

Fast Dashboards: Producing real-time dashboard using
SAS® Event Stream Processing.

From Machine Time to Human Time

Fast is a relative term. In the connected, always-on, real-time world computers can continuously send

information much faster than humans can understand, categorize or visualize it. Much of what we use

computers for is to slow down that information data stream in order to aggregate, transform, analyze

and store it for use at a future time and date.

Event stream processing is a technology used to help with this task. It is an incredibly fast, in-memory

based technology designed to examine streaming data at machine time speeds: hundred, thousands and

millions of events per second. At the same time, this technology puts that data steam into a better,

understandable context for ultimate consumption by humans.

The term dashboard has become the catch-all word to describe the grouping of tables of data and data

visualization, in a quick, conveyable format such as a web page.

Thus the term “fast dashboards” is being used in several ways. One, to demonstrate the ease of

connecting the dashboards to the streaming data. Two, to capture the time it takes for dashboard

development. Three, to depict the rate of data updates to dashboard visualizations.

The purpose of this paper is to examine several dashboard technology options and how to connect them

to SAS Event Stream Processing models. In the process, I will cover some of the issues and trade-offs

when using these technologies together.

All of the dashboard technologies are web enabled and utilize the components of HTML5, in particular

JavaScript, albeit, at very different levels of implementation.

I will cover 3 different dashboard technologies:

• SAE ESP Stream Viewer

• Freeboard

• D3 JavaScript

SAS® Event Stream Processing

SAS Event Stream Processing (ESP) is an in-memory analytics engine designed to work on real-time

streaming data.

ESP is lightweight and scales well. Thus, it can be run on small low powered IoT edge devices to high

capacity data center and expansive cloud configuration. More importantly, it can link the data streams

between those devices and provide analysis at the different levels of devices.

 ESP is made up of many components, but for purpose of this explanation the focus is on ESP Studio, ESP

Stream Viewer and the ESP Engine.

A functional diagram of SAS Event Stream Processing.

ESP Studio is a visual development environment that is used to create and test ESP models.

ESP Stream Viewer is the out-of-the-box dashboard tool for ESP.

ESP Engine is the computing container used to house ESP analytic models.

Three Layers of ESP models: Project, Continuous Query, Windows

 ESP models as they relate to producing dashboards are made up of 3 layers: Projects, Continuous

Queries and Windows.

The functionality of ESP analytical models are group together into Projects. Projects are made up of one

or more Continuous Queries. A Continuous Query is the flow of data, broken-down into functional steps

called Windows. ESP’s Windows provide data definition, analysis and some SQL like functionality for

manipulating the flow of data through the Continuous Query and Project. Each Window provides a

snapshot of data. We can make a connection to any Window in a Project/Continuous Query.

Diagram: Example of ESP Project for receiving and manipulating the data stream. Notice in the diagram

the Project houses the Continuous Query and the Continuous Query contains linked Windows.

Connecting to the ESP data

There are many methods for connecting to ESP and its data stream. I will focus ESP’s REST interface. The

REST interface uses ESP’s Publish and Subscribe interfaces for moving data in and out of ESP. All the

dashboard technologies being covered can use REST based technologies to receive data.

REST - Representational State Transfer

REST (Representational State Transfer) is a web based architectural design style for creating scalable and

stateless, distributed systems of communication. Roy Fielding introduced REST in his 2000 doctoral

dissertation.1,2

• REST messages use the web standard URI’s/URL’s and HTTP methods.

• REST uses JSON or XML data formats to represent data objects and attributes.

• HTTP methods (for example, GET, POST, PUT, and DELETE) are mapped to CRUD (create,

retrieve, update, delete) operations.

Rest is used in ESP to manage projects as well as to inject and retrieve data. Because of REST’s

adherence to HTTP methods, a web browser can be used for testing ESP’s REST interface. Browsers use

the GET http method (GET=Read) when using the URL address bar to pull information. The URI format

for ESP’s base REST address is http://espServer:port/SASESP

ESP Project Query
To pull an ESP project using a web browser, the URI used in the ULR address bar is:

http://espServer:port/SASESP/projects

Below is an example of pulling project information from ESP. Notice the Project information is returned

as XML. In addition, the ESP Model Windows are nested inside the Continuous Query and Project XML.

http://espServer:port/SASESP
http://espServer:port/SASESP/projects

ESP Event Query

To pull ESP events using a web browser, the base URI used in the ULR address bar is:

http://espServer:port/SASESP/events

Also, the Project, Continuous Query and Windows need to be specified.

http://espServer:port/SASESP/events/project/continuousquery/window

To further control what event data is returned, parameters can be passed to further filter, sort and limit

the amount of data returned. Ampersands (&) are used to separate parameters. A single question mark

(?) is used between the query and parameters.

http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=

sortField&limit=1000

 Filter – Use a filter to determine what events are returned.

Examples:

filter=in(Email,fahrzeug1@sas.com) or Email=fahrzeug1@sas.com

/events/project/query/largeTrades?filter=in(broker,1012112,1012223)

/events/project/query/largeTrades?filter=in(brokerName,'Joe','Lisa')

/events/project/query/largeTrades?filter=and(gt(quant,50000),gt(price,1000))

 SortBy - The field on which to sort the results. The default sort direction is descending.

sortBy=sortField

To sort in ascending order, use sortBy=sortField:ascending

 Limit - The maximum number of events to return.

limit=number_of_everts

limit =100

http://espServer:port/SASESP/events
http://espServer:port/SASESP/events/project/continuousquery/window
http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=sortField&limit=1000
http://espServer:port/SASESP/events/project/continuousquery/window?filterField=filterValue&sortBy=sortField&limit=1000
mailto:Email=fahrzeug1@sas.com

Below is an example of events returned when running an ESP REST event query.

Documentation for ESP REST interface can be found here:

http://go.documentation.sas.com/#/?cdcId=espcdc&cdcVersion=4.2&docsetId=espxmllayer&docsetTar

get=p111ycfjon4sran1a72zunszhq5x.htm&locale=en#n03qjqoiyn8z70n17w3mp6ljh6w0

http://go.documentation.sas.com/#n03qjqoiyn8z70n17w3mp6ljh6w0
http://go.documentation.sas.com/#n03qjqoiyn8z70n17w3mp6ljh6w0

Dashboard Tools and Technologies

Each of the dashboard tools and technologies are different with their own use case. The table below is

subjective and will be explained further in this section.

TECHNOLOGY/TOOL SPEED OF

DEVELOPMENT

CUSTOMIZABLE MOBILE

FRIENDLY

SPEED OF UPDATES

SAS ESP STREAMVIEWER Rapid Low - Medium No Less than 1 second

FREEBOARD Rapid - Normal Medium - High Yes 1 second

D3 JAVASCRIPT Slow Extremely High Yes Less than 1 second

ESP Stream Viewer

The ESP Stream Viewer comes with ESP toolset and provides out-of-the-box event streams visualization

for ESP model designers. The ESP Stream Viewer is very tightly integrated with ESP’s Rest API. Thus,

selecting which part of the ESP model and what Windows to visualize is made very easy. However, this

tool is less customizable and would generally not be considered mobile friendly.

Freeboard

Freeboard is an Open Source dashboard that easily connects to ESP’s REST services. It has many of the

same visualizations found in ESP Stream Viewer and has a more managed approach to the layout of

visualization widgets. Due to the more managed layout of dashboard, Freeboard can be configured for

mobile and a variety of screen sizes.

It only takes a few quick steps to hook Freeboard to ESP’s rest services.

1. The first step is to put Freeboard in edit mode by calling the index-edit.html page from browser

window.

2. At this screen, you can add a REST data source by clicking ADD under DATASOURCES.

3. This will bring up the DATASOURCE window. From the TYPE dropdown menu choose JSON

4. The URL is where we add the HTTP URL of the ESP’s REST API. The URL follows ESP REST API

convention of:

http://espServer.example.com:port/SASESP/events/project/continuousquery/window

to point to an ESP Window as a data source. Notice the various HTTP methods under the

METHOD dropdown. Leave the default as GET method. Refresh defaults to 5 but Freeboard

does quite well with 1 second refreshes.

http://espServer.example.com:port/SASESP/events/project/continuousquery/window

5. Next step is to add a PANE and WIDGET to the Freeboard Dashboard. This is accomplished by

clinking ADD PANE and then clicking the plus (+) in the newly created PANE. This will bring up a

WIDGET menu where many types of visualizations widgets can be selected

6. The last step is to add a DATASOURCE to WIDGET. The drop for VALUE will guide the user to the

field values defined in the ESP REST event query. Below the field Speed_GPS was selected as the

value to use for the Speedometer WIDGET.

The default dark color scheme of Freeboard is faster when creating dashboards. This is due to the fact

that many of the add-ons and plug-ins will only work well with the dark color scheme.

The lighter theme took much longer to develop due to color combination inconsistency.

D3 JavaScript

D3 JavaScript is a visualization programming language based on and written in JavaScript. Because D3 is

a programming tool the development time for producing a dashboard is much longer. However there is

no denying that visualizations and dashboards created with D3 are very compelling. D3 is also lightning

fast due to fast loading, light-weight library written in web native JavaScript.

https://github.com/d3/d3/wiki/Gallery

https://github.com/d3/d3/wiki/Gallery

D3 has easy to use connectors to make REST calls to ESP. Below is an example of D3 function requesting

JSON formatted data. However, because returned data is all character, measures need to be changed to

numeric values. This done with JavaScript in D3 style.

d3.json("http://sasserver.demo.sas.com:41001/SASESP/events/Prj_Turbine_AC/Cont_Query_AC/Windo
w_Source_AC?limit=10000", function(error, ac_data) {

 ac_event = ac_data.events;

// returned data is all character therefore measures need to be changed to numeric values
 ac_event.forEach(function(d) {
 d.event.wind_speed = +d.event.wind_speed;
 d.event.obs_kw = +d.event.obs_kw;

 });

D3 is extremely fast able to product this 10,000 point scatter plot in under a second.

This is the full code to the graph on the previous page. Notice the all the elements like margins and axis
can be finely controlled. Each part of the graph is broken-down into logically components in the D3
language.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta name="description" content="">
 <meta name="author" content="">
 <link href="images/favicon.ico" type="image/vnd.microsoft.icon" rel="shortcut icon">

 <title>Asset Efficiency</title>

 <style>
 .axis path,
 .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
 }

 .dot {
 stroke: #000;
 }

 .tooltip {
 position: absolute;
 width: 200px;
 height: 28px;
 pointer-events: none;
 }

 </style>
 </head>
 <body>
 <h3>Asset Efficiency</h3>
 <div id="chart1" ></div>

<!-- script src="http://d3js.org/d3.v3.js"></script -->
<script type="text/javascript" src="js/d3.min.js"></script>

 <script>

// setup chart size

var margin = {top: 20, right: 20, bottom: 30, left: 45},
 width = 960 - margin.left - margin.right,
 height = 600 - margin.top - margin.bottom;

/*
 * Value - returns the value to encode for a given data object.
 * Scale - maps value to a visual display encoding, such as a pixel position.
 * Map - maps from data value to display value
 * Axis - sets up axis
 */

// setup x
var xValue = function(d) { return d.event.wind_speed;}, // data -> value
 xScale = d3.scale.linear().range([0, width]), // value -> display
 xMap = function(d) { return xScale(xValue(d));}, // data -> display
 xAxis = d3.svg.axis().scale(xScale).orient("bottom");

// setup y
var yValue = function(d) { return d.event.obs_kw;}, // data -> value
 yScale = d3.scale.linear().range([height, 0]), // value -> display
 yMap = function(d) { return yScale(yValue(d));}, // data -> display
 yAxis = d3.svg.axis().scale(yScale).orient("left");

// setup fill color
var cValue = function(d) { return d.event.turbine;},
 color = d3.scale.category10();

// add the graph canvas to the body of the webpage
var svg = d3.select("#chart1").append("svg")
 .attr("width", width + margin.left + margin.right)
 .attr("height", height + margin.top + margin.bottom)
 .append("g")
 .attr("transform", "translate(" + margin.left + "," + margin.top + ")");

// add the tooltip area to the webpage
var tooltip = d3.select("#chart1").append("div")
 .attr("class", "tooltip")
 .style("opacity", 0);

d3.json("http://sasserver.demo.sas.com:41001/SASESP/events/Prj_Turbine_AC/Cont_Query_AC/Windo
w_Source_AC?limit=10000", function(error, ac_data) {
 ac_event = ac_data.events;

// returned data is all character. change measures to numeric values
 ac_event.forEach(function(d) {
 d.event.wind_speed = +d.event.wind_speed;
 d.event.obs_kw = +d.event.obs_kw;

// console.log(d);
 });

 // don't want dots overlapping axis, so add in buffer to data domain
 xScale.domain([d3.min(ac_event, xValue)-1, d3.max(ac_event, xValue)+1]);
 yScale.domain([d3.min(ac_event, yValue)-10, d3.max(ac_event, yValue)+1]);

 // draw x-axis
 svg.append("g")
 .attr("class", "x axis")
 .attr("transform", "translate(0," + height + ")")
 .call(xAxis)
 .append("text")
 .attr("class", "label")
 .attr("x", width)
 .attr("y", -6)
 .style("text-anchor", "end")
 .text("Wind Speed");

 // draw y-axis
 svg.append("g")
 .attr("class", "y axis")
 .call(yAxis)
 .append("text")
 .attr("class", "label")
 .attr("transform", "rotate(-90)")
 .attr("y", 6)
 .attr("dy", ".71em")
 .style("text-anchor", "end")
 .text("Power (KW)");

 // draw dots
 svg.selectAll(".dot")
 .data(ac_event)
 .enter().append("circle")
 .attr("class", "dot")
 .attr("r", 3.5)
 .attr("cx", xMap)
 .attr("cy", yMap)
 .style("fill", function(d) { return color(cValue(d));})
 .on("mouseover", function(d) {
 tooltip.transition()
 .duration(200)
 .style("opacity", .9);
 tooltip.html(d.event.turbine + "
 (" + xValue(d)
 + ", " + yValue(d) + ")")

 .style("left", (d3.event.pageX + 5) + "px")
 .style("top", (d3.event.pageY - 28) + "px");
 })
 .on("mouseout", function(d) {
 tooltip.transition()
 .duration(500)
 .style("opacity", 0);
 });

 // draw legend
 var legend = svg.selectAll(".legend")
 .data(color.domain())
 .enter().append("g")
 .attr("class", "legend")
 .attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; });

 // draw legend colored rectangles
 legend.append("rect")
 .attr("x", width - 18)
 .attr("width", 18)
 .attr("height", 18)
 .style("fill", color);

 // draw legend text
 legend.append("text")
 .attr("x", width - 24)
 .attr("y", 9)
 .attr("dy", ".35em")
 .style("text-anchor", "end")
 .text(function(d) { return d;})
});

 </script>
 </body>
</html>

References

1 - Architectural Styles and the Design of Network-based Software Architectures

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

2- Using HTTP Methods for RESTful Services

http://www.restapitutorial.com/lessons/httpmethods.html

FREEBOARD

https://github.com/Freeboard/freeboard

D3

https://d3js.org/

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.restapitutorial.com/lessons/httpmethods.html

