

/* VARIABLE LENGTH FILE EXAMPLE #1*/

FILENAME FAMILY ‘USERID.FAMILY.DATA’;

DATA FAM_ST;

 ARRAY ST (5) $;

 INFILE FAMILY(STATE) LENGTH=linelen ;

 INPUT @ 1 Person $CHAR10. @ ;

 idx = (linelen-10) / 2;

 DO loop = 1 TO idx;

 INPUT ST(loop) $ 2. @ ;

 END;

RUN;

10

The observant reader will immediately notice that we perform two consecutive INPUT statements. The
first is a null input, while the second actually performs the INPUT process against our data. This raises
the question why a null input would be necessary - we stated earlier in this presentation that its function
was to terminate a trailing @, which is obviously not the case here! In this example, the null input allows
SAS to set the value of the LENGTH= variable. The second INPUT actually uses that information as
specified by the linelen variable in our example; it has to be passed in from an earlier INPUT. (Our earlier
example also did this, but performed the process subtly – the first INPUT was not simply a null input, but
rather actually read part of the record, and set linelen at that time.)

The $VARYING informat provides a greater level of flexibility than the traditional $ format used earlier in
this presentation. It uses a second parameter to set the maximum length of the variable being processed
in the current line – this avoids the “INPUT statement reached past the end of a line“

messages we encountered earlier in this paper. (SAS processes negative and missing values as zeros,
considering it to represent a null input line.) Our example also specifies a maximum length of 40 for the
resultant variable with a LENGTH statement. This is not required; however, its absence will cause SAS to
default the field to a length of 8 characters, as we have seen in earlier examples.

The observant reader will also have noticed that our output dataset contains the line length. This does
not contradict my earlier statement that the value is stored in a temporary SAS variable and not written to
the output dataset. In our example, we create a new (externally available) variable, and assign it the
value of our internal variable – this is the field displayed in our output, not the temporary variable!

CSV (Comma Separated Value) FILES

The CSV, or Comma Separated Value File is a special variety of variable length sequential file, typically
used for importing or exporting data from a spreadsheet. Data values are separated by commas, as is
implied by the name, and character values are typically surrounded by double quotation marks (“).

NOTE: The infile library FAMILY is:

 Dsname=CUSATK.FAMILY.DATA,

 Unit=3390,Disp=OLD,Blksize=27998,

 Lrecl=80,Recfm=VB

NOTE: The infile FAMILY(CITY) is:

 Dsname=CUSATK.FAMILY.DATA(CITY),

 Unit=3390,Disp=SHR,Blksize=27998,

 Lrecl=80,Recfm=VB

NOTE: A total of 9 records were read

 from the infile library FAMILY.

 The minimum record length was 6.

 The maximum record length was 14.

NOTE: 9 records were read from the

 infile FAMILY(CITY).

 The minimum record length was 6.

 The maximum record length was 14.

NOTE: The data set WORK.CITY has

 9 observations and 4 variables.

< Results of a PROC PRINT >

Obs city state varlen

 1 San Francisco CA 16

 2 Bonita Springs FL 17

 3 Philadelphia PA 15

 4 Irvine CA 9

 5 Atlanta GA 10

 6 Irving TX 9

 7 Dearborn MI 11

 8 Seaside OR 10

 9 Orlando FL 10

 ‘USERID.FAMILY.DATA(CITY)’

San Francisco CA

Bonita Springs FL

Philadelphia PA

Irvine CA

Atlanta GA

Irving TX

Dearborn MI

Seaside OR

Orlando FL

/* VARIABLE LENGTH FILE EXAMPLE #2*/

FILENAME FAMILY ‘USERID.FAMILY.DATA’;

DATA CITY (KEEP=city state varlen) ;

 INFILE FAMILY(CITY) LENGTH=linelen ;

 INPUT @ ;

 INPUT name $VARYING40. linelen;

 city = SUBSTR(name, 1, linelen-2);

 state = SUBSTR(name, linelen-1);

 varlen = linelen ;

RUN;

11

In the example above, INFILE contains the full name of the external file, within quotes. This method
provides a clear explanation to subsequent coders and users as to the source of the external data. This
strength is also its biggest weakness; there is no flexibility regarding input files! If a user wants to run the
routine against a different file, then he or she must go into the code and change the file name manually.
In many shops, this direct action against a production routine raises testing concerns and issues
regarding audits. An alternative would be to clone the routine and change the file name in the new copy.
This type of behavior can cause maintenance nightmares down the road – a change to the processing of
this routine might require parallel changes to several clones; experience has shown that the support
personnel will only find and fix a fraction of the clones that actually exist.

The INFILE statement in our example contains a special keyword – the DSD parameter. DSD, which
stands for “Delimiter Separated Data”, modifies a few of the default assumptions that accompany the
INFILE statement:

 The default delimiter is changed from blank to comma. This default, whether blank or comma,
can always be overridden with the DELIMITER= option.

 Character values are assumed to be enclosed in double quotes; these quotation marks are
stripped off the input before storing the value. NOTE: You can retain the quotation marks in the
variable, if desired, by using the tilde format modifier (~). We will not be needing it in our
example.

 Multiple consecutive commas (or other delimiter as defined) are assumed to represent missing
values. Under normal circumstances, the second and subsequent consecutive delimiters are
ignored and treated as a single delimiter.

It is obvious that the routine did not work as expected during this first iteration. A quick examination of the
SASLOG shows that the problem was caused by the use of lengths on the formats in our INPUT
statement. The presence of the $CHAR9. format on the first variable caused the DATA step to read 9
characters, treating the comma as a part of the field value rather than as a delimiter between fields. (Find
the reference to ConfName="SUGI",20 in the LOG to see a specific example. The field incorrectly

contains both quotation marks, plus the comma delimiter, plus the first two characters of the year!) This
issue can be resolved by simply using the “$” format modifier without a length to denote character
variables, with a LENGTH statement to override the 8 byte default if needed.

NOTE: Invalid data for ConfYear in

 line 11 10-13.

RULE: ----+----1----+----2----+----3---

11 "SUGI",2006,"San Francisco","CA"

ConfName="SUGI",20 ConfCity=San Francisco"

ConfYear=. ConfST=," _ERROR_=1 _N_=1

NOTE: Invalid data for ConfYear in

 line 12 10-13.

12 "PHARMASUG",2006,"Bonita Springs","FL"

ConfName="PHARMASU ConfCity=006,"Bonita Sp

ConfYear=. ConfST=ri _ERROR_=1 _N_=2

NOTE: Invalid data for ConfYear in

 line 13 10-13.

13 "NESUG",2006,"Philadelphia","PA"

ConfName="NESUG",2 ConfCity="Philadelphia"

ConfYear=. ConfST=," _ERROR_=1 _N_=3

NOTE: Invalid data for ConfYear in

 line 14 10-13.

<… messages repeated for each

line of input data …>

 C:\Papers\ConfList.CSV

“SUGI”,2006,”San Francisco”,”CA”

“PHARMASUG”,2006,”Bonita Springs”,”FL”

“NESUG”,2006,”Philadelphia”,”PA”

“WUSS”,2006,”Irvine”,”CA”

“SESUG”,2006,”Atlanta”,”GA”

“SCSUG”,2006,”Irving”,”TX”

“MWSUG”,2006,”Dearborn”,”MI”

“PNWSUG”,2006,”Seaside”,”OR”

“SUGI”,2007,”Orlando”,”FL”

/* CSV EXAMPLE */

DATA SasConf;

 LENGTH ConfName $ 9.

 ConfCity $ 14.;

 INFILE ‘C:\Papers\ConfList.CSV’ DSD;

 INPUT ConfName $CHAR9.

 ConfYear 4.

 ConfCity $CHAR14.

 ConfST $CHAR2. ;

RUN;

12

As mentioned, and as should be obvious from the name, the most common delimiter used in Comma
Separated Value formatted files is, of course, the comma. BUT, other delimiters can work just as well and
can be easily handled by the SAS system. Take, for example, the case of a shop that decided the Tilde
“~” was the only field that never showed up in their character data, and as such they wanted to use it as
the delimiter in their “CSV” files. This requires a very minor alteration to our existing routine; we simply
add the DELIMITER=”~” (abbreviated DLM=”~”) option on the INFILE statement to inform the DATA step
that the Tilde will act as the boundary between field values. Mirroring the example above, we illustrate
that we can process the tilde instead of the comma with minimal changes to the code.

DDE

The next logical step in dealing with spreadsheets would be to bypass the CSV file and to get the
information directly from the spreadsheet itself. It is possible to accomplish this in SAS with the INFILE
and INPUT statements using Dynamic Data Exchange. The Windows Help Facility states that Dynamic
Data Exchange, or DDE, is “A form of interprocess communication (IPC) implemented in the Microsoft
Windows family of operating systems. Two or more programs that support Dynamic Data Exchange

NOTE: The data set WORK.SASCONF has 9

observations and 4 variables.

< Results of a PROC PRINT >

 Conf

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisco CA

 2 PHARMASUG 2006 Bonita Springs FL

 3 NESUG 2006 Philadelphia PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

 C:\Papers\ConfList.CSV

“SUGI”,2006,”San Francisco”,”CA”

“PHARMASUG”,2006,”Bonita Springs”,”FL”

“NESUG”,2006,”Philadelphia”,”PA”

“WUSS”,2006,”Irvine”,”CA”

“SESUG”,2006,”Atlanta”,”GA”

“SCSUG”,2006,”Irving”,”TX”

“MWSUG”,2006,”Dearborn”,”MI”

“PNWSUG”,2006,”Seaside”,”OR”

“SUGI”,2007,”Orlando”,”FL”

/* CSV EXAMPLE */

DATA SasConf;

 LENGTH ConfName $ 9.

 ConfCity $ 14.;

 INFILE ‘C:\Papers\ConfList.CSV’ DSD;

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

RUN;

NOTE: The data set WORK.SASCONF has 9

observations and 4 variables.

< Results of a PROC PRINT >

 Conf

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisco CA

 2 PHARMASUG 2006 Bonita Springs FL

 3 NESUG 2006 Philadelphia PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

 C:\Papers\ConfListTilde.CSV

"SUGI"~2006~"San Francisco"~"CA"

"PHARMASUG"~2006~"Bonita Springs"~"FL"

"NESUG"~2006~"Philadelphia"~"PA"

"WUSS"~2006~"Irvine"~"CA"

"SESUG"~2006~"Atlanta"~"GA"

"SCSUG"~2006~"Irving"~"TX"

"MWSUG"~2006~"Dearborn"~"MI"

"PNWSUG"~2006~"Seaside"~"OR"

"SUGI"~2007~"Orlando"~"FL"

/* CSV EXAMPLE */

DATA SasConf;

 LENGTH ConfName $ 9.

 ConfCity $ 14.;

 INFILE ‘C:\Papers\ConfListTilde.CSV’

 DSD DLM="~";

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

RUN;

13

(DDE) can exchange information and commands.” In other words, DDE allows a client application to
request information from a server application in a Windows or OS/2 environment.

The SAS System can interact with Microsoft Excel using DDE. SAS acts as a client application in this
relationship. It can request data from a server application, with the requirement that the server
application must be running. (It can also send commands and data to a server application, but that is a
topic for another presentation.)

Two questions usually come to mind after seeing this example:

 What the heck is that string of characters following the word DDE in the FILENAME statement? It
sure doesn’t look like any file name I’ve ever seen!

 Where’d my SAS session go? Nothing’s happening!

There is one big difference between this example and every other one discussed in this presentation. In
this instance, we are not reading a file – not a sequential file, not a variable length file, not a partition
dataset. We are interacting directly with another software package, which in this case is Microsoft Excel.
We have to establish a connection between the client application (SAS) and the server application (MS
Excel). This is accomplished by issuing a FILENAME statement with the keyword "DDE". The syntax
for this statement, in this context, is:
 FILENAME fileref DDE 'DDE-triplet' ;

The DDE-triplet is a specialized argument, and is made up of three components:
 application|topic!item

Application is the name of the server application, Excel in this example. Topic is defined as the "topic of
conversation"; this is the file to be processed. For Excel, this contains the Workbook name and the
Worksheet name. Item is the "item of conversation"; this is the range of cells that is to be included when
processing a spreadsheet.

The DDE-triplet for the Excel worksheet in our example is:
 'Excel|[Book1]Sheet1!R1C1:R9C4';

Walking through each piece, we can see that we are going to Excel, the 1
st
 worksheet in the default file,

and we will be processing the cell at Row 1 Column 1 through the cell at Row 9 Column 4. Note that the
application and topic are separated by a vertical bar (|), while the topic and item are separated by an
explanation point (!). The brackets are actually part of the worksheet definition, and the colon is the
separator between the start and end cell.

< no SAS output displayed >

X 'C:\EXCEL SASCONF.XLS';

FILENAME SASCONF DDE

'Excel|[Book1]Sheet1!R1C1:R9C4';

/* DDE EXAMPLE - Excel */

DATA SasConf;

 INFILE SASCONF;

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

RUN;

14

The DDE triplet for an application should be defined in the documentation for that application. (our
example uses MS Excel, but DDE is available for other applications, as well.) Most people find it easier to
let SAS determine the proper DDE triplet. The following is a step-by-step method to obtain the proper
DDE triplet for an application:

 Ensure SAS and Excel (or other application) are both active.

 Toggle to your application, and use the standard PC "cut" techniques to store the portion of the
client application to be processed in the Windows Clipboard. (For example, use the mouse to
highlight the area to be "cut", then select CUT or COPY on the EDIT pop-up menu of most
Windows applications.)

 Toggle to your SAS session, and click on the "Options" menu on the Menu Bar in SAS.

 The Options menu will contain an option called "DDE Triplet". Click on it.

 This will display an Information Box, which will contain the DDE-triplet.

 Enter this DDE-triplet into the FILENAME statement of your SAS routine.

Now that the subject of the DDE triplet is resolved, we can begin to debug our application. In this
instance, we have a major issue – nothing whatsoever is happening! As you might expect, this is
because SAS is doing exactly what we told it to do, but not what we wanted it to do. We used the X
statement to issue a command directly to the operating system. In this case, we asked Windows to
launch Excel and open our requested spreadsheet. SAS did exactly that … and then went into a wait
state until the Operating System command was completed, that is, Excel was terminated. This is
obviously not what we want – we can’t interface between two applications if only one of them is active!

The solution is to use two SAS options: NOXSYNC and NOXWAIT. XSYNC is the system option which
“specifies that the operating system command execute synchronously with your SAS Session.” More to
the point, SAS waits until the Operating System command is complete before resuming. XWAIT specifies
that the user must specifically exit the command processor before SAS resumes i.e. type EXIT or
equivalent. It is necessary to turn both options off before invoking the call to Excel. (Of course, it is also
possible to open Excel prior to beginning your SAS session!)

< Results of a PROC PRINT >

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisc

 2 PHARMASUG 2006 Bonita Springs

 3 NESUG 2006 Philadel PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

OPTIONS NOXSYNC NOXWAIT;

X 'C:\EXCEL SASCONF.XLS';

FILENAME SASCONF DDE

'Excel|[Book1]Sheet1!R1C1:R9C4';

/* DDE EXAMPLE - Excel */

DATA SasConf;

 INFILE SASCONF;

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

RUN;

15

This approach solved all of our problems! We were able to open Excel, and we were able to return to
SAS and use the interface to populate our dataset. Unfortunately, we have introduced new errors – some
of the values have been truncated, and embedded blanks caused the input to be parsed incorrectly.
Both of these problems should look familiar – we encountered and resolved the same type of issues in
our first example reading from a sequential file! The corrections to resolve the problems are also similar –
inform the DATA step that embedded blanks are expected and acceptable, and that variables might be
longer than 8 characters.

The actual methods to resolve these issues are not necessarily the same as the methods originally used
in our first example. In particular, the embedded blanks cannot be resolved with the ampersand as they
were with simple list input. Rather, it is necessary to add a parameter to the INFILE statement: NOTAB
to allow the SAS DDE interface to include blank lines. The LENGTH statement is sufficient to process
values longer than the default 8 characters, just as it was in our first example. However, this is the only
acceptable method to deal with the situation! If you tried to use a character format and specify a length
on the INPUT statement itself, SAS would read past the embedded blank and possibly past the column
boundary itself, until it read in the maximum number of characters specified in the format.

The alert reader will note that we also added the MISSOVER option to the FILENAME statement. This
option was discussed earlier in this presentation. It is not actually necessary in the example as it
currently stands; it would be very useful, however, should any of the cells be empty.

As an aside, it is possible to use DDE without knowing the name of the DDE triplet. However, there is
some manual intervention required.

 Toggle to your application, and use the standard PC "cut" techniques to store the portion of the
client application to be processed in the Windows Clipboard.

 Toggle to your SAS session, and replace the FILENAME statement with the following:
 FILENAME fileref DDE CLIPBOARD ;

< Results of a PROC PRINT >

Obs ConfName Year ConfCity ConfST

 1 SUGI 2006 San Francisco CA

 2 PHARMASUG 2006 Bonita Springs FL

 3 NESUG 2006 Philadelphia PA

 4 WUSS 2006 Irvine CA

 5 SESUG 2006 Atlanta GA

 6 SCSUG 2006 Irving TX

 7 MWSUG 2006 Dearborn MI

 8 PNWSUG 2006 Seaside OR

 9 SUGI 2007 Orlando FL

OPTIONS NOXSYNC NOXWAIT;

X 'C:\EXCEL SASCONF.XLS';

FILENAME SASCONF DDE

'Excel|[Book1]Sheet1!R1C1:R9C4'

 NOTAB MISSOVER ;

/* DDE EXAMPLE - Excel */

DATA SasConf;

 LENGTH ConfName $ 9.

 ConfCity $ 14.;

 INFILE SASCONF ‘09’x;

 INPUT ConfName $

 ConfYear

 ConfCity $

 ConfST $;

RUN;

16

SAS will obtain its data from the clipboard, rather than the server application. The inherent weakness in
this approach is that the data to be processed must be stored in the Clipboard prior to each invocation of
your SAS routine. However, it does get you around having to work with DDE-triplets.

It is even possible to use DDE to get real-time updates from Excel to SAS! The HOTLINK option on the
FILENAME statement will inform SAS of your intent to work real-time. Time and space limitations prevent
us from going into details in this presentation. (Besides, real-time examples rarely convey the same
sense of excitement when transcribed onto paper!)

It is also possible to use DDE with applications other than MS Excel. The DDE triplet is still required, but
its form will change depending on the requested application. For example:

MS Word winword|"filename.doc"!bookmark

MS Access MSAccess|filename.mdb;Table TableName!All

Space and time considerations prevent us from delving into these variations in this presentation.
Readers are encouraged to seek out the writings of Koen Vyverman, who is a frequent contributor to
SUGI, and Nat Wooding, who rarely publishes but has been a regular contributor to SAS-L, for additional
information and examples of DDE usage.

ADDENDUM – INPUT function

When discussing the INPUT statement, someone often asks about the INPUT function. There is a little
parallel between the INPUT statement and the INPUT function – very little. Both the statement and the
function convert a value from one form to another using a specified INFORMAT. The INPUT function,
however, does not read from an external file as the INPUT statement does. Its purpose is to convert a
SAS variable into a different representation, based on an informat. It is typically used to convert a
character value into a numeric value, but it can also be used to convert a character value into a different
character value. Further discussion of this SAS feature is outside of the scope of this paper.

CONCLUSION

There are a number of ways to use INFILE and INPUT to introduce external data into the SAS System,
just as there are number of different file types and formats that need to be read. It would be impossible to
provide in-depth information on all of them in the limited space of this presentation; in fact a ½ day class
could not cover them all! (I know that from personal experience – I’ve tried to do just that!) It is hoped
that the material contained in this paper will serve to stimulate the curiosity of the reader, and that they
will continue their education by researching the appropriate manuals and technical papers devoted to the
specific topics discussed within this paper. Ultimately, however, it will be through real-life trial and error
that true comprehension and retention of this knowledge will be attained.

REFERENCES / FOR FURTHER INFORMATION

Beatrous, Steve, and Clifford, Billy. (1998). “Sometimes You Get What You Want: I/O Enhancements for
Version 7”. Proceedings of the Twenty-Third Annual SAS Users Group International Conference. Cary,
NC: SAS Institute, Inc.

Boling, John C. (1997). “SAS Data Views: A Virtual View of Data”. Proceedings of the Twenty-Second
Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

Burlew, Michele M. (2002). Reading External Data Files Using SAS

®
: Examples Handbook. Cary, NC.

SAS Institute, Inc.

Carpenter, Arthur L. and Payne, Tony (2005). “A Bit More on Job Security: Long Names and Other V8
Tips”. Proceedings of Alaska Day 2005 SAS Users Group Conference. Tacoma, WA. PNWSUG.

17

Cody, Ronald (1998). “The INPUT Statement: Where It’s @”. Proceedings of the Twenty-Third Annual
SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

DelGobbo, Vincent (2003). “Techniques for SAS® Enabling Microsoft® Office in a Cross-Platform
Environment”. Proceedings of the Twenty-Seventh Annual SAS Users Group International Conference.
Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2005). “Getting Data Into SAS: INFILE and INPUT”. Proceedings of the
Eighteenth Annual NorthEast SAS Users Group Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2001). Class Notes: Turning External Data into SAS Data. Dunedin, FL. Self-
published.

Kuligowski, Andrew T., and Roberts, Nancy (1997). “From There to Here: Getting Your Data Into the SAS
System”. Proceedings of the Twenty-Second Annual SAS Users Group International Conference. Cary,
NC: SAS Institute, Inc.

Levine, Allison. (1997). “The What, When, Why, and How of PROC FORMAT”. Proceedings of the Tenth
Annual NorthEast SAS Users Group Conference. USA.

Microsoft Corporation (1999). Microsoft Windows 2000 Professional Help Facility. Redmond, WA:
Microsoft Corporation.

Patton, Nancy K. (1998). “IN & OUT of CNTL with PROC FORMAT”. Proceedings of the Sixth Annual
SouthEast SAS Users Group Conference. Cary, NC: SAS Institute, Inc.

Riba, S. David (1996), Course Notes: Connecting With Your Data. Clearwater, FL: JADE Tech, Inc.

SAS Institute, Inc. (1993), SAS Companion for the Microsoft Windows Environment. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1990), SAS Language: Reference, Version 6, First Edition. Cary, NC: SAS Institute,
Inc.

SAS Institute, Inc. (1999). SAS Online Documentation, Version 8. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2006). SAS Online Documentation, Version 9. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1990). SAS Procedures Guide, Version 6, Third Edition. Cary, NC: SAS Institute,
Inc.

SAS Institute, Inc. (1994), SAS Software: Abridged Reference, Version 6, First Edition. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1999). SAS Technical Report 325, The SAS System and DDE. Cary, NC: SAS
Institute, Inc.

SAS Institute, Inc. (1997). Window by Window: Capture Your Data Using the SAS System. Cary, NC:
SAS Institute, Inc.

SAS is a registered trademark or trademark of SAS Institute, Inc. in the USA and other countries. MVS
and JCL are registered trademarks or trademarks of International Business Machines Corporation. Excel

is a registered trademark or trademark of Microsoft Corporation. ® indicates USA registration. Other
brand and product names are registered trademarks or trademarks of their respective companies.

18

The author can be contacted via e-mail as follows:
 KuligowskiConference@gmail.com

ACKNOWLEDGMENTS

This paper is based on one of the author’s earlier works. The goal for this presentation was to let the
examples drive the text; the earlier paper followed the more traditional path of using the examples to
clarify a point already made in the prose. Many people have contributed to my understanding of the topic
over the years, and specifically to either this paper or its predecessor. I’d like to acknowledge Debbie
Buck, Paul Dorfman, Pete Lund, Dave Riba, Nancy Roberts, Koen Vyverman, Ian Whitlock, and Nat
Wooding. I apologize to those who have been left off the list through my oversight.

mailto:KuligowskiConference@gmail.com

