Fast Dashboards: Producing real-time dashboard using
SAS®Event Stream Processing.

From Machine Time to Human Time

Fast is a relative term. In the connected, always-on, real-time world computers can continuously send
information much faster than humans can understand, categorize or visualize it. Much of what we use
computers for is to slow down that information data stream in order to aggregate, transform, analyze

and store it for use at a future time and date.

Event stream processing is a technology used to help with this task. It is an incredibly fast, in-memory
based technology designed to examine streaming data at machine time speeds: hundred, thousands and
millions of events per second. At the same time, this technology puts that data steam into a better,

understandable context for ultimate consumption by humans.

The term dashboard has become the catch-all word to describe the grouping of tables of data and data

visualization, in a quick, conveyable format such as a web page.

Thus the term “fast dashboards” is being used in several ways. One, to demonstrate the ease of
connecting the dashboards to the streaming data. Two, to capture the time it takes for dashboard

development. Three, to depict the rate of data updates to dashboard visualizations.

The purpose of this paper is to examine several dashboard technology options and how to connect them
to SAS Event Stream Processing models. In the process, | will cover some of the issues and trade-offs

when using these technologies together.

All of the dashboard technologies are web enabled and utilize the components of HTMLS5, in particular

JavaScript, albeit, at very different levels of implementation.
| will cover 3 different dashboard technologies:

. SAE ESP Stream Viewer
. Freeboard

. D3 JavaScript

SAS® Event Stream Processing
SAS Event Stream Processing (ESP) is an in-memory analytics engine designed to work on real-time
streaming data.

ESP is lightweight and scales well. Thus, it can be run on small low powered loT edge devices to high
capacity data center and expansive cloud configuration. More importantly, it can link the data streams

between those devices and provide analysis at the different levels of devices.

ESP is made up of many components, but for purpose of this explanation the focus is on ESP Studio, ESP

Stream Viewer and the ESP Engine.
A functional diagram of SAS Event Stream Processing.

I ESP
% ESP |
<§. ‘3 2 sTUDIO JI_|1 STREAM

VIEWER

EVENT STREAM PROCESSING
ENGINE

Processes data continuously, on
the move, in-memory with very high
speed and low latency

t:;'. Apply rules and a_nalysis using a
& "% dataflow centric ESP model

Filtering, aggregation, pattern detection,
calculations, correlations, procedural, text analysis

PUBLISHING INTERFACE
SUBSCRIBING INTERFACE

ESP Studio is a visual development environment that is used to create and test ESP models.

<) | TradesDemo_1
Objects
TradesDeme_1

CONTAINERS

T Continuous Query rades

WINDOWS

M

B pggragate Ky 5MinRetention

s

Campute

L4

Copy

5MinAggregate

Counter

<

Filter -
= Source

kY (File and Socket] TradesFile

Eg 1HourRetention

% Functiona

Join

1HourAggregate

B Nosdication

.
& Pattern

Eg 24HourRetention

Procedural

Source

Text Categary

24HourAggregate

Text Context

Text Sentiment

Union

(=] Test
Properties
Source Window @
Mame:
4 Schema
+ ¢+ + @ A
Name Type Key
O o In32
T | symbol Sting]
] cumency Int32 |
7] udae Date O
[] | meses 132 |
1| price Double]

[7] Automarically generste the kay fisld

4 Retention Policy

[] timit vort ratantics

4 Publisher Connectors

+ B @

Name

Trpe

ESP Stream Viewer is the out-of-the-box dashboard tool for ESP.

® O ® [5asESP Stream Viewer % 1

& C [filexn/tmpy mviewer.htmi vl =
i Apps G sww [llsas [@lesp @l stuff @l misc [EHowa [l HTML Gommons [&]test [l dev [&] sV

SAS ESP Stream Viewer - http://esp-base:46002 | %+ &1 [@ I 2 §SaS‘

Broker Alerts
24

18

T

y I fr M restrictedTrades
Large Trades
Event # Time Opcode id symbol currency msecs price quant venue broker buyer
17450 12/31/1968 7:02:53 PM insert 9999773 IYR 87236 2226 53.14 2577 55989 1012223 [}
17451 12/31/1969 7:02:53 PM insert 9988774 IYR 87236 2226 5314 4345 55000 1012334 0
17452 12/31/1969 7:02:53 PM insert 9989775 IYR 87236 2365 5314 2000 55111 1012445 0
17453 12/31/1969 7:02:53 PM insert 9988776 IYR 87236 2365 5314 2000 55222 101556 0
17454 12/31/1969 7:02:53 PM insert 9990861 IYR 87236 2856 53.14 2000 55777 101667 0
17455 12/31/1969 7:02:53 PM insert 9999881 IYR 87236 2018 5314 2000 55777 101556 0
17456 12/31/1969 7:02:53 PM insert 9990882 IYR 87236 2918 53.14 1000 55888 101667 0
Next | Prev First Last Page 10 of 10
Events Per Second
240,000
2\
180,000
120,000
60,000
o

M totalRate

M intervalRate

ESP Engine is the computing container used to house ESP analytic models.

Three Layers of ESP models: Project, Continuous Query, Windows

ESP models as they relate to producing dashboards are made up of 3 layers: Projects, Continuous

Queries and Windows.

The functionality of ESP analytical models are group together into Projects. Projects are made up of one
or more Continuous Queries. A Continuous Query is the flow of data, broken-down into functional steps
called Windows. ESP’s Windows provide data definition, analysis and some SQL like functionality for

manipulating the flow of data through the Continuous Query and Project. Each Window provides a

snapshot of data. We can make a connection to any Window in a Project/Continuous Query.

Diagram: Example of ESP Project for receiving and manipulating the data stream. Notice in the diagram

the Project houses the Continuous Query and the Continuous Query contains linked Windows.

Project_1

Continuous_Query_1

E Source_1

% Source_2

-
S
= Source_3

? Filter_1

@) Join_1

@) Join_2

[E Aggregate_1

ﬁ Pattern_1

Connecting to the ESP data

There are many methods for connecting to ESP and its data stream. | will focus ESP’s REST interface. The

REST interface uses ESP’s Publish and Subscribe interfaces for moving data in and out of ESP. All the

dashboard technologies being covered can use REST based technologies to receive data.

REST - Representational State Transfer

REST (Representational State Transfer) is a web based architectural design style for creating scalable and
stateless, distributed systems of communication. Roy Fielding introduced REST in his 2000 doctoral

dissertation.?

. REST messages use the web standard URI’'s/URL’s and HTTP methods.
. REST uses JSON or XML data formats to represent data objects and attributes.
. HTTP methods (for example, GET, POST, PUT, and DELETE) are mapped to CRUD (create,

retrieve, update, delete) operations.

Rest is used in ESP to manage projects as well as to inject and retrieve data. Because of REST’s
adherence to HTTP methods, a web browser can be used for testing ESP’s REST interface. Browsers use
the GET http method (GET=Read) when using the URL address bar to pull information. The URI format
for ESP’s base REST address is http://espServer:port/SASESP

ESP Project Query
To pull an ESP project using a web browser, the URI used in the ULR address bar is:

http://espServer:port/SASESP/projects

Below is an example of pulling project information from ESP. Notice the Project information is returned

as XML. In addition, the ESP Model Windows are nested inside the Continuous Query and Project XML.

&« C 1t | @ sasserver.demo.sas.com:4 1001/545E5P fprojects

This 3L fle does not appear to have any style information associated with it. The document tree 15 shown below.

¥<projects:
veproject name="cocar torgue 10>
v ooontogueriess
Y EoOontoguery nasme=rogltTs
v<windows:
<window-source name="t0rque_in"/>
<window-source name="replav_in"/>
<window-copy name="C0py_1Ds"/>
<window-copy name="C0py_2mn"/>
<window-copy name="5essinn_53"/>
<window-copy name="SessiDn_12Dmn"f>
<window-union name="Merge_Clean_Signal”f>
<window-copy name="Copy_rolling_lﬂs”f>
<window-union name="Merge_ﬂlert_Signals”f>
<window-copy name="CDpy_Alert_signals_Smn"/>
<window-notification name="send alert_closeloc™/:>
<window-pattern name="Pat_cut_signal"/:
<window-aggregate name="Session_Current_HeasureS"K>
<window-agyregate name="Speed Stdlwv"/:
<window-join name="Join Stats 10s"/%>
<window-join nsme="Join Stats EZwmn"/>
<window-join nsme="Join CC™/>
<window-join name="Join GR"/>

http://espServer:port/SASESP
http://espServer:port/SASESP/projects

ESP Event Query

To pull ESP events using a web browser, the base URI used in the ULR address bar is:

http://espServer:port/SASESP/events

Also, the Project, Continuous Query and Windows need to be specified.

http://espServer:port/SASESP/events/project/continuousquery/window

To further control what event data is returned, parameters can be passed to further filter, sort and limit
the amount of data returned. Ampersands (&) are used to separate parameters. A single question mark

(?) is used between the query and parameters.

http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=

sortField&limit=1000

e Filter — Use a filter to determine what events are returned.
Examples:

filter=in(Email,fahrzeugl @sas.com) or Email=fahrzeugl @sas.com

/events/project/query/largeTrades?filter=in(broker,1012112,1012223)
/events/project/query/largeTrades?filter=in(brokerName,'Joe','Lisa')

/events/project/query/largeTrades?filter=and(gt(quant,50000),gt(price,1000))

e SortBy - The field on which to sort the results. The default sort direction is descending.
sortBy=sortField

To sort in ascending order, use sortBy=sortField:ascending

e Limit - The maximum number of events to return.
limit=number_of everts

limit =100

http://espServer:port/SASESP/events
http://espServer:port/SASESP/events/project/continuousquery/window
http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=sortField&limit=1000
http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=sortField&limit=1000
mailto:Email=fahrzeug1@sas.com

Below is an example of events returned when running an ESP REST event query.

&« = 'D ® sasserver.demo.sas.com:d 1001 /SASESP fevents/ccar_torque_10/cgl/Selected Current Walues

Thiz 3L file does not appear to have any style information associated with it The document tree is shown below

Y EEVENLI>

v <event mind0w="ccar_torque_lD/cql/Selected_Current_Ualues">
<Accel_Pedal_PDS_D>5.490196</Accel_Pedal_Pos_D>
<Lccel_Ssor_Tntal>D.136154</Accel_550r_Tntal>
<hmbient air temp>10.000000</inbient air temp>
<Ctlyst_Temp_Bkl_SSDr_1>185.DDDDDD{/Ctlyst_Temp_Bkl_Ssor_1>
<Device ID>REPLAYS07faal70504616b934d9ceSdf</Ievice_IDx
<Email>fahrzeugiizas.cowms/ Enails>
<Engine_CDDlant_Temp>88.DDDDDD</EnginE_CDDlant_Temp>
<Engine_LDad>2?.843138</Engine_LDad>
<Engine_RPH>?59{fEngine_RPH>
<Fuel_Lvl_FanLEngine_ECU>?8.4313?D</Fuel_Lvl_FrnnLEngine_ECU>
«GPE3 Latitudex>49.477222</GPS Latitudex
<GPS_LDngitude>8.28?306{/GPS_LDngitude>
<Intake_ﬂir_Temp>1?.DDDDDD</Intake_Eir_Temp>
<Intake_Hanifnld_Pressure>103.DDDDDD</Intake_Hanifnld_Pressure>
<Mass hir Flow Rater14.560000</Mass_Air Flow Ratex
<Hum Gears>S</Num Gears:
<SESSiDn_ID>REP?_9498?93992</Session_ID>
<Zpeed GPS-0.000000</5Speed GPS>
<%peed COBDx0</Zpeed OBD>
<Thr0ttle_PDs_HanifDld>88.62?450</Throttle_PDs_HanifDld>
<Timestamp>1477695453045000<,/ Timest amp s>
<Timestamp_ts>14??695483D45000</Timestamp_ts>
<Trip_Distance>38.103863</Trip_Distance>
<Trip_Time_jDurney>2194.DDDDDD<ITrip_Time_jDurney>
<TurbD_BUDSt_End_VanGauge>D.2QDD?5</TurbD_BDDSt_And_VanGauge>
<VDltage_Cnntrol_Hndule>14.l?QDDD</V0ltage_CDntrnl_Hodule>

</ eventr

v <event mind0w="ccar_torque_lD/cql/Selected_Current_Ualues">
<Accel_PEdal_PDS_D>14.901961</Accel_Pedal_PDs_D>
<Lccel_Ssor_Tntal>D.13?1?9</Accel_550r_Tntal>
<hmbient air tewp>7.000000</inbient air temps
<C02_in_g_per_knLInst>?6.135100{/COZ_in_g_per_kﬂLInst>
<Cruise_CDntrDl_ON>1</Cruise_CDntrDl_ON>
<Current_Gear>8<fCurrent_Gear>
<Device ID>REPLAYSTHLO7S5e456a2590089119e000</Ievice IDx>
<Email>fahrzeugdfsas.com</ Emails>
<Engine_CDDlant_Temp>89.DDDDDD</Engine_CDDlant_Temp>
<Engine_L0ad>54.901962</Engine_Lnad>
<Engine_Oil_Temp>85.DDDDDD{/Engine_Oil_Temp>
<Engine_RPH>1324</Engine_RPH>
<GP3_Latitude>48.908416</GP3_Latitudes
<GPS_L0ngitude>8.653558</GPS_L0ngitude>
<Intake_ iir Temp>8.000000</Intake Lir Temp:>
<Intake_ManifDld_Pressure>110.DDDDDD</Intake_Hanifold_Pressure>
<Litres_Per_1DDknLInst>2.8?8456{/Litres_Per_lDDknLInst>
<Hass_Lir_Flow_Rate>21.QTDDDD</Hass_Air_Flnw_Rate>
<MNum_GearssS</Num Gears:
<Session_ID>REP?_9462361649</Session_ID>
<3peed GPS3»110.088850</Speed GPI»

<Speed_OBD>105</Speed_OBD>
<Thrattle Pras Manifald:77 AR4ANANs Thrarrle Pa=s Manifalds

Documentation for ESP REST interface can be found here:

http://go.documentation.sas.com/#/?cdcld=espcdc&cdcVersion=4.2&docsetld=espxmllayer&docsetTar

get=pl1lycfiondsranla72zunszhg5x.htm&Ilocale=en#n03qjqoiyn8z70n17w3mp6ljh6w0

http://go.documentation.sas.com/#n03qjqoiyn8z70n17w3mp6ljh6w0
http://go.documentation.sas.com/#n03qjqoiyn8z70n17w3mp6ljh6w0

Dashboard Tools and Technologies

Each of the dashboard tools and technologies are different with their own use case. The table below is
subjective and will be explained further in this section.

TECHNOLOGY/TOOL SPEED OF CUSTOMIZABLE MOBILE SPEED OF UPDATES
DEVELOPMENT FRIENDLY

SAS ESP STREAMVIEWER | Rapid Low - Medium No Less than 1 second

FREEBOARD Rapid - Normal Medium - High Yes 1 second

D3 JAVASCRIPT Slow Extremely High Yes Less than 1 second

ESP Stream Viewer

The ESP Stream Viewer comes with ESP toolset and provides out-of-the-box event streams visualization
for ESP model designers. The ESP Stream Viewer is very tightly integrated with ESP’s Rest API. Thus,
selecting which part of the ESP model and what Windows to visualize is made very easy. However, this

tool is less customizable and would generally not be considered mobile friendly.

ESP Model Viewer

aggregate
aggregate
compute
compute

Subscriptians

Link Type; | Direct
Orientation; | Harizontal

Shaw Window Info

Manage Servers... Done

Freeboard

Freeboard is an Open Source dashboard that easily connects to ESP’s REST services. It has many of the
same visualizations found in ESP Stream Viewer and has a more managed approach to the layout of
visualization widgets. Due to the more managed layout of dashboard, Freeboard can be configured for

mobile and a variety of screen sizes.
It only takes a few quick steps to hook Freeboard to ESP’s rest services.

1. The first step is to put Freeboard in edit mode by calling the index-edit.html page from browser

window.

2. At this screen, you can add a REST data source by clicking ADD under DATASOURCES.

/[freeboard x W \

& C {y @ sasserver.demo.sas.com:4B0E0/connectedcars/index-edithtml

freeboard DATASOURCES

ADD

& LOAD FR

&= ADD FANE

3. This will bring up the DATASOURCE window. From the TYPE dropdown menu choose JSON

T = 2 [=
/[freeboard x - R iand -
& C 1t | @ sasserver.demo.sas.com: 48080/ connectedcars/index-edithtml O 9 B 5]

DATASOURCE

Select a type..

CAMCEL

4. The URLis where we add the HTTP URL of the ESP’s REST API. The URL follows ESP REST API
convention of:

http://espServer.example.com:port/SASESP/events/project/continuousquery/window

to point to an ESP Window as a data source. Notice the various HTTP methods under the
METHOD dropdown. Leave the default as GET method. Refresh defaults to 5 but Freeboard

does quite well with 1 second refreshes.

DATASOURCE

JSON

hfare infarmation

http://espServer.example.com:port/SASESP/events/project/continuousquery/window

5. Next step is to add a PANE and WIDGET to the Freeboard Dashboard. This is accomplished by
clinking ADD PANE and then clicking the plus (+) in the newly created PANE. This will bring up a

WIDGET menu where many types of visualizations widgets can be selected

[freeboard X\D- - ——— R
& C {1 @ sasserverdemo.sas.com4E0ED /connectedcars/index-edithtml | O © B s O

WIDGET

Ha
Time
Fi

6. The last step is to add a DATASOURCE to WIDGET. The drop for VALUE will guide the user to the
field values defined in the ESP REST event query. Below the field Speed_GPS was selected as the
value to use for the Speedometer WIDGET.

WIDGET

The default dark color scheme of Freeboard is faster when creating dashboards. This is due to the fact

that many of the add-ons and plug-ins will only work well with the dark color scheme.

&

a9 B2

DATASOURCES

>
Aalen Nordingen o
mn Stmggart - lngclnstad

Neuburg an,,

Heidenheim der Donau
0 Giinzburg
Reutlingen Ul o
o

B igsburg

Tublggenu

Augsburg
o

Saint-Dié'des-Vosges Balingen

* Albstach -

Map data 82016 GenBasis-DE/BHG [B2009). 6ongle Terms ofudes _Reporta map et

¥ Dachau
p(Soogle

Vehicle 1 Vehicle 2 Vehicle 3

130

S

The lighter theme took much longer to develop due to color combination inconsistency.

5=l
*

§sas

S ——
Vehicle 1 Vehicle 2

Lgrie e

< ppplications

Vehicle 1

Your Speedseay Store nonced
you wrere ruaning low on ful
There is a station converiently
located % mile on your right
Enjoy a free colfee with coupon
code 730258

1501:20

Engine On

CRUISE CONTROL

@ cruse conoion

Speed >= 30

Accelerator Pedal < 15%

o9 et

L] - GEAR BOX ANALYSIS (EXPERIMENTAL) Speed + 2 ki durning 5 sec
GOOGIE uyoet Fomatne e

1°1]

D3 JavaScript

D3 JavaScript is a visualization programming language based on and written in JavaScript. Because D3 is
a programming tool the development time for producing a dashboard is much longer. However there is
no denying that visualizations and dashboards created with D3 are very compelling. D3 is also lightning
fast due to fast loading, light-weight library written in web native JavaScript.

https://github.com/d3/d3/wiki/Gallery

Visual Index

Box Plots Bubble Chart _ Bullet Charts Calendar View

—— BRI [

ol

Non-contiguous Dendrogram Force-Directed
Cartogram o SR Graph
q = = -
[v'p .l =R
ﬂ; W 3 :
"T'
—;—:‘\)
Population Pyramid Stacked Bars Streamgraph

Circle Packing
& 2000

Sunburst Node Llnk Tree

Yoronoi Diagram
LY.

Hierarchical Edge
Bundling
b b \

https://github.com/d3/d3/wiki/Gallery

D3 has easy to use connectors to make REST calls to ESP. Below is an example of D3 function requesting

JSON formatted data. However, because returned data is all character, measures need to be changed to
numeric values. This done with JavaScript in D3 style.

d3.json("http://sasserver.demo.sas.com:41001/SASESP/events/Prj_Turbine_AC/Cont_Query_AC/Windo
w_Source_AC?limit=10000", function(error, ac_data) {

ac_event = ac_data.events;

// returned data is all character therefore measures need to be changed to numeric values
ac_event.forEach(function(d) {

d.event.wind_speed = +d.event.wind_speed;
d.event.obs_kw = +d.event.obs_kw;

N;

D3 is extremely fast able to product this 10,000 point scatter plot in under a second.

Asset Efficiency

2.000

Power (KW)

1.8004

1.600

1.400+

1.2004

1.0004

800

600

400+

200+

» ofiooee ¢ Wind Speed
16 18 '

This is the full code to the graph on the previous page. Notice the all the elements like margins and axis

can be finely controlled. Each part of the graph is broken-down into logically components in the D3
language.

<IDOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">

<link href="images/favicon.ico" type="image/vnd.microsoft.icon" rel="shortcut icon">
<title>Asset Efficiency</title>

<style>
.axis path,
.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;

}

.dot {
stroke: #000;
}

.tooltip {
position: absolute;
width: 200px;
height: 28px;
pointer-events: none;

</style>
</head>
<body>
<h3>Asset Efficiency</h3>
<div id="chart1" ></div>

<l-- script src="http://d3js.org/d3.v3.js"></script -->
<script type="text/javascript" src="js/d3.min.js"></script>

<script>

// setup chart size

var margin = {top: 20, right: 20, bottom: 30, left: 45},
width =960 - margin.left - margin.right,
height = 600 - margin.top - margin.bottom;

/*

* Value - returns the value to encode for a given data object.

* Scale - maps value to a visual display encoding, such as a pixel position.
* Map - maps from data value to display value

* Axis - sets up axis

*/

// setup x

var xValue = function(d) { return d.event.wind_speed;}, // data -> value
xScale = d3.scale.linear().range([0, width]), // value -> display
xMap = function(d) { return xScale(xValue(d));}, // data -> display
xAxis = d3.svg.axis().scale(xScale).orient("bottom");

// setupy
var yValue = function(d) { return d.event.obs_kw;}, // data -> value

yScale = d3.scale.linear().range([height, 0]), // value -> display
yMap = function(d) { return yScale(yValue(d));}, // data -> display
yAxis = d3.svg.axis().scale(yScale).orient("left");

// setup fill color
var cValue = function(d) { return d.event.turbine;},
color = d3.scale.category10();

// add the graph canvas to the body of the webpage

var svg = d3.select("#chart1").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform"”, "translate(" + margin.left + "," + margin.top + ")");

// add the tooltip area to the webpage
var tooltip = d3.select("#chart1").append("div")

.attr("class", "tooltip")
.style("opacity", 0);

d3.json("http://sasserver.demo.sas.com:41001/SASESP/events/Prj_Turbine_AC/Cont_Query_AC/Windo
w_Source_AC?limit=10000", function(error, ac_data) {
ac_event = ac_data.events;

// returned data is all character. change measures to numeric values
ac_event.forEach(function(d) {
d.event.wind_speed = +d.event.wind_speed;
d.event.obs_kw = +d.event.obs_kw;

// console.log(d);
};

// don't want dots overlapping axis, so add in buffer to data domain
xScale.domain([d3.min(ac_event, xValue)-1, d3.max(ac_event, xValue)+1]);
yScale.domain([d3.min(ac_event, yValue)-10, d3.max(ac_event, yValue)+1]);

// draw x-axis
svg.append("g")

.attr("class", "x axis"
.attr("transform", "translate(0," + height + ")")
.call(xAxis)
.append("text")
.attr("class", "label")
.attr("x", width)
.attr("y", -6)
.style("text-anchor", "end")
text("Wind Speed");

// draw y-axis

svg.append("g")
.attr("class", "y axis")
.call(yAxis)

.append("text")
.attr("class", "label")
.attr("transform", "rotate(-90)")
.attr("y", 6)
attr("dy", ".71em")
.style("text-anchor", "end")

.text("Power (KW)");

// draw dots
svg.selectAll(".dot")
.data(ac_event)
.enter().append("circle")
.attr("class", "dot")
.attr("r", 3.5)
.attr("cx", xMap)
.attr("cy", yMap)
.style("fill", function(d) { return color(cValue(d));})
.on("mouseover", function(d) {
tooltip.transition()
.duration(200)
.style("opacity", .9);
tooltip.html(d.event.turbine + "
 (" + xValue(d)
+", " +yValue(d) +")")

.style("left", (d3.event.pageX + 5) + "px")
.style("top", (d3.event.pageY - 28) + "px");
)
.on("mouseout", function(d) {
tooltip.transition()
.duration(500)
.style("opacity", 0);
1

// draw legend
var legend = svg.selectAll(".legend")

.data(color.domain())

.enter().append("g")

.attr("class", "legend")

.attr("transform", function(d, i) { return "translate(0," +i * 20 +")"; });

// draw legend colored rectangles
legend.append("rect")

attr("x", width - 18)
.attr("width", 18)
.attr("height", 18)
.style("fill", color);

// draw legend text
legend.append("text")

N

.attr("x", width - 24)
.attr("y", 9)

.attr("dy", ".35em")
.style("text-anchor", "end")
.text(function(d) { return d;})

</script>
</body>
</html>

References

1 - Architectural Styles and the Design of Network-based Software Architectures

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

2- Using HTTP Methods for RESTful Services

http://www.restapitutorial.com/lessons/httpmethods.html

FREEBOARD
https://github.com/Freeboard/freeboard

D3
https://d3js.org/

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.restapitutorial.com/lessons/httpmethods.html

