
1

 SCSUG-2016

Key Reasons for SAS® Data Set Size Difference by SAS® Grid Migration
Prasoon Sangwan, Piyush Singh, Tanuj Gupta

TATA Consultancy Services Ltd.

ABSTRACT

When SAS users move from traditional departmental server to Grid environment they face many

challenges with new SAS
®

 Grid Platform settings. This paper describes one of such issue as “SAS Data

Set Size” difference from non-Grid SAS server to SAS
®

 Grid Platform. This paper explains few key

reasons like SAS Encoding, 32bit vs 64 bit SAS, BUFSIZE, Database Encoding etc. which affect the data
set size during executing SAS job to SAS Grid Platform. It explains how these factors impact the data
size and how we can address these issues to match to original size of SAS data sets. This will help users

and SAS administrators to adopt new SAS
®

 Grid platform easily and in efficient manner.

INTRODUCTION

If users are moving from non-grid to SAS Grid platform, then size difference is one of the common issues.
In fact, if users are migrating from one environment to other where both are differing by operating system,
SAS options etc. then there is more chance to have the size difference issue. Sometime database
configuration also becomes important factor which affect the size of data set. In other words, there can be
many reasons for data size issue which may be because of input data source, destination location and
execution platform.

Apart from above given factors there may be many other factors. But, we are going to discuss the
following key factors responsible for data set size issue, in this paper:

 BUFSIZE Option Impact

 SAS Encoding Impact

 32bit vs 64bit SAS Software

 Database Encoding Impact

1. SAS BUFSIZE OPTION IMPACT ON DATASET SIZE

This section explains how BUFSIZE impact the data set size. Before discussing the examples to
demonstrate the impact, let’s see what different ways to use BUFSIZE option in SAS are. This can be
used in two ways, as system and data set options in SAS session.

1.1. SYSTEM OPTION – If we will use BUFSIZE as system option, then new value for BUFSIZE will
be effective for entire SAS session. Data set created in this SAS session will use the new value
from system option. As system option, it can be defined in

<SASHome>/SASFoundation/9.4/sasv9.cfg file. Below code can be run to verify the SAS

session encoding:

proc options option=encoding;

run;

In SAS Grid environment BUFSIZE can be defined in multiple ways. If there are multiple SAS

Application servers, then this can be defined in <SASHome>/sasconfig/Lev1/<SASApp>/

SAS Data Set Science

2

sasv9_usermods.cfg file. This provides the flexibility to have multiple BUFSIZE is a SAS Grid

platform.

1.2. DATA SET OPTION - If BUFSIZE will be used as data step, it will be effective only with specified

data set. Proc contents can be used with data set to check the encoding:

data <DataSet>(bufsize=<>);

proc contents data=test;

run;

Below SAS code is creating two data sets, buf_64k with BUFSIZE 64K and buf_128k with BUFSIZE

128K. Both data steps are using BUFSIZE and writing the data sets with same input source.

libname home "$HOME";

data home.buf_64k(bufsize=64k);

 set sashelp.cars;

run;

data home.buf_128k(bufsize=128k);

 set sashelp.cars;

run;

As shown below, there are two data sets created from above SAS code. Data set buf_64k was created
with disc size 196608. Data set buf_128k was created with size 262144. Below output shows that if we
increased the BUFSIZE for data step then it increases the data set size created from that data step.

Display 1. Data Set from Linux Screen

In below code, there are two data steps. First data step is creating the data set buf_256k with

BUFSIZE=256K and next one buf_zero with BUFSIZ=0. Display2 shows that as we increased the

BUFSIZE to 256K then it increased the data set size by two times of buf_128k. When we give BUFSIZE
with ZERO in data step then it takes the default value of SAS system. As shown in Display1 buf_128k
size is 262144 and buf_zero in below screen print is with same size, which shows the default BUFSIZE
value set for SAS system is 128K.

data home.buf_256k(bufsize=256k);

 set sashelp.cars;

run;

data home.buf_zero(bufsize=0);

 set sashelp.cars;

run;

Display 2. SAS Data Sets Size from Linux Screen

SAS Data Set Science

3

Note – In above examples, BUFSIZE option is used as data set option and that’s why each data set is
being created with different disc size. If we don’t use BUFSIZE with data steps, then default BUFSIZE (in
this case it’s 128K) will be used for each data steps execution.

2. SAS ENCODING IMPACT ON DATA SET SIZE

Whenever SAS read or write SAS data sets, SAS insures that Data Set has been converted to current
session encoding before further processing. But user can give any representation to SAS to create the
target data set. For example, if user is running window SAS, the new data sets can be created for Linux
or another platform format. If user will not provide any format, then new data set will be created in current
session format/ encoding. If source data set encoding doesn’t match to session encoding, then it brings
additional task for SAS engine to perform. SAS use CEDA (cross environmental data access) to convert
the foreign data set to native format (where SAS is running) and then use for further processing.

Figure 1. Read Data to SAS Session

When user move to SAS Grid from departmental SAS servers, it become difficult for SAS administrator to
configure the SAS grid to fulfill all different encoding. Encoding difference become more critical if
organization is running SAS on multiple operating system. For example, if few users are using PC SAS
then most of the time they use “WLATIN1” encoding. If these users are moving to SAS Grid installed in
Linux environment, then they will face encoding issue in previously written code.

UTF-8 vs Latin1

Utf-8 has been one of the commonly used SAS encoding options, which take care of multiple types of
data sources. It takes four bytes to store the data, which help to print the special character properly
(generally special character are properly stored in single byte) without any data loss. So, if you are
reading a data source which contains special character, in single byte SAS session (Latin1) then you may
face data truncation. Reason is simple; SAS could not assign sufficient space for character to store in
SAS session (This will be further explained in 4

th
 topic).

Latin1 stores the data in single byte character. Since UTF-8 takes the four bytes to store the character
whereas Latin1 takes only single byte so if we create a data set in UTF-8 SAS it will take more disc space
compare to if the same data set is being created in Latin1 SAS environment.

As shown in below SAS code encode_latin1 data set is created with encoding Latin1. Then in next

data step encod_utf8 is created with UTF-8 encoding by reading encod_latin1. So, content wise both

data sets are exactly same but as per display 2, the data size for these two data sets are completely
different. The example clearly shows that, UTF-8 encoded data set takes more space to save compare to
what Latin1 encoded data set. Many times, when user read Latin1 encoded data set in UTF-8 SAS then

SAS Data Set Science

4

data set size increased by almost four times. The fundamental reason behind this is, when data set
moved to UTF-8 SAS session, then SAS started assigning 4 bytes to store a single character, where as it
was taking single byte in Latin1 SAS.

/* Below code is executed in SAS System with Latin1 encoding. */

data home.encod_latin1;

 set sashelp.zhc;

run;

/* Below code is executed in SAS System with UTF-8 encoding. */

data home.encod_utf8;

 set home.encod_latin1;

run;

As shown in below screen print, two data sets were created with different disc size. In above example

encod_latin1 data set is created on SAS system with encoding Latin1. In Latin1 environment data set

size is 122880. Then we created a new data set from encod_latin1 to encod_utf8 but this time data

set size changed to 262144. So, as we changed the encoding, data set size on disc increased.

Display 3. Data Set from Linux Screen

Note – This impact needs to be taken care before migration to new SAS environment if there encoding is
not same. If there is any downstream application reading the SAS data then we need to make sure that if
there is increase in data size then next application should be able to handle increased SAS Data Sets.

3. 32BIT VS 64BIT SAS SOFTWARE/ OPERATING SYSTEM

SAS Bit for Linux SAS Install

We can use ‘file’ command at Linux command line against the SAS executable:

file <SASHOME>/SASFoundation/9.x/sasexe/sas

The 64-bit SAS install returns something similar to:
SASFoundation/9.4/sasexe/sas: ELF 64-bit LSB executable, x86-64, version 1

(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.18, not

stripped

For 32 bit SAS install, the above command returns similar to:
SASFoundation/9.4/sasexe/sas: ELF 32-bit LSB executable, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.4, not stripped

SAS Bit for Window SAS Install
As shown below, when we launch PC SAS then it is to find SAS bit from startup log message.

SAS Data Set Science

5

For 64 bit SAS log, will show like:

X64_7PRO WIN 6.1.7601 Service Pack 1 Workstation

For 32 bit SAS, it will show like:

W32_7PRO WIN 6.1.7601 Service Pack 1 Workstation

Many times, it has been observed that when we move from 32 bit SAS to 64 bit then data size get
increased. This is because of the SAS engine architecture. There is no straight formula to represent the
data increased but this happens 64 bit SAS take more space for descriptor portion. In most of the cases
32-bit created data is not supported in 64 bit SAS. So, that migration become necessary to use these
data to 64 bit SAS.

4. DATABASE ENCODING IMPACT

Here we discuss how database encoding impacts the data set size. If database encoding doesn’t match
to SAS session, it may cause some data size differences. If there is mismatch in encoding, then it
depends how SAS is reading the data in current session. The easiest way to help in this problem is to
match the SAS encoding to database value. If changing the SAS system encoding is not possible then we

can use dbclient_max_bytes and bserver_max_bytes to help in this situation.

Before checking the effect of these options on variable length in SAS, we need to check the database
encoding which help to decide how to use database options in SAS code.

4.1. CHECK DATABASE ENCODING

Using Base SAS Code

Below SAS code can be run into SAS session and it will return the database encoding to output window
screen. This helps SAS user to check the database without connecting to database from command line. If
we can fetch the encoding value in SAS session itself, then it can be further used in SAS code if required.
Database name can be given for “path” SQL statement.

proc sql;

 connect to oracle(user="<admapp>" password="<Password>"

path="<STP322>");

 select * from connection to oracle(select * from

nls_database_parameters where parameter = 'NLS_CHARACTERSET');

 disconnect from oracle;

quit;

Output 1. SAS Output for Database Encoding

Using Database Command Prompt

PARAMETER

VALUE

NLS_CHARACTERSET

<Database_Encoding>

SAS Data Set Science

6

Below code can be run from database command line to fetch the database encoding.

STP322> select * from nls_database_parameters where parameter =

'NLS_CHARACTERSET';

Output 2. Database Encoding from Command Line

4.2. DBSERVER_MAX_BYTES AND DBCLIENT_MAX_BYTES

As discussed before, if there is mismatch in database and SAS encoding then there may be data size

difference and we can use dbclient_max_bytes and bserver_max_bytes options with SAS

Libname statement to fetch the record with appropriate length.

DBCLIENT_MAX_BYTES gives the maximum numbers of bytes to store a character to database client
side. This is same to the SAS encoding if it’s not changed explicitly. Section 4.2.1 SAS log shows the

default value of dbclient_max_bytes which is FOUR but it can be changed in SAS Libname

statement.

DBSERVER_MAX_BYTES gives the maximum numbers of bytes to store a character in database server

side. Section 4.2.1 SAS log clearly shows the default value of dbserver_max_bytes to 4.

Below examples demonstrate the effect different values of dbclient_max_bytes and

bserver_max_bytes on data set size from SAS session. If new SAS environment data set does not

match to previous then we can decide what should be the value for dbclient_max_bytes to be used in

SAS.

4.2.1. Libname without DBSERVER_MAX_BYTES and DBCLIENT_MAX_BYTES

Below example shows the Libname reference without using dbclient_max_bytes or

bserver_max_bytes in SAS code. As shown in the partial log message, the default values of these

two options are 4, which created the STPNAME and STPOPTNAME with the length 80 and 252. This is

the default Libname behavious in SAS (in this SAS session the default value for dbclient_max_bytes

or bserver_max_bytes is 4). In subsequent examples, we will see the effect of explicit use of these

options.

options sastrace='d,,,' sastraceloc=saslog;

LIBNAME testdb ORACLE PATH=STP322 SCHEMA=TEST_T5 USER=admapp

PASSWORD="Password";

proc contents data=testdb.db_cdnm;

run;

PARAMETER VALUE

-------------------- ------------

NLS_CHARACTERSET <Database_Encoding>

SAS Data Set Science

7

Partial SAS Log:
. . .

ORACLE: DBSERVER_MAX_BYTES=4 44 1418950073 no_name 0 Program

ORACLE: DBCLIENT_MAX_BYTES=4 45 1418950073 no_name 0 Program

. . .

Output 3. Output from SAS Enterprise Guide Proc Contents Results

4.2.2. LIBNAME WITH DBCLIENT_MAX_BYTES=1

In below code dbclient_max_bytes option is used with the value 1 in Libname statement. We can

see the partial log message to check the value of these options. In output window, we can see that
changing the value of dbclient_max_bytes to ONE changed the variable length of STPNAME and
STPOPTNAME to 20 and 63. If value of dbclient_max_bytes is changed from 4 (default) to one (explicit)
then variable length changed to one fourth.

We need to give appropriate value for “Path” (Database Name) and “Schema” (Database Schema name)
in below Libaname statement.

options sastrace='d,,,' sastraceloc=saslog;

LIBNAME testdb ORACLE PATH=STP322 SCHEMA=TEST_T5 USER=admapp

PASSWORD="Password"

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO

ADJUST_NCHAR_COLUMN_LENGTHS=YES

 DBCLIENT_MAX_BYTES=1 DBMAX_TEXT=32767;

proc contents data=testdb.db_cdnm;

run;

Partial SAS Log:
. . .

ORACLE: DBSERVER_MAX_BYTES=4 112 1418955281 no_name 0 Program

ORACLE: DBCLIENT_MAX_BYTES=1 113 1418955281 no_name 0 Program

. . .

Output 4. Output from SAS Enterprise Guide Proc Contents Results

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 STPNAME Char 80 $80. $80. STPNAME

2 STPOPTNAME Char 252 $252. $252. STPOPTNAME

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 STPNAME Char 20 $20. $20. STPNAME

2 STPOPTNAME Char 63 $63. $63. STPOPTNAME

SAS Data Set Science

8

4.2.3. LIBNAME WITH DBCLIENT_MAX_BYTES=2

In below code dbclient_max_bytes option is used with value 2. Output window shows that changing

the value of dbclient_max_bytes to TWO changed the variable length of STPNAME and STPOPTNAME
to 40 and 126.

options sastrace='d,,,' sastraceloc=saslog;

LIBNAME testdb ORACLE PATH=STP322 SCHEMA=TEST_T5 USER=admapp

PASSWORD="Password"

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO

ADJUST_NCHAR_COLUMN_LENGTHS=YES

 DBCLIENT_MAX_BYTES=2 DBMAX_TEXT=32767;

proc contents data=testdb.db_cdnm;

run;

Partial SAS Log:
. . .

ORACLE: DBSERVER_MAX_BYTES=4 129 1418955499 no_name 0 Program

ORACLE: DBCLIENT_MAX_BYTES=2 130 1418955499 no_name 0 Program

. . .

Output 5. Output from SAS Enterprise Guide Proc Contents Results

4.2.4. LIBNAME WITH DBCLIENT_MAX_BYTES=3

In below code dbclient_max_bytes option is used with value 3. Output window shows that changing

the value of dbclient_max_bytes to two changed the variable length of STPNAME and STPOPTNAME to
60 and 189. Variables created by this code were length of three time compare to the data set created with
DBCLIENT_MAX_BYTES=1.

options sastrace='d,,,' sastraceloc=saslog;

LIBNAME testdb ORACLE PATH=STP322 SCHEMA=TEST_T5 USER=admapp

PASSWORD="Password"

ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO

ADJUST_NCHAR_COLUMN_LENGTHS=YES

 DBCLIENT_MAX_BYTES=3 DBMAX_TEXT=32767;

proc contents data=testdb.db_cdnm;

run;

Partial SAS Log:
. . .

ORACLE: DBSERVER_MAX_BYTES=4 146 1418955654 no_name 0 Program

ORACLE: DBCLIENT_MAX_BYTES=3 147 1418955654 no_name 0 Program

. . .

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 STPNAME Char 40 $40. $40. STPNAME

2 STPOPTNAME Char 126 126. $126. STPOPTNAME

SAS Data Set Science

9

Output 6. Output from SAS Enterprise Guide Proc Contents Results

Note – From 4.2.2 to 4.2.4 the different value of dbclient_max_bytes show the change in variable

length accordingly. Based on previous SAS environment, user can select the appropriate value for
dbclient_max_bytes to match the data set size and variable length.

4.2.5. LIBNAME WITH DBSERVER_MAX_BYTES=1/2/3

SAS code in this section was executed multiple tiles with different values of

dbserver_max_bytes=1/2/3. We observed that there was no impact of using dbserver_max_bytes on

variable length in SAS data set. As per “Output 7”, for each value of dbserver_max_bytes, the

STPNAME and STPOPTNAME were created with length 80 and 252. There is no impact of using
dbserver_max_bytes on variable length.

options sastrace='d,,,' sastraceloc=saslog;

LIBNAME testdb ORACLE PATH=STP322 SCHEMA=TEST_T5 USER=admapp

PASSWORD="Password"

 ADJUST_BYTE_SEMANTIC_COLUMN_LENGTHS=NO

ADJUST_NCHAR_COLUMN_LENGTHS=YES

 DBSERVER_MAX_BYTES=3 DBMAX_TEXT=32767;

proc contents data=testdb.db_cdnm;

run;

Output 7. Output from SAS Enterprise Guide Proc Contents Results

CONCLUSION

When we move/ migrate from one SAS platform to another or SAS Grid then data size issue is one of the
common issues what application teams face. Though this paper explains many key reasons for data size
but there may be another reason as well. SAS Administrator should analyze these factors before
installing or migrating new servers, to avoid this issue.

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 STPNAME Char 60 $60. $60. STPNAME

2 STPOPTNAME Char 189 189. $189. STPOPTNAME

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 STPNAME Char 80 $80. $80. STPNAME

2 STPOPTNAME Char 252 $252. $252. STPOPTNAME

SAS Data Set Science

10

ACKNOWLEDGEMENT

Authors would like to thank Lisa Mendez, and Lizette Alonzo, SCSUG 2016 Educational Forum Co-Chair,
for accepting our abstracts, paper and for organizing a great conference.

REFERENCE

Prasoon Sangwan, Tanuj Gupta, Piyush Singh, “Key Requirements for SAS® Grid Users” Proceedings
SAS Global Forum 2016, Las Vegas, NV, USA.
http://support.sas.com/resources/papers/proceedings16/7140-2016.pdf

Prasoon Sangwan, Piyush Singh, Shiv Govind, “Integrating SAS® and the R Language with Microsoft
SharePoint” Proceedings SAS Global Forum 2015, Dallas, TX, USA.
https://support.sas.com/resources/papers/proceedings15/2500-2015.pdf

Piyush Singh, Gerhardt M Pohl, “Enhancing SAS® Piping Through Dynamic Port Allocation” Proceedings
of SAS Global Forum 2014, Washington, DC, USA.
http://support.sas.com/resources/papers/proceedings14/1826-2014.pdf

https://en.wikipedia.org/wiki/SAS_(software)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Prasoon Sangwan Piyush Singh Tanuj Gupta

prasoon.sangwan@tcs.com piyushkumar.singh@tcs.com tanuj.gupta@tcs.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

SAS Data Set Science

http://support.sas.com/resources/papers/proceedings16/7140-2016.pdf
https://support.sas.com/resources/papers/proceedings15/2500-2015.pdf
http://support.sas.com/resources/papers/proceedings14/1826-2014.pdf
https://en.wikipedia.org/wiki/SAS_(software)
mailto:prasoon.sangwan@tcs.com
mailto:piyushkumar.singh@tcs.coms
mailto:tanuj.gupta@tcs.com

