
1

 SCSUG-2016

SASGSUB for Job Workflow and SAS Log Files
Piyush Singh, Prasoon Sangwan

TATA Consultancy Services Ltd. Indianapolis, IN

ABSTRACT

SAS
®

 Grid Manager Client Utility (SASGSUB) is one of the key clients for the users to use SAS
®

 Grid

platform. SASGSUB is standard SAS
®

Grid Client Utility which may not fulfill every use case/business

need. This paper describes few techniques to enhance SASGSUB capabilities with the help of shell
scripting to enhance the default functionality of SASGSUB. It explains how to achieve the business needs
like creating Job workflows for example to execute SAS jobs after the completion of set of running jobs,
copy SAS log files from GRIDWORK to specific location without deletion from default location (deletion of
GRIDWORK files lead to SASGSUB fail to check the job's status) etc.

INTRODUCTION

SAS® Grid Manager Client Utility (SASGSUB) is one of the key clients for users to use SAS® Grid
platform. It plays a vital role in program submission, execution and monitoring. Though it supports ad -hoc
executions but is primarily used for batch mode. However, SASGSUB is a standard utility and provides a
standard set of functionalities to Grid user. But these functionalities can be well exploited to achieve the
business needs.

In this paper, we will discuss two of such techniques to exploit SASGSUB functions to customize to some
business needs.

 Execute multiple jobs in sequence.

 Execute a job after finishing the set of jobs.

 Copy SAS Log from Grid work without deleting from SASGRIDWORK directory

Before discussing further, let’s discuss the different phases of job execution. These terms will be used
frequently in this paper. A job passes through different phases of execution:

1. Submitted: - In this state, the job is submitted to grid, but it is still waiting for a compute node for
execution. During this period job waits for LSF to assign a specific node for execution. Once
compute node will be assigned, status will change to “Running”.

2. Running - At this state, the job has been assigned to a compute node and has started execution.
Until the execution is completed (with or without error), status will remain as “Running”.

3. Finished - When the job status is ‘Finished’. it signifies that the job execution has been
completed. Finished status means job is completed but it is not suggesting whether it’s finished
with or without error. The status of a successful completion of a program is verified through RC
(Return code) of the output. Any non- zero value of RC signifies that the program has been
executed with errors.

1. EXECUTE MULTIPLE JOBS IN SEQUENCE

If we need to run multiple SAS programs one after another in a sequence, then we can create a wrapper
the script with SASGSUB. Wrapper script should be written in such a way that it should wait until first
program is completed successfully. It will continue to check the status and once the first job is completed,

SASGSUB – More Than Default

2

script will automatically trigger the next job. This facility helps users not to manually wait for job
completion for submitting next dependent job.

Below script notify the users if first job was executed successfully and next was submitted. In case, if first
job failed then there is no point of triggering next job. In this case the user will be notified that first job got
failed and next is not submitted. Below is the flow chart of wrapper script (given at next page) and shows
how the script executes at backend. Below script is created to execute two programs in sequence but if
users want to run multiple jobs in sequence then this can be further enhanced with same approach.

Below is the wrapper script using SASGSUB. As shown in the below example, the script needs to be
executed with two parameters. First parameter will be the first program which needs to be executed
before start of next program as second parameter. This script can be further enhanced to increase the
functionalities or to change the sequence of execution. There are four main sections in this script as given
below:

1. This section contains the variables which need to be changed as per current installation and use

by the users. “sasgsubdir” is the location where SASGSUB is located and is being executed

from. “execloc” is temporary location which contains the temp files used during the execution.

2. This submits, the first program using gridsubmitpgm and reads the job id from the details

returned.

SASGSUB – More Than Default

3

3. We will check the status of the first program through gridgetstatus until status gets changed

from “Submitted” and “Running”. Here we are checking the execution status every 60 sec.

This can be changed as per environment and business need.

4. If status changed to “Finished” it will submit the next program and sends an email to user. If

status changed to “Failed”, it will stop the execution and notify user.

#!/bin/bash

Section : 1

sasgsubdir=/sasgsub_root/SASGridManagerClientUtility/9.4

execloc=/top/usr2455/

Section : 2

$sasgsubdir/sasgsub -gridsubmitpgm $1 > $execloc /wrkflow/nthline.txt

jobstr=$(sed -n '4p' $execloc/wrkflow/nthline.txt | awk '{ print $2 }')

jobid=${jobstr:1:5}

$sasgsubdir/sasgsub -gridgetstatus $jobid > $execloc/wrkflow/status.txt

status=$(sed -n '4p' $execloc/wrkflow/status.txt | awk '{ print $4 }'

| tr -d ":")

Section : 3

while ["$status" == "Running"] || ["$status" == "Submitted"]

do

sleep 60

$sasgsubdir/sasgsub -gridgetstatus $jobid > $execloc/wrkflow/status.txt

status=$(sed -n '4p' $execloc/wrkflow/status.txt | awk '{ print $4 }' | tr -d

":")

Section : 4

if ["$status" = "Finished"]; then

$sasgsubdir/sasgsub -gridsubmitpgm $2 > $execloc/wrkflow/nthline2.txt

jobstr2=$(sed -n '4p' $execloc/wrkflow/nthline2.txt | awk '{ print $2 }')

jobid2=${jobstr2:1:5}

echo "The first job <Job ID : $jobid> is completed and the second job <Job ID

: $jobid2> has been submitted."

elif ["$status" = "Failed"]; then

echo "The first job <Job ID : $jobid> has Failed, hence the second job is not

submitted for execution."

exit

fi

done

Working Example:

./wrkflow_job1_job4 "/top/usr2455/cwdtest2.sas" "/top/usr2455/test1.sas"

The first job <Job ID : 25704> is completed and the second job <Job ID :

2805> has been submitted.

. . .

SASGSUB – More Than Default

4

2. EXECUTE A JOB AFTER FINISHING THE SET OF JOBS

This section explains, if we need to run a program after finishing a set of jobs. It will wait until all running
job get finished. Once all given jobs are finished, it will trigger the next job and notify the user that
specified job has been submitted. It will also notify the job id for new job to the user, so that the user can
check the status of job. There are main 4 parts of below script as explained below:

1. This is the initial declaration section, which contains the variables that need to be changed as per

current installation which will be used in execution. Here we are creating the temporary directory

where the temporary files used in this script are stored. ‘loc’ variable defines the location of the

created temporary directory. ‘jobstatus’ is a variable used in this script to assign the status of

the input job IDs. ‘SASGSUBDIR’ is the location where SASGSUB is located and is being

executed from. The LSF profile is also being sourced in this section so that LSF commands can
be executed in the script.

2. Here all the validations occur. Initially the Job IDs and the SAS program are separated to different

temporary files. This section will provide error messages to the user in scenarios, if the user
doesn’t provide any input job IDs or SAS program, missing SAS program, missing Job IDs, invalid
Job IDs, invalid program, etc.,

3. After the validation step, the status of each input Job IDs is being checked in this section. It

checks the jobs which are in “Running”, “Submitted”, “Failed”, “Finished”., etc. status, If the

jobs are still running and in either “Submitted” or “Running” status, it waits until all the jobs get
completed. If any of the Jobs fail, it shows the message to user that one of the jobs failed and
exits without submitting the SAS program for execution.

4. In this final section the SAS program is submitted for execution once all of the input jobs are

executed successfully. Also the temporary directory which was created in the first step and the
temporary files are deleted. If any of the validation fails above, these temporary directory and
temporary files are deleted in the validation step itself after showing the error message to the
user.

#!/bin/bash

Section : 1

if ! [-d /top/usr2455/SASGRIDSCH]; then

mkdir /top/usr2455/SASGRIDSCH/

chmod 777 /top/usr2455/SASGRIDSCH/

fi

loc=/top/usr2455/SASGRIDSCH

jobstatus=/top/usr2455/SASGRIDSCH/jobinput

SASGSUBDIR=/sasgsub_root/SASGridManagerClientUtility/9.4

. /LSF_TOP/conf/profile.lsf

Section : 2

if ["$1" != ""]; then

for i in $*; do

echo $i

done > $loc/userinputs

cat $loc/userinputs | grep -i "/" > $loc/proglist

cat $loc/userinputs | grep -v "/" > $loc/jobids

else

SASGSUB – More Than Default

5

echo "Missing input parameters. Provide Job IDs & SAS program(Full path) for

execution!"

exit

fi

if ! [-s $loc/proglist]; then

echo "Missing input parameters. Provide SAS program(Full path)."

rm $loc/proglist $loc/jobids $loc/userinputs

rm -r /top/usr2455/SASGRIDSCH

exit

fi

if ! [-s $loc/jobids]; then

echo "Missing Job IDs. Proceeding with SAS program execution."

fi

for n in `cat $loc/jobids`; do

bhistout=$(bhist -l $n)

if ["$bhistout" == "No matching job found"];

then

touch $loc/invalidjobs

echo -n "$n " >> $loc/invalidjobs

fi

done

if [-f $loc/invalidjobs]; then

echo "Job IDs <`cat $loc/invalidjobs`> are invalid. Enter Valid Job IDs."

rm $loc/proglist $loc/jobids $loc/userinputs $loc/invalidjobs

rm -r /top/usr2455/SASGRIDSCH

exit

fi

for z in `cat $loc/proglist`; do

fileext=$(echo $z | sed 's/^.*\(....\)$/\1/')

if [-r $z -a -f $z]

then

echo "$z is readable" > /dev/null

else

echo "<$z> is either an invalid file or is not readable/accessible."

exit

fi

if [$fileext != .sas]; then

echo "<$z> is invalid. Enter a valid SAS program."

exit

fi

done

Section : 3

for n in `cat $loc/jobids`; do

$SASGSUBDIR/sasgsub -gridgetstatus $n | tail -n +4 |

awk '{print $4}' done > $loc/jobinput

while :
do

if egrep -q “Submitted|Running” "$jobstatus"; then

sleep 30

for m in `cat $loc/jobids`; do

$SASGSUBDIR/sasgsub -gridgetstatus $m | tail -n +4 |

awk '{print $4}' done > $loc/jobinput

SASGSUB – More Than Default

6

else

break

fi

done

for a in `cat $loc/jobids`;do

$SASGSUBDIR/sasgsub -gridgetstatus $a | tail -n +4 |

awk '{print $1, $2, $3, $4}'

done > $loc/failedjob

if grep -q Failed "$loc/failedjob"; then

grep Failed "$loc/failedjob"

echo "One or more of the input jobs failed. SAS program has not been

submitted."

rm $loc/proglist $loc/jobids $loc/validjob $loc/jobinput $loc/failedjob

rm -r /top/usr2455/SASGRIDSCH

exit

else

Section : 4

for f in `cat $loc/proglist`; do

$SASGSUBDIR/sasgsub -gridsubmitpgm $f

done > /dev/null

echo "SAS program has been submitted for execution."

fi

rm $loc/proglist $loc/jobids $loc/jobinput $loc/failedjob

rm -r /top/usr2455/SASGRIDSCH

Working Example:

3. COPY SAS LOG GRIDWORK DIRECTORY

Many times users want to see the SAS log file where they are running SAS program or some other
location. SAS Grid execution generates the log file but goes to standard SASGRIDWORK directory and
sometime it becomes difficult for users to navigate SASGRID directory after each job execution. There
are some SASGRID options to fetch the SAS log file but the problem is, it moves the log file from
SASGRIDWORK which will stop –GRIDGETSTATUS option to fetch the status of the specified job.
Below script provides the flexibility for user to copy the log file from SASGRIDWORK directory without
deleting. In this way –GRIDGETSTATUS will still be running perfectly fine. Below are the key parts of
script:

$./submitgsub.sh 28382 3647 2903 56842 “/top/usr2455/test.sas”

SAS program has been submitted for execution.

. . .

. . .

SASGSUB – More Than Default

7

1. This is the initial declaration section which contains the variables that need to be changed as per
current installation which will be used by the users. Here we are creating the temporary directory

where the temporary files used in this script are stored. ‘loc’ variable defines the location of the

created temporary directory. ‘SASGSUBDIR’ is the location where SASGSUB is located and is

being executed from. The LSF profile is also being sourced in this section so that LSF commands
can be executed in this script.

2. All the validations occur here. Checking whether the Job ID and the destination location where

the log should be copied are entered correctly. After this next validation is for user if there is write
access to the destination location or not. If there is no write access, then script exits and notify the
user.

3. After the validation step, the status of input Job ID is being checked in this section. It checks,

whether the input job is in “Running”, “Submitted”, “Finished” status. If the job is still running

and in either “Submitted” or “Running” status, it waits until the job get completed. If completed, it
will move to the next section.

4. In this final section the SASGSUB log is copied to the destination location, the input job has been

finished. Also the temporary directory which was created in the first step and the temporary files,
are deleted at the end of execution.

#!/bin/bash

Section : 1

if ! [-d /top/usr2455/SASGRIDSCH]; then

mkdir /top/usr2455/SASGRIDSCH/

chmod 777 /top/usr2455/SASGRIDSCH

fi

. LSF_TOP/conf/profile.lsf

loc=/top/usr2455/SASGRIDSCH/

SASGSUBDIR=/sasgsub_root/SASGridManagerClientUtility/9.4

Section : 2

if ["$1" = '']; then

echo "Job Id cannot be left blank."

exit 1;

fi

job_check=$(bhist -l $1)

if ["$job_check" = 'No matching job found']; then

echo "Job doesn't exist."
exit 1;

fi

if ["$2" = '']; then

echo "Location cannot be left blank."

exit 1;

elif ! [-d "$2"]; then

echo "Please Enter a valid destination location."

exit

elif ! [-w $2]

then

echo "There is no write permission to destination location."

exit

fi

SASGSUB – More Than Default

8

Section : 3

while

do

status=$($SASGSUBDIR/sasgsub -gridgetstatus $1 | tail -n +4

| awk '{print $4}' | tr -d ":")

if [["$status" = "Submitted" || "$status" = "Running"]];

then

sleep 30

else

break

fi

done

Section : 4

bhist -l $1 | paste -d, -s | tr -d " ," | awk -F "'" '$0=$4' > $loc/path

cp `cat $loc/path`/*.log $2

echo "The Log file has been copied."

rm -rf /top/usr2455/SASGRIDSCH/

Working Example:

CONCLUSION

SASGSUB is a very powerful client to use SAS Grid perhaps there are some limitations. But we can
create different kind of wrapper script with SASGSUB to achieve or to increase the functionalities. The
scripts given in this paper gives idea and approach. Users can further work on these scripts and modify
as per their need and requirements. This will make SASGSUB even more powerful client for SAS Grid.

ACKNOWLEDGEMENT

Authors would like to thank Lisa Mendez, SCSUG 2016 Educational Forum Co-Chair, for all her great
help and support during this conference.

./ gsublogcopy.sh 54383 “/top/usr2455”

The Log file has been copied.

. . .

SASGSUB – More Than Default

9

REEFERENCE

https://en.wikipedia.org/wiki/SAS_(software)

 “Key Requirements for SAS® Grid Users” Proceedings SAS Global Forum 2016, Las Vegas, NV, USA.
http://support.sas.com/resources/papers/proceedings16/7140-2016.pdf

“Integrating SAS® and the R Language with Microsoft SharePoint” Proceedings SAS Global Forum 2015,

Dallas, TX, USA.
https://support.sas.com/resources/papers/proceedings15/2500-2015.pdf

 “Enhancing SAS® Piping Through Dynamic Port Allocation” Proceedings of SAS Global Forum 2014,
Washington, DC, USA.
http://support.sas.com/resources/papers/proceedings14/1826-2014.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Piyush Singh Prasoon Sangwan

piyushkumar.singh@tcs.com prasoon.sangwan@tcs.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

SASGSUB – More Than Default

https://en.wikipedia.org/wiki/SAS_(software)
http://support.sas.com/resources/papers/proceedings16/7140-2016.pdf
https://support.sas.com/resources/papers/proceedings15/2500-2015.pdf
http://support.sas.com/resources/papers/proceedings14/1826-2014.pdf
mailto:piyushkumar.singh@tcs.coms
mailto:prasoon.sangwan@tcs.com

