

Parsing Useful Data Out of Unusual Formats Using SAS®

 Andrew T. Kuligowski, HSN

1

ABSTRACT

Most “Introduction to Programming” courses will include a section on reading external data; the first
assumption they make will be that the data are stored in some sort of documented and consistent format.
Fortunately, in the “real world”, a lot of the data we deal with has the same basic assumption of occurring
in a documented, consistent format – a lot of it, but not all of it.

This presentation will address some techniques that can be used when we are not dealing with cleanly
formatted data, when the data we want is in a less-than-ideal format, perhaps intermingled or seemingly
buried with unnecessary clutter. It will discuss the principles of using SAS

®
 to parse a file to extract useful

data from a normally unusable source. This will be accomplished by citing examples of unusual data
sources and the SAS Code used to parse it

Keywords: INDEX Function, INPUT Function, INPUT Statement, Parser

PARSERS - A PRIMER

The word parser will normally cause a computer-minded individual to think of a compiler or interpreter.
Both must include a parser, which determines the syntactic structure of a string of characters coded in a
high-level language. However, while correct, this is too specific a definition for our purposes. Let us use
a more generic (read: non-computer specific) definition of parse as the analysis of a string of
characters and subsequent breakdown into a group of components.

To illustrate this definition, let us cite an example which will be familiar to many SAS users. The
Copyright statement which appears at the beginning of a SAS Log contains a character string which is
unlikely to be used elsewhere in a routine: "Cary". When using an on-line editor to browse a listing which
contains a SAS Log following some “wrapper” information from a calling routine, searching for the word
"Cary" should bring the user to the start of the SAS Log. Similarly, finding the next (or last) occurrence of
the word should take us to the start of our actual listing – assuming the string is not used within the
routine itself! [See Figure 1 for an example from Z/OS MVS.] This basic example shows how a unique
character string can be used to identify and isolate a specific section of a text file for further processing.

BROWSE ----- USERID.SASRUN.LISTING ---------- CHARS ' Cary' FOUND

COMMAND ===> SCROLL ===> CSR

 NOTE: Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.

 NOTE: SAS (r) 9.1 (TS1M3)

 Licensed to COMPANY NAME, Site SITENUM.

 NOTE: This session is executing on the z/OS V01R07M00 platform.

… … …

Figure 1A - Searching for the word "Cary" at the top of a SASLOG

BROWSE ----- USERID.SASRUN.LISTING ---------- CHARS ' Cary' FOUND

COMMAND ===> SCROLL ===> CSR

 NOTE: The address space has used a maximum of 620K below the line and

 NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

1 The SAS System

 Obs Index Random1 Random2

 1 1 0.79940 90

 2 2 0.58974 53

… … …

Figure 1B - Searching for the word "Cary" at the bottom of a SASLOG

2

Please note that the examples used in this paper were taken from both the MVS and Windows
environments. The concepts illustrated are independent of platform, and can be applied to any platform
on which the SAS System currently resides.

IDENTIFYING UNIQUE CHARACTER STRINGS

The most important aspect of writing a data parser is the analysis performed by the humans making the
request and writing the routine. They must determine exactly what information in the file to be processed
should be considered useful, and what is to be categorized as noise. “Noise” can be rejected, while
“useful” data falls into two categories:

 data to be kept and subsequently processed, and

 identifiers that help to determine the difference between data and noise.

In many situations, the identifiers are easy to recognize – for the human(s) analyzing the problem, and for
the routine they end up creating. In others, the process of determining what will identify useful data can
be quite complex. Further, once a rule is defined, it is often punctuated with exceptions that must be
dealt with via extra code.

Let us re-examine the “Cary” example cited above to clarify this point. In our earlier example, the search
could be handled simply by passing in the string “Cary” – a find against this string would locate the
address for SAS as printed at the top and bottom of the SASLOG. This assumes that the word does not
occur anywhere else in the output under examination, which is not always accurate – “Cary” could be
used in a comment string, or as a variable name, or within the output data, or virtually anywhere. In those
cases, it might be necessary to expand the string and look for “Cary, NC”, or even “Cary, NC, USA”. (The
latter version of the expanded string introduces yet another problem – the precise string is not universal.
The version of this string at the top of the SASLOG has a comma and space between “NC” and “USA”,
while the one at the end has a space but no comma. This is yet another challenge to be dealt with when
determining the appropriate identifiers.)

INPUT STATEMENT: NAMED INPUT

The first technique to be discussed is one that has come “bundled” in base SAS for years – Named
Input. Named Input is one of the four types of input described in the SAS documentation, and is probably
the most rarely used of those four. With Named Input, the data to be read must be in the form
fieldname=value. (An aside: SAS documentation used to state that this technique could not be combined
with other input styles – list, formatted, and column – in the same INPUT statement. That has been
proven false and has been corrected; other styles can be used, providing they occur before the first
instance of Named Input. Once the first fieldname= is encountered on the INPUT statement / input data,
all other variables on the statement must follow that same fieldname=value pattern.)

Named Input can be used as the basis of a data parser in that it specifically examines a line of input for a
given string, and then uses that string to read in a requested piece of data. (See Figure 2 for a simple
example of Named Input.)

DATA Example2;

 INPUT RANDOM3=;

 DATALINES4;

RANDOM3=94

RANDOM3=334

RANDOM3=966

RANDOM3=809

RANDOM3=934

RANDOM3=889

;;;;

proc print uniform; run;

The SAS System

Obs RANDOM3

1 94

2 334

3 966

4 809

5 934

6 889

Figure 2 – Simple example of Named Input

As an aside, it is worth mentioning that Named Input has one big advantage over other forms of input –
the variables on the INPUT statement do not need to be in the same order as they occur in the actual
data. This can result in an entire line being processed

It should also be noted that variables do not necessarily even have to be explicitly listed on the INPUT
statement in order to be read in using Named Input. Any variable previously defined within the DATA
Step, such as with a LENGTH or INFORMAT statement, will also be identified and processed when SAS
deals with Named Input. This may be precisely what the coder wanted. However, since the traditional
“field name / value” pair relationship is being augmented, it may also result in additional data being
unexpectedly read and stored. The coder is advised to be aware of this when writing a DATA step using
Named Input.

This “feature” has an unfortunate side effect – the inverse is also true. If the Input statement is
processing Named Input and a “fieldname=value” pair is encountered that is not identified on the INPUT
statement or elsewhere in the DATA step, SAS will report that absence via a NOTE: In addition, if the
requested field is not present on a given input line, SAS will report that fact, as well. (Please see Figure 3
for an example of this interaction. The input data has been slightly enhanced from Figure 2; an additional
value has been added to each line. In addition, a header line inserted at the top to illustrate another
condition found when parsing input data – not every line may contain valid data.)

DATA Example2;

 INPUT RANDOM3= ;

DATALINES4;

Sample Header Line

1 RANDOM2=94 RANDOM3=94

2 RANDOM2=334 RANDOM3=334

3 RANDOM2=966 RANDOM3=966

4 RANDOM2=809 RANDOM3=809

5 RANDOM2=934 RANDOM3=934

6 RANDOM2=889 RANDOM3=889

;;;;

proc print uniform; run;

47 DATA Example2;

48 INPUT RANDOM3= ;

49 DATALINES4;

NOTE: EQUAL SIGN not found.

NOTE: NAME, '1 RANDOM2' is not defined.

RULE: ----+----1----+----2----+---

951 1 RANDOM2=94 RANDOM3=94

RANDOM3=94 _ERROR_=1 _N_=2

NOTE: NAME, '2 RANDOM2' is not defined.

952 2 RANDOM2=334 RANDOM3=334

RANDOM3=334 _ERROR_=1 _N_=3

NOTE: NAME, '3 RANDOM2' is not defined.

953 3 RANDOM2=966 RANDOM3=966

RANDOM3=966 _ERROR_=1 _N_=4

NOTE: NAME, '4 RANDOM2' is not defined.

954 4 RANDOM2=809 RANDOM3=809

RANDOM3=809 _ERROR_=1 _N_=5

NOTE: NAME, '5 RANDOM2' is not defined.

955 5 RANDOM2=934 RANDOM3=934

RANDOM3=934 _ERROR_=1 _N_=6

NOTE: NAME, '6 RANDOM2' is not defined.

956 6 RANDOM2=889 RANDOM3=889

RANDOM3=889 _ERROR_=1 _N_=7

NOTE: The data set WORK.EXAMPLE2 has

 7 observations and 1 variables.

… …

Figure 3 – Enhanced example of Named Input (with issues)

The resulting dataset will most likely be close to what is expected – except for the missing value stored in
the first observation. However, the cautionary NOTEs in the SASLOG could – and this author argues that
they should – cause some concern for the analyst upon execution. The coder could decide to simply
suppress the NOTEs – but this noncreative and/or rushed approach could prevent other, unexpected
NOTEs from being displayed, as well! The coder could add some processing to address these issues –
perhaps an OUTPUT statement to prevent undesirable lines from affecting the output dataset, plus some
allowance for the additional unspecified variable at the beginning of each input line. (The resulting code
can be found in Figure 4.) However, this modification does not address the biggest drawback with using

The SAS System

Obs RANDOM3

1 .

2 94

3 334

4 966

5 809

6 934

7 889

Names Input in this fashion – this approach only works if the text string is in “fieldname=value” form! It
appears that a more robust mechanism to input this data would be appropriate.

DATA Example2(KEEP=RANDOM3);

 RETAIN RANDOM2 8 ;

 INPUT dummyval $CHAR1.

 RANDOM3= ;

 IF RANDOM3 ^= . THEN OUTPUT;

DATALINES4;

Sample Header Line

1 RANDOM2=94 RANDOM3=94

2 RANDOM2=334 RANDOM3=334

3 RANDOM2=966 RANDOM3=966

4 RANDOM2=809 RANDOM3=809

5 RANDOM2=934 RANDOM3=934

6 RANDOM2=889 RANDOM3=889

;;;;

proc print uniform; run;

66 DATA Example2(KEEP=RANDOM3);

67 RETAIN RANDOM2 8 ;

68 INPUT dummyval $CHAR1.

69 RANDOM3= ;

70 IF RANDOM3 ^= . THEN OUTPUT;

71 DATALINES4;

NOTE: EQUAL SIGN not found.

NOTE: The data set WORK.EXAMPLE2 has 6

 observations and 1 variables.

NOTE: DATA statement used (Total

 process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

79 ;;;;

80 proc print uniform; run;

NOTE: There were 6 observations read

 from the data set WORK.EXAMPLE2.

NOTE: PROCEDURE PRINT used (Total

 process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

Figure 4 –Enhanced example of Named Input with additional “clean-up” coding applied

INPUT STATEMENT: “@ <string>

Most coders learn how to use column pointers on INPUT statements early in their SAS coding careers. A
command line such as “INPUT @ 1 variable_name ;” is an elementary component of Base SAS; it

causes SAS to move the column pointer to position 1 of the current line and read the information that
begins in that location, populating “variable_name”. However, many SAS coders – including a good
number of veteran SAS coders – do not realize that SAS added a parallel syntax that can be used to
move the column pointer based on character strings.

“INPUT @ “string” variable_name ;” will search the current input line for the value specified by

“string”. It will move the column pointer to the position immediately to the right of the value in “string”, and
will begin reading the value to be stored in “variable_name” from that location forward. Please note that
the command will accept either a hard coded literal quoted string or a character variable. The variable
provides greater flexibility, but the examples cited in this work will use the hard coded quote for clarity.

It should be stressed that the value contained in “string” will not actually be read in and stored by the
INPUT statement (unless the coder clearly – and often cumbersomely – causes that to occur). For
example, a routine looking for 4 digit years in the current century might contain the line:

INPUT @ “20” the_year ;

The values contained in “the_year” will contain only two digits each – remember, the column pointer was
positioned to the right of the string “20” and does not actually process it. (This particular piece of code
may also lead to confusion since the string “20” may appear to be a valid numeric value. The quotation
marks around “20” show that the code is clearly not positioning the column pointer at position 20, but that
might not be clear if the code is only given a quick cursory glance. A well-placed comment may assist
those who have to test, debug, and maintain this particular code – and the reader is reminded the person
responsible for testing and subsequent maintenance is often the original author of the routine!)

The SAS System

Obs Random3

1 94

2 334

3 966

4 809

5 934

6 889

The example specified in Figure 3 (bypassing the enhancements added for Figure 4) can be modified to
take advantage of the INPUT statement’s ability to position the pointer with a character value. This is a
trivial change to type in, as demonstrated in Figure 5 below. The “fieldname=” will be preceded by an “@”
to denote a line pointer, the string we are searching out will be surrounded by quotation marks, and a new
reference to the variable to be process must be inserted. (In our earlier Named Input example,
“Random3” served both as the string to be located and the variable to be populated.)

DATA Example2;

 INPUT @ "RANDOM3=" Random3 ;

DATALINES4;

Sample Header Line

1 RANDOM2=94 RANDOM3=94

2 RANDOM2=334 RANDOM3=334

3 RANDOM2=966 RANDOM3=966

4 RANDOM2=809 RANDOM3=809

5 RANDOM2=934 RANDOM3=934

6 RANDOM2=889 RANDOM3=889

;;;;

proc print uniform; run;

66 DATA Example2;

67 INPUT @ "RANDOM3=" Random3 ;

68 DATALINES4;

NOTE: SAS went to a new line when INPUT

 @'CHARACTER_STRING' scanned past

 the end of a line.

NOTE: The data set WORK.EXAMPLE2 has

 6 observations and 1 variables.

NOTE: DATA statement used (Total

 process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

76 ;;;;

77 proc print uniform; run;

NOTE: There were 6 observations read

 from the data set WORK.EXAMPLE2.

NOTE: PROCEDURE PRINT used (Total

 process time):

 real time 0.00 seconds

 cpu time 0.00 seconds

Figure 5 – Example of Input statement : column pointer using character value

The reader will note the offending error messages that were encountered using Named Input have been
eliminated with this method. However, a new message has replaced them, advising that the INPUT
statement moved to a new line to look for the string. Again, this message may be acceptable to the coder
who wrote the code, the testers who validated the code, and the analysts who run their code. If so, no
further modifications would be needed and the job could be considered complete. However, it is likely
that one or more of those individuals – or those above them in the hierarchy – would be bothered by the
presence of any NOTE over and above the ones specifying dataset name, size, and execution time! In
that case, yet more robust code would be required.

The SAS System

Obs Random3

1 94

2 334

3 966

4 809

5 934

6 889

6

USEFUL CHARACTER FUNCTIONS

Long-time SAS users are most likely familiar with INDEX, a common function that is used to explore
character strings. INDEX(source-string, search-string) will return a number denoting the

first occurrence of a search string within a source string, or a 0 if the search string is not present. This
function can be used as the basis for logic to augment the INPUT @ “string” logic discussed earlier.
Figure 6 shows how the code in Figure 5 could be slightly enhanced with the INDEX function to eliminate
the extra NOTEs in the SASLOG.

DATA Example2C;

 INPUT @ ;

 IF INDEX(_INFILE_,"RANDOM3=")

 > 0 THEN DO;

 INPUT @ "RANDOM3=" Random3 @;

 OUTPUT ;

 END;

DATALINES4;

… <data inserted here> …

;;;;

proc print uniform; run;

90 DATA Example2C;

91 INPUT @ ;

92 IF INDEX(_INFILE_,"RANDOM3=")

93 > 0 THEN DO;

94 INPUT @ "RANDOM3=" Random3 @;

95 OUTPUT ;

96 END;

97 DATALINES4;

NOTE: The data set WORK.EXAMPLE2C has

 6 observations and 1 variables.

Figure 6 – Using Character Function INDEX to enhance character search

Notice that the extraneous NOTEs are no longer present. (The output from PROC PRINT was omitted
intentionally – the reader is probably sick of seeing that 6 line PROC PRINT listing by this point!)

Before moving on, the _INFILE_ variable used in the example should be discussed. This is a special
automatic (internal only, not written to the output dataset) SAS variable that contains the line most
recently read from the input file. You can obtain a similar result by specifying the _INFILE_=<variable>

option on the INFILE statement. It is a useful device to process the contents of the current input line
without having to know or validate anything specific about the contents of that line.

The INDEX function cited is a valuable tool in this case, but it may not be sufficient in other examples.
The function returns the specific position in the search string where the first occurrence of the target string
is located. What if the target being sought is contained multiple times within a string? Or what if there are
two targets – the code only looking for the second target if the first is found? Older SAS code handled
this type of problem using DO loops. Nowadays, the coder is encouraged to expand their horizon and
look at the newer SAS character functions; in this case, the FIND() function. Like INDEX, FIND will

search for a given target string within a source string. However, FIND can start at any position within the
source string, and can search forwards or backwards within that source string!!

Veteran coders who have not looked into the changes and enhancements to Base SAS are missing out
on a number of useful updates, including many functions that can be used to handle character strings.
Let us list out just a few of them:

 ANYALPHA(source-string <, startpos>) Returns the position of the first alphabetic

character in the source string (by default, starting at position one, but that can be overridden), or
0 if there are no alphabetic characters in the source string.

 ANYXDIGIT(source-string <, startpos>) Returns the position of the first valid

hexadecimal numeric character in the source string (by default, starting at position one, but that
can be overridden), or 0 if there are no hexadecimal characters in the source string.

 To conserve space in this presentation, the reader is encouraged to refer to the online SAS
Language Reference: Dictionary manual to explore similar functions, such as ANYALNUM,

ANYDIGIT, ANYUPPER, and others – there are 13 total functions in the “ANY” family defined

under SAS 9.1.3!

 In addition, each of the 13 “ANY” functions has a mirror image “NOT” function. For example,
NOTALPHA returns the position of the first non-alphabetic character in the source string

Of course, there are several other functions – let’s maintain terminology and call them “veteran functions”
since they have been a part of the language for decades – to deal with character values. These may
prove useful when parsing lines of input data, and can also be a valuable part of the parser’s toolkit:

 SUBSTR(source-string, startpos <, length>) returns the portion of the source string

starting with the position specified by the second parameter “startpos” for a length of “length”
characters. If length is not specified, then the entire remaining portion of the source string is
used.

 VERIFY(source-string, search-string) is sort of (but not quite) the mirror image of

INDEX. VERIFY scans the source string and returns the position of the first character that is not
present in the search string, or 0 if all characters are present.

 SCAN(source-string, word-num<, delimiters>) separates the source string into

words, as defined by the default (or overridden) delimiters, and returns the N
th
 word as specified

by “word-num”.

 COMPARE(string1, string2<, modifiers>) returns a 0 if the two strings match, or the

position of the 1
st
 character where the strings differ. Optional modifiers can be used to ignore

case, leading blanks, etc.

In addition, the reader may find the character handling capabilities of the Perl Regular Expressions (PRX)
to be quite useful. These are outside the scope of this presentation. The reader is encouraged to check
out one of the several fine works on the topic that were presented at earlier conferences; a partial list has
been included in the “References / For Further Reading” section at the end of this paper.

INPUT STATEMENT: # x <buffer>

On occasion, the coder writing a data parser may find it desirable to read multiple lines from their data
source. For example, the data necessary to populate a single observation may exist on multiple lines of
the input file. For these situations, the INPUT statement provides the coder access to the line pointer.
The coder simply follows the INPUT keyword with “# value”, where value is either a positive integer, a

numeric variable assigned to a positive integer, or an expression whose result works out to be a positive
integer. This is known as the absolute line pointer. (Figure 7 shows an example where each of these
approaches is used.) As an aside, readers may be familiar with the relative line pointer, represented by
the slash “/”. The relative line pointer can also be used, but has the disadvantage of only allowing the
INPUT statement to advance to the next line, not to return to an earlier one.

DATA TEMP;

 RETAIN pnt 2 ;

 INFILE DATALINES4;

 INPUT # 1 X

 # pnt Y

 # (pnt**2 - 1) Z ;

DATALINES;

1

2

3

4

5

6

;;;

;proc print uniform; run;

 The SAS System

 Obs pnt X Y Z

 1 2 1 2 3

 2 2 4 5 6

Figure 7 – INPUT statement with absolute line pointer

It is not possible to discuss the absolute column pointer on the INPUT statement without also referencing
the N= option on the INFILE statement. The N= option controls the number of lines that are available to
the INPUT statement; the default is 1. This is not an issue when reading in sequential order, but can
quickly become one if the reading process ceases to be sequential! Figure 8 contains a slight
modification of the code in Figure 7 – note how a small change in the line order causes the routine to
react negatively upon execution!

DATA TEMP;

 RETAIN pnt 3 ;

 INFILE DATALINES4;

 INPUT # 1 X

 # pnt Y

 # (pnt-1) Z ;

DATALINES;

1

2

3

4

5

6

;;;;

proc print uniform; run;

55 DATA TEMP;

56 RETAIN pnt 3 ;

57 INFILE DATALINES4;

58 INPUT # 1 X

59 # pnt Y

60 # (pnt-1) Z ;

61 DATALINES;

ERROR: Old line 63 wanted but SAS is

 at line 64.

 Use: INFILE N=X; , with a

 suitable value of x.

RULE: ----+----1----+----2----+-

64 3

pnt=3 X=1 Y=3 Z=. _ERROR_=1 _N_=1

NOTE: The SAS System stopped processing

 this step because of errors.

WARNING: The data set WORK.TEMP may be

 incomplete. When this step

 was stopped there were 0

 observations and 4 variables.

WARNING: Data set WORK.TEMP was not

 replaced because this step

 was stopped.

Figure 8 – INPUT statement with absolute line pointer

LOOPING / CONDITIONAL EXECUTION

The main thing that separates parsing from other types of input is the decision-making process that must
occur during reads. The questioning starts with “Does this line contain valid pieces of information –
directly or indirectly – or can it be rejected outright?” It could continue with “Do we want to keep the
information in this line, or is it simply a marker to denote some other information that we want?” “Then, it
might further branch to “How much valid information is contained in this line? Where in the line is it, and
what format does it fall in?” etc. etc.

There are two types of conditional clauses that can prove useful in this effort:

 IF expression– THEN / ELSE will evaluate the results of the expression. If true, the code

following the THEN loop will be executed. If not, the code following the ELSE expression will be
invoked. ELSE is optional; if not present, then there will be no “special” code executed should the
expression be evaluated as false, and the routine will continue unconditionally from that point.
NOTE: The results of a Boolean true condition will be stored as a 1, and a false stored as 0.
However, any non-zero value will be considered to be “true” during evaluation, while zero and
missing values are treated as “false”.

 SELECT <expression> / WHEN <expression / … / OTHERWISE can be used when

dealing with several potential alternatives. (IF-THEN / ELSE IF / … ELSE can also be used.) At
least one WHEN clause is required; only the first one deemed to be true will be executed. (Most
of the time, the expressions are coded such that they are mutually exclusive – only one WHEN
clause will resolve to true – but this is not a coding requirement. As with ELSE above, the
OTHERWISE is optional. Its absence will result in no conditional code being executed should
none of the expressions be resolved to be true, and the routine will continue from that point.

The default for each of these is to execute a single command. This can be extended with a DO command,

which will cause all subsequent statements to be bundled together until terminated by an END command.

There are also two types of conditional loops that can be employed in a data parser:

 DO WHILE expression; will evaluate the results of the expression, and if true, execute the

next set of statements until a closing END statement is encountered. The expression is

evaluated before the loop is executed, so it is possible that the loop may never execute if the
expression is immediately evaluated to be false.

 DO UNTIL expression;, like DO WHILE, will evaluate the results of the expression, and if

true, execute the next set of statements until a closing END statement is encountered. Unlike DO
WHILE, the expression is evaluated at the completion of the loop (the END statement), so the
loop will always execute at least once.

It is common coding practice to have code in the expression or within the loop that will potentially cause
the expression to be altered to false. For example, the expression may contain an iterative that will
increment a counter up to a specified limit. Failing this, it is also possible to include an IF-THEN
statement within the loop that will execute a LEAVE statement when evaluated to be true – LEAVE will

terminate the execution of the current DO / END block and leave the block. On occasion, both constructs
will be used, with the loop scheduled to occur for a set number of iterations, but with the loop potentially
terminating early should some second condition be judged to have occurred.

PUTTING IT ALL TOGETHER

The most challenging – and the author would argue, rewarding – aspect of a parser is putting all of the
requirements and tools together to solve a given problem. Of course, not every coding trick and function
will prove necessary or useful in solving any individual problem, just as a mechanic would not use every
tool in his toolbox to fix each malfunctioning automobile! The experienced and creative coder will select
the most appropriate methods to resolve the situation at hand, knowing that an equally talented coder
might select a different subset in the same situation and produce an equally correct conclusion!

To illustrate the point, let us examine a canned example – a form letter containing an embedded table
with US government-mandated nutritional information in the format standard when reporting that
information on product packaging. (See Figure 9 for an annotated illustration of our input data.)

10

Using the definitions at the beginning of this presentation, we can determine that the first half of the
document and the last few lines can be considered noise, which can safely be ignored. The line
“Nutritional Information” is an identifier – it is not necessary to retain this line, but it signifies the
separation between noise and actual data. The blank line at the end of the table performs the inverse
function – it separates the data from remaining noise. The remaining lines between those two identifiers
contain the table of nutritional information that is to be processed by the routine.

An examination of the table that we have identified reveals that there is one banner line at the top, which
can be parsed to obtained product names. This row is clearly identified by the “Amount per serving”
label. However, there is an additional “trick” – some column headers contain a single word, while one of
them contains 2 words separated by a single blank character. There are several methods that could be
used to resolve this issue; the technique used in our example was to examine the line character by
character. Any non-blank character is assumed to be part of a label, while the presence of multiple
consecutive blanks is assumed to denote the conclusion of a label. (Single blank characters could be
part of the label.) Of course, we could handle it with an INPUT statement and column pointers if the table
size was fixed; however, the whole point of a parser is that this is a luxury that cannot be assumed!

The remainder of the table has a few other challenges. To start with, some components have two values
in each column – one denoting the value as a number of units, and the other reflecting it as a percentage.
Other items only have one value in the column. Further, the position of the number for those “one-value”
components is inconsistent, with some centered and others positioned on the left side of the column. Our

Figure 9 – Sample form letter with embedded table

11

routine “cheats” – it has a list of the line items that only contain one value for each food item – the
“Calorie” lines – and handles those separately from the rest that are assumed to have two values each.

A further complication is that some of the values have a unit symbol following them while others do not.
We handle this by checking each number for the presence of an alpha character – if one is found, we
separate it from the number and store it separately, calling it “unit”. (Those numbers without units are
assumed to be percentages and handled appropriately – unless their label reflects “Calories” , in which
case an appropriate unit is assigned.)

The resulting code, which can be examined in Figure 10A and 10B, reflects one technique to solve this
problem. (The resulting SAS dataset is displayed in Figure 11.) Please note that it is not the intention of
the author to thoroughly walk through the code in this text. Rather, the prose covers the sample code at a
high level; and the reader is encouraged to examine the code in detail. Certain constructs were selected
for the purpose of illustrating selected points from the text; it is possible that by re-examining the original
problem at a later date, an entirely different solution may emerge! Every coder’s experience and
personal preferences will result in their own unique resolution to the situation. Some will be more elegant
than others; some may use newer or more advanced coding techniques than others. It should be noted
that our example is quite small; as such, there was no emphasis placed on efficiencies. Parsers written
for larger tables, especially ones that will execute on multiple occasions, should not take efficiencies for
granted. Part of testing should include an analysis on execution time; any results in this area that are
deemed unacceptable should be revisited. Of course, it may prove out that the problem is so complex
that the “inefficient” code could run faster than any other alternatives that are examined!

WARNING - Do You Really Need to Write a Parser?

This paper would be incomplete without a warning: There are often better alternatives to a data parser.
The challenge of identifying the proper pattern(s) and satisfaction in successfully writing a routine to
locate / use them can sometimes blind even the most diligent developer (or manager) from pursuing a
less intensive coding approach.

Finally, do not eliminate manual intervention from consideration. In some cases, it would be quicker to
have someone manually type the data into a sequential dataset and proofread it than it would be to write
and test a parsing routine to automate the process. This is especially true for "one-time-only" requests; if
the request is for an ongoing process, a parser is more likely to be cost justified.

WHAT WILL THE (IMMEDIATE) FUTURE HOLD?

This presentation was prepared prior to the official release of SAS Version 9.2, which began distribution
in 2008. This release held new options and constructs available to provide additional options to the
individual wanting to write a data parser. For example, it is well documented that the default delimiter on
a non-CSV input file is a single blank ‘ ‘, and that it is possible to override that default with the
DELIMITER=‘ ’ (usually shortened to DLM=‘ ’) option on the INFILE statement. Version 9.2

introduced a new option, DLMSTR=‘ ’, that will permit the presence of the specified set of multiple

characters to act as a delimiter! Many SAS users, perhaps most by this time, are using SAS 9.2; if you
have not yet upgrade, please check with your local administrator.

12

DATA Example4;

 RETAIN KeepRec_Ind 0;

 LENGTH Product_Label $ 80. ; *** MANDATORY DUE TO 'DO UNTIL' stmt! ***;

 LENGTH NextChar $ 1. ;

 INFILE 'C:\HOW\Kuligowski\Example4.txt';

 INPUT ;

 * Indentify start of the nutritional table. ;

 IF INDEX(UPCASE(_INFILE_), 'NUTRITIONAL FACTS') > 0 THEN DO;

 PUTLOG 'Start of Nutritional Table identified' ;

 KeepRec_Ind = 1 ;

 END;

 * Identify body of the nutritional table. ;

 ELSE IF INDEX(UPCASE(_INFILE_), 'AMOUNT PER SERVING') > 0 THEN DO;

 PUTLOG 'Body of Nutritional Table identified' ;

 KeepRec_Ind = 2 ;

 LengthStr = LENGTH(TRIM(_INFILE_)) ;

 ScanPos = LENGTH('AMOUNT PER SERVING');

 DO WHILE(ScanPos < LengthStr);

 ScanPos = ScanPos + 1 ;

 NextChar = SUBSTR(_INFILE_, ScanPos, 1);

 IF NextChar = ' ' OR ScanPos = LengthStr THEN DO;

 IF ScanPos = LengthStr THEN DO;

 OneBlankInd = 1;

 Product_Label = TRIM(Product_Label) || NextChar ;

 END;

 IF OneBlankInd AND Product_Label ^= ' ' THEN DO;

 Product_Cnt + 1;

 OUTPUT;

 OneBlankInd = 0;

 Product_Label = '';

 END;

 ELSE OneBlankInd = 1;

 END;

 ELSE DO;

 IF OneBlankInd THEN DO;

 Product_Label = TRIM(Product_Label) || ' ' || NextChar ;

 OneBlankInd = 0;

 END;

 ELSE Product_Label = TRIM(Product_Label) || NextChar ;

 END;

 END;

 KeepRec_Ind = 3;

 END;

 * Identify termination of the nutritional table. ;

 ELSE IF KeepRec_Ind = 3 THEN DO;

 IF _INFILE_ = " " THEN DO;

 PUTLOG 'End of Nutritional Table identified' ;

 KeepRec_Ind = 0 ;

 END;

 ELSE DO;

 Category = PUT(_INFILE_, $20.) ;

 IF UPCASE(Category) IN ('CALORIES:', 'CALORIES FROM FAT',

 ' TRANS FAT', ' SUGARS', 'PROTEIN') THEN DO;

 ParseCnt = 3;

 ParseDivideInd = 0;

 END;

 ELSE DO;

 ParseCnt = 6;

 ParseDivideInd = 1;

 END;

… … …

Figure 10A– Sample code to parse table out of form letter (Part 1 of 2)

13

… … …

 ParseStr = SUBSTR(_INFILE_, 21);

 DO ParseLoop = 1 TO ParseCnt ;

 Value = SCAN(ParseStr, ParseLoop);

 IF ParseDivideInd THEN Product_Cnt = ROUND(ParseLoop / 2);

 ELSE Product_Cnt = ParseLoop ;

 Unit_Start = ANYALPHA(Value);

 IF Unit_Start THEN DO;

 Value_Num = INPUT(SUBSTR(Value, 1, Unit_Start - 1), 10.);

 Value_Unit = SUBSTR(Value, Unit_Start);

 END;

 ELSE DO;

 Value_Num = INPUT(Value, 10.);

 IF Category =: "Calorie" THEN Value_Unit = 'cal' ;

 ELSE Value_Unit = "%";

 END;

 OUTPUT;

 END;

 END;

 END;

RUN;

PROC SORT DATA=Example4;

 BY Product_Cnt ;

RUN;

DATA Example4;

 LENGTH Product_Name $ 44. ;

 RETAIN Product_Name ' ';

 SET Example4;

 BY Product_Cnt ;

 IF FIRST.Product_Cnt THEN Product_Name = TRIM(Product_Label);

 IF ^FIRST.Product_Cnt THEN OUTPUT;

RUN;

PROC PRINT uniform;

 var Product_Cnt Product_Name Category Value Value_Num Value_Unit ;

RUN;

Figure 10B– Sample code to parse table out of form letter (Part 2 of 2)

 Product_ Value_ Value_

Obs Cnt Product_Name Category Value Num Unit

 1 1 Troughburger Calories: 1480 1480 cal

 2 1 Troughburger Calories from Fat 760 760 cal

 3 1 Troughburger Total Fat 84g 84 g

 4 1 Troughburger Total Fat 130 130 %

 5 1 Troughburger Saturated Fat 38g 38 g

 6 1 Troughburger Saturated Fat 192 192 %

 7 1 Troughburger Trans Fat 5g 5 g

 8 1 Troughburger Cholesterol 310mg 310 mg

 9 1 Troughburger Cholesterol 104 104 %

 10 1 Troughburger Sodium 2760mg 2760 mg

… … …

 42 3 GassyCola Cholesterol 0mg 0 mg

 43 3 GassyCola Cholesterol 0 0 %

 44 3 GassyCola Sodium 40mg 40 mg

 45 3 GassyCola Sodium 2 2 %

 46 3 GassyCola Total Carbohydrates 172g 172 g

 47 3 GassyCola Total Carbohydrates 58 58 %

 48 3 GassyCola Dietary Fiber 0g 0 g

 49 3 GassyCola Dietary Fiber 0 0 %

 50 3 GassyCola Sugars 172g 172 g

 51 3 GassyCola Protein 0g 0 g

Figure 11– Output from Sample code to parse table out of form letter

14

CONCLUSION

A data parser can be an effective tool to extract useful data from a normally unusable source. The
prospective author of a data parser using SAS should develop fluency with the syntax and options for the
INFILE and INPUT statements. They should become well acquainted with identifying and using the

various character string functions available in SAS; this is especially true for veteran SAS coders who
may not have kept pace with changes and enhancements to the language. Further, coders should also
be prepared to make judicious use of the IF-THEN/ELSE and SELECT/WHEN/OTHERWISE constructs

and the DO UNTIL and DO WHILE statements. Additionally, before commencing on a potentially

complex coding project, they should be certain that a simpler solution might not be available. However,
when necessary and done properly, a data parser can be a blessing, providing availability to data which
might have been thought inaccessible.

It is not possible to cover all aspects of this topic in a short paper or presentation. It is hoped that the
information contained in this paper will serve to stimulate the curiosity of the reader, and that they will
continue their education by researching the appropriate manuals and technical papers devoted to the
specific topics discussed within this paper. Ultimately, however, it will be through real-life trial and error
that true comprehension and retention of this knowledge will be attained.

REFERENCES / FOR FURTHER INFORMATION

Burlew, Michele M. (2002). Reading External Data Files Using SAS

®
: Examples Handbook. Cary, NC.

SAS Institute, Inc.

Borowiak, Kenneth W.. (2007). “Perl Regular Expressions 102”. Proceedings of the SAS Global Forum
2007 Conference.. Cary, NC: SAS Institute, Inc.

Cassels, David L. (2007). “The Basics of the PRX Functions”. Proceedings of the SAS Global Forum
2007 Conference. Cary, NC: SAS Institute, Inc.

Cody, Ron (2006). “An Introduction to Perl Regular Expressions in SAS 9”. Proceedings of the Thirty-
First Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

Cody, Ronald (2007). Learning SAS

®
 by Example – A Programmer’s Guide. Cary, NC: SAS Institute,

Inc.

Cody, Ron (2004). SAS

®
 Functions by Example. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2001). Class Notes: Turning External Data into SAS

®
 Data. Dunedin, FL. Self-

published.

Kuligowski, Andrew T. (2006). “DATALINES, Sequential Files, CSV, HTML and More – Using INFILE and
INPUT Statements to Introduce External Data into the SAS

®
 System”. Proceedings of the Thirty-First

Annual SAS Users Group International Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (2005). “Getting Data Into SAS

®
: INFILE and INPUT”. Proceedings of the

Eighteenth Annual NorthEast SAS Users Group Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (1994). “IDCAMS™ to SAS

®
 – The Parser Two-Step”. Proceedings of the Second

Annual SouthEast SAS Users Group Conference. Cary, NC: SAS Institute, Inc.

Kuligowski, Andrew T. (1995). “Writing a Data Parser Using the SAS

®
 System”. Proceedings of the Third

Annual SouthEast SAS Users Group Conference. Cary, NC: SAS Institute, Inc.

Langston, Rick (2007). “What’s Coming in Version 9.2 of Base SAS Software”. Unpublished speech
presented at the Opening Session of PNWSUG 2007, 16 September 2007.

15

Mason, Phil. (2006). In the Know … SAS
®
 Tips and Techniques from Around the Globe, Second Edition.

Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (1999). SAS

®
 Online Documentation, Version 8. Cary, NC: SAS Institute, Inc.

SAS Institute, Inc. (2006). SAS

®
 Online Documentation, Version 9. Cary, NC: SAS Institute, Inc.

Wikimedia Foundation, Inc. (2008). “Parsing”. http://en.wikipedia.org/wiki/Parser.

Wikimedia Foundation, Inc. (2007). “Parsing”. http://en.wiktionary.org/wiki/parse.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

The author can be contacted via e-mail as follows:
 KuligowskiConference@gmail.com

ACKNOWLEDGMENTS

Many people have contributed to my understanding of the topic over the years. In particular, for this
presentation, Peter Eberhardt and Sue Douglass thought it might be something worth researching and
documenting, and were the first to decide to invite the author to prepare and present this material. In
addition, there are all of those folks “behind the scenes” at SAS who helped ensure that the author’s initial
concept for a “hands on” workshop magically manifested itself on multiple machines at the conference(s)
at which it is presented. The author expresses his sincere thanks.

mailto:A_Kuligowski@msn.com

