
South Central SAS® Users Group 2016

A Time Saver for All: A SAS® Toolbox
Philip Jou, Baylor University, Waco, TX

ABSTRACT

SAS® Macros are a useful tool to any SAS® Programmer. A macro variable can be used to assign
a value to a variable that can be called repeatedly. A SAS® Macro Definition serves a similar
purpose but is used to repeat a set of instructions. This handy toolbox contains SAS® Macro
Functions that will allow a user to check the existence of a variable, get the number of
observations in a dataset, and truncate the values of a dataset to name a few. This toolbox is
useful to any flavor of SAS® Programmer in any profession.

INTRODUCTION

The SAS® macro facility has been a power tool implemented. There have been many papers
written about the fundamentals of the macro language. A google search will yield links to SAS®
support pages as well as papers from SAS® Global Forum (formerly SAS® Users Group
International or SUGI).

MACRO FACILTY UNDERSTANDING

How to Define, Compile and Call a Macro Definition: A macro definition is defined by
encapsulating code between a %MACRO and %MEND statement. After the %MACRO
statement, a name must be given to the macro. Though not required, it is recommend to
restate the name after the %MEND statement.

%macro example;
 /*code goes here*/
%mend example;

To compile the macro, highlight all of the include (including the %MACRO and %MEND
statements) and execute. If changes are made to the macro definition, SAS® must re-compile
the macro in order for the changes to take effect.

A macro definition is called by preceding the macro name with a ‘%’. In the above example, the
macro would be called by executing ‘%example’. Note that a semicolon is not needed as the
compiler will execute the code within the macro definition.

Global vs Local Macro Variable: Base SAS® distinguishes the difference primarily by where the
macro variable is created.

Global Macro Variable: Within a Macro Definition, declaring the macro variable with %GLOBAL
will create a macro variable which can be used at any time within the session.

Local Macro Variable: If a macro variable is defined within a Macro Definition, by default it is
considered a Local Variable. A user can also specify this by using the %LOCAL statement. These
variables are only available during the execution of the macro.

If a macro definition is called within another macro definition (known as nesting), be sure to
note Macro Variable names that are used in each macro definition. If the Macro Variable is
modified, it will be modified from the top-level through the last macro definition that utilizes
that variable.

To call a Local or Global macro variable, just lead the variable name with an ‘&’. Macro variables
can be combined to form complex variable naming such as enumeration of variables.

Pre-Defined Macro Functions: As a part of the macro facility, SAS® provides a library of macro
functions that can be used. These functions are executed in the same manner as executing a
macro definition. Many of the statement used within a DATA STEP have a macro function
equivalent. For example %LENGTH LENGTH, %SCAN SCAN, %UPCASE UPCASE.

Also built-in are conditional statements such as %IF…%THEN, %DO %UNTIL, and %DO %WHILE.

MACROS INCLUDED IN THIS TOOLBOX

CONVERT_ALLVAR_NUM_TO_CHAR
 This macro will convert all numerical variables to character variables. The user submits a
space-delimited list of datasets and has optional capability to IGNORE variables and attach a
SUFFIX to the modified dataset.

The macro will process each dataset submitted by utilizing the output dataset from PROC
CONTENTS. After generating the PROC CONTENTS dataset, a PROC SQL into statement is used
to store a series of statements to convert the necessary variables from numeric to character
(see SAS NOTE 24590) into a macro variables. Data steps are then used to call the created
macro variables.

Data Step Code to create Source Dataset:
data DSET_CONVERT_NUM_TO_CHAR_ORIG;
 DSET_CONVERT_NUM_TO_CHAR1 DSET_CONVERT_NUM_TO_CHAR2
 DSET_CONVERT_NUM_TO_CHAR3 DSET_CONVERT_NUM_TO_CHAR4;
 input ID col1 $ col2 $ col3 col4;
 datalines;
 1 1 1 1 1
 ;
run;

The data table ‘DSET_CONVERT_NUM_TO_CHAR_ORIG’ and subsequent tables are created
with 3 numeric columns (ID, col3, and col4).

/*convert all numeric variables*/
%CONVERT_ALLVAR_NUM_TO_CHAR(DSET_CONVERT_NUM_TO_CHAR1);

The Proc Contents on the dataset ‘DSET_CONVERT_NUM_TO_CHAR1’shows that all numeric
variables have been converted to character variables.

/*convert all numeric variables except ID*/
%CONVERT_ALLVAR_NUM_TO_CHAR(DSET_CONVERT_NUM_TO_CHAR2,IGNORE=ID);

The Proc Contents on the dataset ‘DSET_CONVERT_NUM_TO_CHAR2’shows that all numeric
variables except for ID have been converted to character variables.

/*convert all numeric variables except ID & COL3 and create copy of dataset
with SUFFIX 'NEW'*/
%CONVERT_ALLVAR_NUM_TO_CHAR(DSET_CONVERT_NUM_TO_CHAR3,IGNORE=ID
COL3,SUFFIX=NEW);

The PROC CONTENTS of the dataset ‘DSET_CONVERT_NUM_TO_CHAR3_NEW’ shows that all
numeric variables except for ID and COL3. The original dataset
‘DSET_CONVERT_NUM_TO_CHAR3’ is left untouched, as shown.

/*process multiple datasets and convert all numeric variables except ID,
COL3, & COL8 and create copy of datasets with SUFFIX 'NEW'*/
%CONVERT_ALLVAR_NUM_TO_CHAR(DSET_CONVERT_NUM_TO_CHAR4
DSET_CONVERT_NUM_TO_CHAR5,IGNORE=ID COL3 COL8,SUFFIX=NEW);

This example shows how to submit a macro call for multiple datasets. Note that variable ID
exists in all datasets, COL3 only exists in ‘DSET_CONVERT_NUM_TO_CHAR4’ and COL8 only
exists in ‘DSET_CONVERT_NUM_TO_CHAR5’. The macro will still process as expected.

DELETE_EMPTY_COLUMNS
This Macro will delete any column from the dataset that contains all missing values. The

user submits a space-delimited list of datasets and has optional capability to IGNORE specific
variables or variable type and attach a SUFFIX to the modified dataset.

The macro will process through each dataset submitted one at a time. Each observation is
processed column by column and if the sum of the missing values is calculated. If the sum of
the missing values is equal to the number of observations within the dataset, the column (aka
variable) is dropped from the final dataset.

Data Step code to generate sample dataset:
data two_empty_columns;
 input ID col1 $ col2 $ col3 col4;

 datalines;
 1 1 . 1 .
 2 2 . 2 .
 3 3 . 3 .
 4 4 . 4 .
 ;
run;

The data table ‘TWO_EMPTY_COLUMNS’ is created with two empty columns. COL2 is a
character variable and COL4 is a numeric variable.

/*remove all empty columns and create dataset with SUFFIX 'DEL'*/
%delete_emtpy_columns(two_empty_columns,SUFFIX=DEL);

After submitting the macro statement, the two columns with all missing variables is removed.
The new dataset ‘TWO_EMPTY_COLUMNS_DEL’ now contains only 3 columns.

/*remove all empty columns except COL2 and create dataset with SUFFIX
'DEL_IGNORE'*/
%delete_emtpy_columns(two_empty_columns,IGNORE=COL2,SUFFIX=DEL_IGNORE);

After submitting the macro statement, COL4 is removed as the user chose to IGNORE COL2. The
new dataset ‘TWO_EMPTY_COLUMNS_DEL_IGNORE’ now contains only 4 columns.

/*remove all empty columns except numeric columns and create dataset with
SUFFIX 'DEL_CHAR'*/
%delete_emtpy_columns(two_empty_columns,CHARONLY=Y,SUFFIX=DEL_CHAR);

After submitting the macro statement, COL2 is removed as the user chose to only process
character variables. The new dataset ‘TWO_EMPTY_COLUMNS_DEL_CHAR’ now contains only
4 columns.

/*remove all empty columns except character columns and create dataset with
SUFFIX 'DEL_NUM'*/
%delete_emtpy_columns(two_empty_columns,NUMONLY=Y,SUFFIX=DEL_NUM);

After submitting the macro statement, COL4 is removed as the user chose to only process
numeric variables. The new dataset ‘TWO_EMPTY_COLUMNS_DEL_NUM’ now contains only 4
columns.

DELETE_MACRO_VARIABLES
 This macro will delete macro variables from the space-delimited list submitted in the
current SAS session if they exist. The macro utilizes the %symexist and %symdel macro
functions to determine if a macro exists, and delete the macro if it does exist.

Code to create macro variables (Note: these macros are created with a global scope)
%let testMacro1=1;
%let testMacro2=2;
%let testMacro3=3;

Code to create the dataset from SASHELP.VMACRO (Note: the sashelp.vmacro table will
automatically uppercase the name of the macro variable)
data vmacro;
 set sashelp.vmacro;
 where upcase(name) in ('TESTMACRO1' 'TESTMACRO2' 'TESTMACRO3');
run;

The dataset ‘VMACRO’ created from DICTIONARY.MACROS (aka SASHELP.VMACRO) shows the
newly created macros.

/*delete macro variables testMacro1 and testMacro3 and create data set to
show changes*/
%delete_macro_variables(testMacro1 testMacro3);
data vmacro_del;
 set sashelp.vmacro;

 where upcase(name) in ('TESTMACRO1' 'TESTMACRO2' 'TESTMACRO3');
run;

The dataset ‘VMACRO_DEL’ created from DICTIONARY.MACROS (aka SASHELP.VMACRO) shows
only one macro as the other two were deleted.

DIR_EXIST
 This macro will determine if a File Directory exists under a Windows Operating System.
Using the functions ‘filename’, ‘fileref’ and ‘fexist’, the macro will return 1 if the directory exists
and 0 if the directory does not exist.

Example Code and Log Output
%put Does the Directory Exist: 1=Yes, 0=No;
%put Does the Directory 'C:\WINDOWS\SYSTEM' Exist:
%DIR_EXIST(C:\WINDOWS\SYSTEM);
%put Does the Directory 'C:\NOT_REAL_DIRCTORY' Exist:
%DIR_EXIST(C:\NOT_REAL_DIRCTORY);

DSET_LENGTH_MAX

This macro calls DSET_VALUELENGTH_MAX and DSET_VARLENGTH_MAX in the order
stated. The options that exist for this macro are the same as the macros called.

When calling the macro, the user must provide a space-delimited list of datasets. If the dataset
is in the WORK library, it is not necessary to submit the dataset as WORK.<DATASET> but it is
suggested to avoid confusion if datasets from other libraries are submitted.

The optional parameters a user can enter are a space-delimited list of variables to IGNORE,
setting the system to only process character or numeric variables, and add a SUFFIX to the
modified dataset.

DSET_VALUELENGTH_MAX
 This macro will process through each variable within the dataset and apply the
maximum necessary length to store the variable. The default option of this macro is to only
process character variables.

The macro will first check that the dataset(s) submitted exists and if non-existing dataset(s) are
submitted will remove that dataset from the list and print a warning to the log. The revised list
of dataset(s) are processed one at a time. The order of the variables is maintained.

For each dataset, the macro will use PROC CONTENTS to generate the properties of the dataset.
From there, macro variables are created using PROC SQL into that will find the maximum length

necessary to store each variable. Once the maximum length is discovered, the length, format
and informat statement are submitted to apply the new properties.

DSET_VARLENGTH_MAX

This macro will apply the maximum length of matched variables from the comparison of
datasets. The default option of this macro is to only process character variables. Overall, this
macro functions similarly to ‘DSET_VALUELENGTH_MAX’ except it requires at least two datasets
be submitted and there is a matched variable between the submitted datasets.

This macro is especially useful prior to performing processes similar to ‘PROC COMPARE’ or
‘DATA MERGE’. Some of these processes require that similar variables have the same length or
will print a warning that truncation may occur. Using this macro removes any errors or warnings
that may occur.

Example code for DSET_LENGTH_MAX, DSET_VALUELENGTH_MAX and DSET_VARLENGTHMAX
data TEST_DSET_1;
 input ID col1 $ col2 $ col3 col4;
 datalines;
 1 1 1 1 1
 2 2 . 2 2
 3 3 3 3 .
 4 4 . 4 .
 ;
run;
data TEST_DSET_2;
 input ID col1 $ col2 $ col3 col4;
 datalines;
 1 111 1 11 1
 2 2 . 2 2
 3 33 3 33 .
 4 4 . 4 .
 ;
run;

%DSET_VALUELENGTH_MAX(TEST_DSET_1 TEST_DSET_2,SUFFIX=VALUE_DEFAULT);

%DSET_VALUELENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=Y,SUFFIX=VALUE_CHARONLY);

%DSET_VALUELENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=N,NUMONLY=Y,SUFFIX=VALUE_NUMONLY);
/*Notice that CHARONLY=N since the default setting within the macro function
is CHARONLY=Y*/

%DSET_VARLENGTH_MAX(TEST_DSET_1 TEST_DSET_2,SUFFIX=VAR_DEFAULT);

%DSET_VARLENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=N,NUMONLY=N,SUFFIX=VAR_ALL);

%DSET_VARLENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=N,NUMONLY=Y,SUFFIX=VAR_NUMONLY);
/*Notice that CHARONLY=N since the default setting within the macro function
is CHARONLY=Y*/

%DSET_LENGTH_MAX(TEST_DSET_1 TEST_DSET_2,SUFFIX=LENGTH_DEFAULT);

%DSET_LENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=N,NUMONLY=N,SUFFIX=LENGTH_ALL);

%DSET_LENGTH_MAX(TEST_DSET_1
TEST_DSET_2,CHARONLY=Y,NUMONLY=Y,SUFFIX=LENGTH_NUMONLY);
/*Notice that CHARONLY=N since the default setting within the macro function
is CHARONLY=Y*/

GET_FILEPATH

This macro returns the file path of the program the macro is run in and stores the value
into a macro variable. Within the macro call, the user has the option to store the returned value
in the default macro variable name ‘filepath’ or pass in a name.

The macro utilizes macro functions %length, %qsubstr, %quote, %sysget, and %sysfunc. It also
uses SAS environment variables SAS_EXECFILEPATH and SAS_EXECFILENAME. The returned file
path will be missing the ending ‘\’.

Example Code and Log Output
%get_filepath;
%put &=filepath;
%get_filepath(myMacroVar);
%put &=myMacroVar;

The Log output from running the example code shows the just running the macro, the value
returned is stored in the macro variable ‘filepath’. In the second call, the user has submitted the
name ‘myMacroVar’ to store the value in.

NUM_OBS
 This macro will return the number of observations in the submitted dataset. Using the
macro language, the macro function first tests to see if the dataset exists. If the dataset exists,
the function ‘open’, ‘attrn’, and ‘close’ are used to open the dataset, get the number of
observations and close the dataset. If the dataset does not exist the macro will return 0.

Data Step Code to generate sample dataset with 10 observations
data dset_num_obs;
 input ID ;
 datalines;
 1
 2
 3
 4
 5
 6
 7
 8
 9
 0
 ;
run;

Macro call and Log Output
%put DSET_NUM_OBS has %num_obs(dset_num_obs) observations;

As expected, the macro function returns 10 as the number of observations

SYSTEM_OPTIONS
 This macro will disable/reset and set default system options that specifically relate to
printing to the log. The system options SYMBOLGEN, MPRINT, MLOGIC, MERROR, SERROR,
QUOTELENMAX, SOURCE, SOURCE2, NOTES, and VARLENCHK are switched on/off dependent
on the mode selected. The user calls the macro and can submit 3 modes (DEFAULT, DISABLE,
RESET).

DEFAULT will set the SAS session to the default state when a SAS session is launched.
DISABLE will turn off all the system options previously mentioned
RESET will set the system options to the state found prior to using the DISABLE option

This macro utilizes the macro functions %cmpres, %let, %sysfunc, %symexist, %sysmexecdepth.
It also uses the functions getoption to attain the current setting for the system option when the
macro is called as well as setting the default system option value.

When MODE=DISABLE the macro will read the current state of the system options and save
that list to a local macro variable. Using %SYSMEXECDEPTH the depth at which the macro is
called is utilized to create a unique global macro variable that will store the current state of the
system options.

When MODE=RESET the macro will test to see if there is a global macro variable at the depth of
the macro call. If such a global macro variable exists, the macro will set the system options to
the previous state and delete the global macro variable.

It is vital that if a call using MODE=DISABLE is made, MODE=RESET should be called at some
other point at the same execution depth. Otherwise the SAS session will have the system
options turned off until either MODE=DEFAULT is used or the SAS session is closed and
reopened.

Example Code:
OPTIONS MLOGIC MPRINT SYMBOLGEN; /*Enable system options*/
%macro example_sys_options;
 %let test1=TEST1;
 %put &test1;
 %SYSTEM_OPTIONS(DISABLE);
 %let test2=TEST2;
 %put &test2;
 /*Notice that SYMBOLGEN was not printed for resolving macro variable
test2*/
 %SYSTEM_OPTIONS(RESET);
 %let test3=TEST3;
 %put &test3;
%mend example_sys_options;
%example_sys_options;
OPTIONS NOMLOGIC NOMPRINT NOSYMBOLGEN;

As stated in the example code comments, in the %put call to the macro variable ‘test2’ the
‘SYMBOLGEN’ comment is not printed.

VAR_EXIST

This macro determines if a variable exists in the submitted dataset. The user submits a
dataset and variable to search for. A ‘1’ is returned if the variable exists and ‘0’ if it is not. This
macro is based on the SASCommunity.org posting ‘Tips:Check if a variable exists in a dataset’

Using the macro language, the macro function first tests to see if the dataset exists. If the
dataset exists, the function ‘open’, ‘varnum’, and ‘close’ are used to open the dataset, get the
column number of the variable and close the dataset. If the dataset does not exist, the macro
will return 0.

Data Step Code to generate sample dataset
data VAR_EXIST_DSET;
 input ID col1 $ col2 $ col3 col4;
 datalines;
 1 1 1 1 1
 ;
run;

Example Code and Log Output
%put Does the variable exist? 1=Yes, 0=No;
%put COL2: %var_exist(var_exist_dset,col2);
%put COL5: %var_exist(var_exist_dset,col5);
%put COL2: %var_exist(var_exist_dset2,col2);/*dataset does not exist, warning
will print to log and macro will return 0*/

Notice that there is
no ‘SYMBOLGEN: …’
statement as there is
for TEST1 & TEST3

In the first call, the log output shows that col2 exists in the submitted dataset ‘var_exist_dset’
In the second call, the log output shows that col5 does not exist in the submitted dataset
‘var_exist_dset’
In the third call, the log output shows that col2 does not exist in the submitted dataset
‘var_exist_dset2’. Since the dataset ‘var_exist_dset2’ does not exist within the SAS session, a 0
is returned

Source code and additional documentation can be found here:
https://www.dropbox.com/sh/03ha1su31spmk83/AAAsDWd07aBX2uHh7r_bjF8Pa?dl=0

CONCLUSION

The SAS® Macro Facility is a useful tool to replicate values and code as needed. If used properly, it can save a
user time and effort.

REFERENCES

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
 Philip Jou
 Baylor University
 Office of Institutional Research
 One Bear Place #97032 (254) 710-8340
 Waco, TX 76798-7032 philip_jou@baylor.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://www.google.com/url?q=https%3A%2F%2Fwww.dropbox.com%2Fsh%2F03ha1su31spmk83%2FAAAsDWd07aBX2uHh7r_bjF8Pa%3Fdl%3D0&sa=D&sntz=1&usg=AFQjCNG4FCpEScbJiFiQ0k-d83iRiUGfaA
mailto:philip_jou@baylor.edu

REFERENCES:

SAS® 9.4 Macro Language: Reference, Fourth Edition
https://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#titlepage.h
tm

SAS® Sample 24590: Convert variable values from character to numeric or from numeric to character
http://support.sas.com/kb/24/590.html

SAS® Sample 24804: %SQUEEZE-ing Before Compressing Data, Redux
http://support.sas.com/kb/24/804.html

SAS® Sample 24671: Dynamically determine the number of observations and variables in a SAS® data set
http://support.sas.com/kb/24/671.html

Return value from SAS macro http://www.ryslander.com/return-value-from-sas-macro/

Art Carpenter, SGF 2008 (023-2008) The Path, The Whole Path, And Nothing But the Path, So Help Me
Windows http://www2.sas.com/proceedings/forum2008/023-2008.pdf

How to determine the executing program name and path programmatically
http://studysas.blogspot.com/2009/04/how-to-determine-executing-program-name.html

SASCommunity.org: Determining the number of observations in a SAS data set efficiently
http://www.sascommunity.org/wiki/Determining_the_number_of_observations_in_a_SAS_data_set_ef
ficiently

SASCommunity.org: Tips:Check if a variable exists in a dataset
http://www.sascommunity.org/wiki/Tips:Check_if_a_variable_exists_in_a_dataset

https://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#titlepage.htm
https://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/kb/24/590.html
http://support.sas.com/kb/24/804.html
http://support.sas.com/kb/24/671.html
http://www.ryslander.com/return-value-from-sas-macro/
http://www2.sas.com/proceedings/forum2008/023-2008.pdf
http://studysas.blogspot.com/2009/04/how-to-determine-executing-program-name.html
http://www.sascommunity.org/wiki/Determining_the_number_of_observations_in_a_SAS_data_set_efficiently
http://www.sascommunity.org/wiki/Determining_the_number_of_observations_in_a_SAS_data_set_efficiently
http://www.sascommunity.org/wiki/Tips:Check_if_a_variable_exists_in_a_dataset

