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ABSTRACT 

This paper discusses the selection and transformation of continuous predictor variables for the fitting of binary logistic 
models.  The paper has two parts:  (1) A procedure and associated SAS® macro is presented which can screen 
hundreds of predictor variables and 10 transformations of these variables to determine their predictive power for a 
logistic regression.  The SAS macro passes the training data set twice to prepare the transformations and one more 
time through PROC TTEST.  (2) The FSP (function selection procedure) and a SAS implementation of FSP are 
discussed.  The FSP tests all transformations from among a class of  “FSP transformations” and finds the one with 
maximum likelihood when fitting the binary target.  The FSP has been presented in full detail in a 2008 book by 
P. Royston and W. Sauerbrei.   

INTRODUCTION 1 

The setting for this discussion is direct marketing or credit scoring or other applications of binary logistic regression 
where sample sizes for model building are large (perhaps exceeding 1000 observations for each target value) and 
the emphasis is on building predictive models to be used for scoring future observations.  In this setting: 

The preparation of predictors for binary logistic regression includes the following phases: 

 Screening predictors to detect predictive power 

 Transforming the predictors to maximize the predictive power 

 Other phases (not discussed) such as finding interaction of predictors and elimination of collinear predictors 
 

Predictors fall into three broad categories:
2
 

(1) Nominal, ordinal, interval-scaled with only a few values 
(2) Counts 
(3) Continuous (e.g. distances, dollars, percents, time, quantities) 

 
An effective and widely used transformation for category (1) is weight-of-evidence (WOE) coding.  WOE is also often 
applied to count predictors.  Optimal binning before WOE transformation is a key requirement.

3
    

The meaning of “continuous” for a predictor is subjective.  One definition might be “when it is hard to do binning”.  
This definition applies when many of the values of X occur only on one observation.   

The use of binning of continuous predictors followed by WOE coding (often performed in direct marketing or credit 
scoring) may over-fit and complicate these predictive models.  Specifically, when a functional form can be accurately 
identified for a continuous predictor, the application of binning and WOE coding will lose predictive power.   

FIGURE 1 provides an illustration.  In this loose hypothetical case, the relationship between predictor X and log-odds 
of Y is linear.  But the approximation to log-odds(Y) by X_cut3 creates three abrupt jumps in the prediction of log-
odds(Y).  These jumps are not related to underlying behavior of X and Y and create prediction error. 

 
FIGURE 1: Hypothetical 3-cutpoint binning of a predictor X 

                                                           
1
 An earlier version of this paper appeared at MWSUG 2014, Lund (2014) 

2
 To complicate this categorization some predictors are mixtures of types.  Consider X: Ounces of alcohol consumed in past year. 

Then X will have a spike at zero (nondrinkers). 
3
 A SAS macro for binning and WOE transformations is given by Lund and Brotherton (2013). 
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In this paper a statistical procedure and SAS macro %LOGIT_CONTINUOUS for this procedure are given for 
screening hundreds of continuous predictors for logistic regression.  The goal is to identify predictor candidates that 
merit further study.  This is done by measuring the predictive power of the original predictor and 10 transformations of 
the predictor.  The entire procedure requires 3 passes of the original data set regardless of the number of predictors. 

Once candidate predictors have passed screening by %LOGIT_CONTINUOUS, a final transformation for these 
predictors can be determined by the Function Selection Procedure (FSP) as described in Royston and Sauerbrei in  
Multivariate Model-building (2008).  The FSP and a SAS implementation are discussed in Part II of this paper. 

PART I:  SCREENING CONTINUOUS PREDICTORS FOR PREDICTIVE POWER 

Given dozens or hundreds of candidate continuous predictors, the “screening problem” is to test each predictor as 
well as a collection of transformations of the predictor for, at least, minimal predictive power in order to justify further 
investigation.  If the number of candidate predictors is only a few, a brute force approach of fitting the predictor and 
transformations of the predictor by PROC LOGISTIC provides a simple, direct solution.  However, each PROC 
LOGISTIC requires a pass of the training data set.    

Instead, an alternative procedure is described which screens hundreds of predictors in a single run of PROC TTEST. 
In this paper a SAS macro to implement this procedure, called %LOGIT_CONTINUOUS, is discussed.  
%LOGIT_CONTINUOUS takes advantage of a connection between 2-group discriminant analysis, a t-test, and 
logistic regression.  This connection is fully developed in Appendix A and only the key results are presented below. 

THE CONNECTION BETWEEN 2-GROUP DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 

Let X be a predictor for a binary target Y.  The values of Y identify two groups (j = 1, 2) of observations.  It is assumed 
that X has a univariate normal distribution for each group with common standard deviation σ but differing means µ1 

and µ2.  Then, just as in logistic regression, the 2-group discriminant analysis leads to the equation: 

Log (P(Y=1 | X=x) / P(Y=2 | X=x)) = β0 + β1 x 

The key results are: 

(1) When fitting the 2-group discriminant model to a sample, the coefficient β1 is estimated by b1D, where b1D is 
found by substituting sample statistics from the two groups,  ̅1 ,  ̅2, and Sp

2
 as shown in equation (A): 

b1D = ( ̅1  -  ̅2) / Sp
2
 … (A) 

Here, the pooled variance Sp
2
 estimates σ

2
 where Sj

2
 are the sample variances for samples j = 1, 2 and 

Sp
2
 = {(n1 – 1)S1

2
 + (n2 – 1)S2

2
}/(n1 – 1 + n2 – 1) 

The “D” is added as a subscript to “b1” to indicate that the method of fitting is by discriminant analysis. 
Additionally, “L” will be added as a subscript to “b1”to give b1L to indicate when the estimation of β1 is by logistic 
regression maximum likelihood. 

Both b1D and b1L are consistent estimators of β1.  For large enough samples, b1D will be close to b1L. 

(2) In order to test that β1 = 0 vs. β1 ≠ 0 the discriminant analysis coefficient b1D can be regarded as a t-statistic with 
n1 + n2 - 2 d.f. via this factorization:  b1D  =  t  (1/Sp)  sqrt(1/n1 + 1/n2).  The square of this t-statistic “t

2
” is a chi-

square with 1 d.f. and it will be close to the Wald chi-square statistic for b1L from logistic regression.
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COMPARISON OF DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION WITHOUT 
NORMALITY 

Without the normality assumptions on X, there is not a theory that guarantees that b1D and b1L will be close in value.  
But for the purpose of screening predictor variables for logistic regression the closeness of b1D and b1L is not a 
requirement.  Instead, the requirement is that the square of the t-statistic from discriminant analysis and the Wald chi-
square from logistic regression concur in their measurement of the significance of X.  This concurrence can occur 
without close agreement of b1D and b1L. 

Pictorially, the comparison of the two significance measurements must produce very few examples that fall into cells 
“B” or “C”.  Especially troubling would be examples in cell “C”, a false negative. See TABLE 1. 
 

TABLE 1 

 Wald χ2 significant Wald χ2 not significant 

t
2
 significant A B (false positive) 

t
2
 not significant C (false negative) D 

                                                           
4
 Calculation of “t

2
” by Satterthwaite (instead of pooled) variance formula gives very similar values for examples to follow in this 

paper.  The pooled variance is used because equal population variances are assumed when deriving the formula for t
2
. 
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SIMULATIONS  

Three predictors X1, X2, and X3 were generated by simulations.  They will provide a test of the concurrence of t
2
 and 

Wald chi-square in measuring the significance of a predictor.  The test is given in Examples 1, 2, and 3 below: 

EXAMPLE 1: Predictor X1   

data Example1; 
do i = 1 to 4000; 
 Y = (ranuni(12345) < .45) ; 
 if Y = 1 then X1 = rannor(12345) + 0.1;  /* normal with mean=0.1, std dev = 1 */ 
  else if Y = 0 then X1 = rannor(12345);  /* normal with mean=0, std dev = 1 */ 
  output; 
 end; 
run; 

The distributions of X1 for the two groups meet the assumptions of normality with equal standard deviations (=1).  
The coefficient estimates b1D and b1L of β1, as well as t

2 
and Wald chi-square for X1 should be nearly identical.   

 

FIGURE 2: Histograms for Variable X1 

TABLE 2A shows the very similar coefficient estimates. 

TABLE 2A: Comparison of Coefficients from Discriminant and Logistic 

Variable b1D b1L 

X1 0.07420 0.07422 

TABLES 2B and 2C show the almost perfect equality of the probabilities of the chi-squares 

TABLE 2B: Chi-Square Values for Coefficients from Discriminant Analysis 

Variable t Value d.f. ChiSq for b1D Prob ChiSq 

X1 2.34 3998 5.467 0.0194 

TABLE 2C: Chi-Square Values from Logistic 

Variable ChiSq for b1L Prob ChiSq 

X1 5.455 0.0195 

The SAS code that produced b1D and the t-test values is shown below but SAS code for producing the logistic results 
is not included. 

data example1; 

do i = 1 to 4000; 

 Y = (ranuni(12345) < .45);  

 /* Normal distribution test */ 

 if Y = 1 then X1 = rannor(12345) + 0.1; 

  else if Y = 0 then X1 = rannor(12345); 

  output; 

 end; 

run; 

ods listing; 

ods output Statistics = TS; 

ods output TTests = TT; 

ods exclude ConfLimits;  /* suppress unneeded print */ 
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ods exclude Equality;    /* suppress unneeded print */ 

ods exclude EquivLimits; /* suppress unneeded print */ 

ods exclude EquivTests;  /* suppress unneeded print */ 

proc ttest data=example1 plots=none; 

 class Y; var X1; 

data TT; set TT; 

 tValue = -tValue;  /* minus sign to model Y=1 as the response */ 

 chisq_D = tValue**2;  

 label Probt = "Prob ChiSq"; /* prob. for t-value = prob. for chi-sq. */ 

proc print data = TT label; 

var Variable tValue DF Probt chisq_D;  

where method = "Pooled";  /* Could consider alternative "Satterthwaite" */ 

run; 

data TS_2; set TS; 

retain mean1 mean2 n1 n2; 

keep variable n1 n2 mean1 mean2 stddev b1D; 

if class = "0" then do; mean1 = mean; n1 = n; end; 

if class = "1" then do; mean2 = mean; n2 = n; end; 

if class = "Diff (1-2)" /* this is the last row */ 

then 

do; 

 b1D = -(mean1 - mean2)/(stddev **2); /* “-” to model Y=1 as response */ 

 output;  

 end; 

proc print data = TS_2 noobs; var Variable b1D; 

run; 

EXAMPLE 2: Predictor X2   

data Example2; 
do i = 1 to 500; 
 X2 = ranuni(12341); 
 Y = floor(X2 + ranuni(12341)); /* Y is more often equal to 1 when X2 is large */ 
 output; 
 end; 
run;  

The distributions of X2 for the two groups strongly fail to meet the assumptions of normality as seen from the 
distributional histograms in FIGURE 3. 

 

FIGURE 3: Histograms for Variable X2 

The coefficient estimates b1D and b1L of β1 are not close as seen in TABLE 3A. 

TABLE 3A: Comparison of Coefficients from Discriminant and Logistic 

Variable b1D b1L 

X2 6.2743 5.3491 

TABLES 3B and 3C show a wide divergence in value between the chi-squares, but both chi-squares are highly 
significant.  As a screener of a predictor for a logistic model, both the t

2
 from discriminant analysis and the Wald chi-

square from logistic are highly significant. 
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TABLE 3B: Chi-Square Values for Coefficients from Discriminant Analysis 

Variable t Value d.f. ChiSq for b1D Prob ChiSq 

X2 16.60 498 275.397 <.0001 

TABLE 3C: Chi-Square Values from Logistic 

Variable ChiSq for b1L Prob ChiSq 

X2 132.515 <.0001 

EXAMPLE 3: Predictor X3   

data Example3; 
do i = 1 to 1000; 
 X3 = ranuni(12345);  /* Uniform on [0, 1] */ 
 Y = (ranuni(12345) < .2); 
 output; 
 end; 
run; 

Predictor X3 is uniform [0, 1] for both Y=0 or Y=1.  The distributions of X3 for the two groups fail to meet the 
assumptions of normality as seen from the distributional histograms in FIGURE 4. 

 

FIGURE 4: Histograms for Variable X3 

The coefficient estimates b1D and b1L of β1 are in close agreement as seen in Table 4A. 

TABLE 4A: Comparison of Coefficients from Discriminant and Logistic 

Variable b1D b1L 

X3 0.35467 0.35550 

Tables 4B and 4C show close agreement between the chi-squares.  As a screener of X3 for a logistic model, both the 
t
2
 from discriminant analysis and the Wald chi-square from logistic are strongly insignificant. 

TABLE 4B: Chi-Square Values for Coefficients from Discriminant Analysis 

Variable t Value d.f. ChiSq for b1D Prob ChiSq 

X3 1.25 998 1.554 0.2129 

 
TABLE 4C: Chi-Square Values from Logistic 

Variable ChiSq for b1L Prob ChiSq 

X3 1.552 0.2129 

COUNTER-EXAMPLE 

However, examples can be constructed where concurrence of the two methods in measuring significance is not 
attained.  For predictor X4 in the data set below the t

2
 is significant but the Wald chi-square is not significant at 5%. 
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data Example4; 
 Y = 0; 
 do i = 1 to 50; 
  X4 = rannor(12345); 
  output; 
  end; 
 do i = 1 to 2; 
  X4 = 50; 
  output; 
  end; 
 Y = 1; 
 do i = 1 to 500; 
  X4 = rannor(12345); 
  output; 
  end; 

Predictor X4 is standard normal for Y=1 and X4 is also standard normal for Y=0 with the exception of two outliers at 
X4=50.  Tables 5B and 5C show that chi-squares from discriminant analysis and from logistic disagree.  The 
discriminant analysis chi-square is significant at < 0.01% while logistic chi-square fails a 5% significance test with 
probability value of 8.90%. 

TABLE 5A: Comparison of Coefficients from Discriminant and Logistic 

Variable b1D b1L 

X4 -0.19914 -0.10782 
 

TABLE 5B: Chi-Square Values for Coefficients from Discriminant Analysis 

Variable t Value d.f. ChiSq for b1D Prob ChiSq 

X4 -4.25 550 18.0860 <.0001 

 
TABLE 5C: Chi-Square Values from Logistic 

Variable ChiSq for b1L Prob ChiSq 

X4 2.892 0.0890 

The relationship between X4 and Y would be highly unusual in an applied setting.  It is likely that a modeler would 
research the two observations at X4=50 and correct them or eliminate them.  

CONCLUSIONS  

Examples 1-3 from the section on Simulations support the conclusion that the t-test approach can differentiate 
between significant and insignificant predictors for a logistic model.   

Additional support is given by comments in Applied Logistic Regression by Hosmer, Lemeshow, and Sturdivant (2013 
p. 91).  These authors agree that if X has an approximately normal distribution for the two groups determined by 
values of Y, then the t-test is a good guide for screening a predictor for logistic regression. 

The predictor X4 gives an example of a false positive (a “B” in TABLE 1).  It was constructed by an extended trial and 
error process.  I was unable to construct  an example of a false negative (a “C” in TABLE 1) but, by no means, has 
this been ruled out.  More simulation work is needed to understand the risk that such examples would present to the 
operation of the macro %LOGIT_CONTINUOUS.  

%LOGIT_CONTINUOUS: MACRO FOR SCREENING HUNDREDS OF LOGISTIC PREDICTORS  

The SAS macro %LOGIT_CONTINUOUS can screen hundreds of numeric predictors for logistic regression as well 
as 10 transformations of these predictors using the chi-square which is computed from a t-statistic.  This t-statistic is 
mathematically derived from the coefficient of 2-group discriminant analysis as explained in Appendix A.  The 10 
transformations include 7 monotonic transformations and 3 quadratic transformations.  Three passes of the data set 
are required for this computation: 

1. PROC MEANS to determine the minimum value of each predictor 
2. DATA STEP: 

a. Predictors with minimum < 1 are shifted to have minimum value of 1. 
5
 

b. 10 transformations of the predictor are computed (such as LOG, X
2
, and others). 

3. PROC TTEST to compute t-statistics whose square approximates the Wald chi-square from logistic 
regression. 

  

                                                           
5
 In practice most continuous predictors have non-negative values domains (counts, distance, dollars, percents, time, quantity).  

Translation (except away from zero) is generally not needed. 
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The original X and the 10 transformations are: 

 8 monotonic:  The “fractional polynomials” X
p
 where p is taken from S = {-2, -1, -0.5, 0, 1,  0.5, 2, 3} and 

where “0” denotes log(x).  This list includes the original X.
6
 

 3 quadratic:  (X-median)
2
, (X-p25)

2
, (X-p75)

2
 where median, p25, and p75 are respectively the 50

th
, 25

th
, and 

75
th

 percentiles for X. 

In practice, the relationship between a predictor X and the log-odds of Y 
7
 is very often either monotonic or roughly 

quadratic (with a single maximum or minimum).  Consequently, one (or more) of the 11 transformations is likely to 
have an approximate linear relationship to log-odds of Y, if, indeed, the predictor has any predictive power.  

The parameters for %LOGIT_CONTINUOUS are: 
 
DATASET:  The input data set name. 
Y:  A numeric variable with two values.  The larger value is the response that is modeled. 
INPUT:  A list of numeric predictor variables delineated by space.  A predictor may have missing values. 

EXAMPLE:  %LOGIT_CONTINUOUS is run on X1 from Example1.   

The macro call is %LOGIT_CONTINUOUS(example, Y, X1). 

TABLE 6: Results of %LOGIT_CONTINUOUS(example, Y, X1) 

Variable Transform b1D ChiSq for b1D Prob ChiSq 

X1_p7 x**3 0.0011 6.793 0.00919 

X1_p11 (x-p25)**2 0.0404 6.424 0.01130 

X1_p6 x**2 0.0082 6.268 0.01233 

X1_p1 linear 0.0742 5.467 0.01943 

X1_p5 x**0.5 0.3019 4.945 0.02622 

X1_p8 log(x) 0.2954 4.325 0.03761 

X1_p4 x**-0.5 -1.0970 3.593 0.05811 

X1_p3 x**-1 -0.9437 2.739 0.09798 

X1_p9 (x-p50)**2 0.0306 1.958 0.16179 

X1_p2 x**-2 -0.8900 0.881 0.34809 

X1_p10 (x-p75)**2 -0.0095 0.331 0.56510 

 

As shown in TABLE 6 the best transformations of X1 are X1
3
, (X1-p25)

2
, and X1

2
.  These have similar chi-square 

values.  The linear transform of X1 comes in at fourth place. 

GUIDELINES FOR INTERPRETING THE RESULTS FROM %LOGIT_CONTINUOUS 

In TABLE 6 the “Prob ChiSq” value should be viewed as a guide rather than a firm standard for significance.  Due to 
by-chance over-fitting to the data by one or more of the 11 functions of X, the thresholds for the “Prob ChiSq” should 
be set conservatively.  Here is one proposal for the threshold values for the best transformation: 

 “Prob Chi-Square” less than 0.01 (1%) 

 “ChiSq for b1D” at least 10.0 

Under these guidelines, X1 is a borderline case.  Considering X1
3
, the best transform of X1, the first guideline is just 

barely met and the second guideline is not met. 

 Guideline #1, “Prob Chi-Square” less than 0.01 (1%) vs. observed 0.919% 

 Guideline #2, “ChiSq for b1D” at least 10.0 vs. observed 6.793 

TRANSLATIONS AND TRANSFORMATIONS OF X 

Four transformations among the 11 are unaffected by translations: X, (X-median)
2
, (X-p25)

2
, (X-p75)

2
.  But could a 

“good” X be found that would otherwise be missed if translations were added to %LOGIT_CONTINUOUS to form 
translation-transformation combinations for the other 7?   

SAS code below creates three predictors X5, X5_1, and X5_80.  A translation of 1 unit was added to X5 to form X5_1 
and a translation of 80 was added to form X5_80. Then %LOGIT_CONTINUOUS was run on X5, X5_1, and X5_80. 

data Example5; 
do i = 1 to 500; 
 X5 = ranuni(12341) + 1; 
 Y = floor(X5 + ranuni(12341)); 
 X5_1 = X5 + 1; 
 X5_80 = X5 + 80; 

                                                           
6
 These transformations are motivated by the FSP (function selection procedure) of Royston and Sauerbrei (2008). 

7
 Here, “Y” should be taken to mean the average of Y over a small interval of X. 
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 output; 
 end; 

%LOGIT_CONTINUOUS(Example4, Y, X5 X5_1 X5_80);  

The best transform of X5 is X
-0.5 

while the best transform of X5_1 is X
-1

.  In this case the translation-transformation 
combination provided a very slightly better chi-square result than the transformation alone.  Could a more extreme 
translation produce a translation-transformation that was even better?  A translation of 80 units is used to create 
X5_80 but produced a lower chi-square of 275.88. See TABLE 7. 

TABLE 7: Effect of a Translation Prior to running %LOGIT_CONTINUOUS 

Variable Best Transform b1D ChiSq for b1D Prob ChiSq 

X5_p4 x**-0.5 -22.270 281.24 <.0001 

X5_1_p3 x**-1 -38.747 281.47 <.0001 

X5_80_p2 x**-2 -1700484 275.88 <.0001 

In general, the significance of the maximum value of the chi-squares for X and its 10 transformations is not greatly 
affected by translations.  While a translation may result in a different transform being selected (as part of a 
translation-transformation), the effect on significance will not be decisive. 

There is also a non-aesthetic aspect of a translation when the translation amount “c” places X+c outside the domain 
of observed or allowed values of X.  Suppose a population consists of teenagers, the transformation is Log, X is age, 
and Y is buying a product or not.  Then the coefficient b1 in the relationship log(Y/(1-Y)) = b0 + b1*log(X+10) is 
making a statement about the log-odds of buying for a population of non-teenagers. 

SUMMARY 

This paper shows that a process of screening a multitude of continuous predictors by %LOGIT_CONTINUOUS can 
efficiently and effectively identify predictors to retain for further study. But how should a final transformation be found 
for those predictors that pass the screening?  This is the topic of Part II which follows below.  

PART II: FUNCTION SELECTION PROCEDURE (FSP) FOR A CONTINUOUS PREDICTOR X 

BACKGROUND 

The Function Selection Procedure (FSP) is described by Royston and Sauerbrei (2008 p. 82) where a short history of 
its development is given.  FSP uses transformations of X called fractional polynomials (FP).  If X has negative values, 
then X must first be translated so that X is positive.  Then the fractional polynomials of X can be defined by: 

X
p
 where p is taken from S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3} where “0” denotes log(x) 

FP1 refers to the collection of functions formed by the selection of one X
p
.  That is,  

g(X,p) = β0 + β1 X
p
 

FP2 refers to the collection of functions formed by selection of two X
p
.  That is,  

 G(X,p1,p2) = β0 + β1 X
p1

 + β2 X
p2 

p1 ≠ p2 
 G(X,p1,p1) = β0 + β1 X

p1
 + β2 X

p1
 log(X) p1 = p2 

FP2 produces curves with a variety of non-monotonic shapes as shown by Royston and Sauerbrei (2008 p. 76).  An 
example is given in FIGURE 5. 

 

FIGURE 5:  Graph of G(X,-1,-1) = X
-1

 + 2 X
-1

 log(X) 
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Royston and Sauerbrei (2008 p. 267) give links to software versions for performing FSP including Stata, R, and SAS.  
I downloaded the SAS version %mfp8 on 8/7/2014.  It was written in SAS version 8.  See notes in Appendix B which 

discuss a necessary change to the code in order to run %mfp8.
8
 

FSP: SEARCHING FOR BEST TRANSFORMATIONS AND SIGNIFICANCE TESTING WITH %MFP8 

Searching for best transformations:  First, the FP1 and FP2 functions having the maximum likelihood are found by 

an exhaustive search in which 44 Logistic Models are run.  Overall, PROC LOGISTIC is run 47 times. 

Performing Significance Testing:  Second, significance testing is performed.  The following 3 steps for FSP 

significance testing are taken from documentation for the SAS macro implementation of FSP.
9
 

1. Perform a 4 d.f. test at the α level of the best-fitting second-degree FP (i.e. FP2) against the null model.  If the 
test is not significant, drop X and stop, otherwise continue. 

2. Perform a 3 d.f. test at the α level of the best-fitting second-degree FP against a straight line.  If the test is not 
significant, stop (the final model is a straight line), otherwise continue. 

3. Perform a 2 d.f. test at the α level of the best-fitting second-degree FP against the best-fitting first-degree FP (i.e. 
FP1).  If the test is significant, the final model is the FP2, otherwise the FP1 is the final model. 

 
The test-statistic for these three tests is the difference of deviances 

10
 as shown below: 

Test-Statistic = (-2 Log Likelihood restricted model) - (-2 Log Likelihood full model) 

For large samples, the Test-Statistic is approximately a chi-square.  But the degrees of freedom for the three tests of 
the FSP need to be determined.  The rationale for the degrees of freedom (4, 3, 2) used in the 3-step hypothesis 
tests of FSP is given by Royston and Sauerbrei (2008 p. 79). 

EXAMPLE: RUNNING %MFP8 ON X2 FROM “EXAMPLE2” DATA SET 

The FSP macro %mfp8 was run on predictor X2 from the Example2 data set.  A translation was selected so that the 
minimum of the translated X2 would be 1 via this statement: X2 = X2 +1 - 0.001398486.  See TABLE 8. 

TABLE 8: FSP Results from MFP8 for Predictor X2 

MFP8: Variable –X2- 

Best Functions for Different Degrees m 

 

Function m p1 p2 deviance diffra2 pdiffdev TEST: 

Null -1 . . 691.098 208.202 0.00000 FP2 v. Null: 4 d.f. 

Linear 0 . . 489.001 6.106 0.10658 FP2 v. Linear: 3 d.f. 

First Degree 1 -2 . 483.540 0.645 0.72451 FP2 v. FP1: 2 d.f. 

Second Degree 2 -2 3 482.896 0.000 1.00000  

 
For Step 1 the Test-Statistic is χ2 = 691.098 - 482.896 = 208.202 

Predictor X2 passes Step 1 as seen from:   

1- Prob(χ2(208.202,4)) < 0.0001  

For Step 2 the Test-Statistic is χ2 = 489.001 - 482.896 = 6.106 

Predictor X2 fails Step 2 as seen from: 

1- Prob(χ2(6.106,3)) = 0.10658 which is greater than 0.05 (5%)  

On this basis FSP selects “Linear” as the transformation for X2. 

Visualization of the Linear, FP1, and FP2 solutions:   

The log-odds(Y) is plotted against the Linear, FP1, and FP2 solutions at the median value of X2 across 8 equal-sized 
ranks of X2 values.  The log-odds(Y) “open-circles” give the mean of Y within the X2 rank.   

Visually, both FP1 and FP2 give better fits than Linear. Since FP1 was approximately significant at 10% at Step 2, the 
FP1 solution has strong appeal. 

See FIGURE 6. 

                                                           
8
 FSP and %mfp8 also apply to ordinary least squares regression and Cox regression. 

9
 Meier-Hirmer, Ortseifen, and Sauerbrei (2003). Multivariable Fractional Polynomials in SAS, http://portal.uni-freiburg.de/imbi/mfp, 

beschreibung.pdf in SAS downloads. 
10

 The deviance is the -2 Log Likelihood value of a logistic model. 
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FIGURE 6:  Linear = -7.9343 + 5.3491 X2;  FP1 = 4.0901 - 8.3200 X2
-2

;  FP2 = 2.9666 - 6.9522 X2
-2

 + 0.1284 X2
3
 

MORE SAS MACROS FOR FSP 

The 47 PROC LOGISTIC’s of %mfp8 can be reduced to 36.  I wrote a macro that runs each of the 36 FP2 
combinations through PROC LOGISTIC during which the log-likelihoods for the 8 FP1 functions are obtained.   

Next, I tried to develop an approach that required only 8 PROC LOGISTIC runs.  The idea is based on running PROC 
LOGISTIC with the options shown below on 8 sets of predictors called &Var1 to &Var8.  See TABLE 9. 

PROC LOGISTIC; MODEL Y = &Var<k> / SELECTION = FORWARD INCLUDE=1  START=1  STOP=2  SLE=1; 

By this method all possible FP2 pairs have a chance to be selected.  But selection of the second variable in a pair by 
FORWARD, to add to the first variable forced in by INCLUDE=1, may be sub-optimal.  The reason is that the second 
variable is selected by the best Wald chi-square criterion, not by maximizing log likelihood of the two-variable model.   

E.g. Consider &Var1.   

 First, X
-2

 is forced in. 

 Now perhaps the best Wald chi-square criterion picks X
-1

 to enter as the second variable. 

 But the best log likelihood might be given by X
3
.   

 
Such examples can be found. 

TABLE 9: Eight sets of Predictors 

Var1= X
-2

 X
-1

 X
-.5

 X
.5

 X X
2
 X

3
  Log(X) X

-2
 Log(X) 

Var2=   X
-1

 X
-.5

 X
.5

 X X
2
 X

3
  Log(X) X

-1
 Log(X) 

Var3=     X
-.5

 X
.5

 X X
2
 X

3
  Log(X) X

-.5
 Log(X) 

Var4=       X
.5

 X X
2
 X

3
  Log(X) X

.5
 Log(X) 

Var5=         X X
2
 X

3
  Log(X) X Log(X) 

Var6=           X
2
 X

3
  Log(X) X

2
 Log(X) 

Var7=             X
3
  Log(X) X

3
 Log(X) 

Var8=                Log(X) Log(X) Log(X) 

 

The 8 PROC LOGISTIC approach may still have an advantage if there are hundreds of variables to be processed by 
FSP and the data set for these variables is relatively large, perhaps 50,000 observations.  In this event, the 8 PROC 
LOGISTIC approach uses only about 17% (= 8 / 47) of the processing time versus the %mfp8 macro. 

SUMMARY 

This paper shows that a process of screening a multitude of continuous predictors by %LOGIT_CONTINUOUS can 
efficiently and effectively identify predictors to retain for further study.  The FSP can then be focused on the surviving 
candidate predictors for either the selection of a final transformation or final elimination of the variable. 

But there are open questions: 
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3
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 What is the risk of false negatives (good predictors that are screened out) when running 
%LOGIT_CONTINUOUS? 

 How often and to what degree would the 8 PROC LOGISTIC approach to FPS give sub-optimal FP2 solutions as 
measured by differences in log-likelihood? 

SAS MACROS DISCUSSED IN THIS PAPER 

The SAS macro %LOGIT_CONTINUOUS continues to be under development.  Contact the author for a copy of the 
work-in-progress. 
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APPENDIX A: TWO-GROUP DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 

In discriminant analysis it is assumed there are “p” populations G1, …, Gp.  The members of these p populations are 
characterized by predictor variables X1 to XK.  The purpose of discriminant analysis is to develop for each population 
a linear combination of the predictors called the classification function (CF).   Then an observation (x1 …, xK) is 
assigned by the CF’s to the population which has the largest CF value.   
 
The development and application of the CF’s follows two steps:   
(i) The “p” CF’s are fitted using observations from G1, …, Gp (i.e. observations where population membership is 

known).  
(ii) The CF’s are applied to observations of X1 to XK where population membership is not known.  An observation is 

assigned to the population with the largest CF value. 
 
To support statistic inference, it is assumed the X1 … XK follow a multivariate normal distribution.

11
 

THE CASE WHERE p = 2, K = 1, AND σ1 = σ2 

The simplest case of discriminant analysis is when there are 2 populations, one predictor X, and the distributions of X 
for the two populations have a univariate normal distribution with common standard deviation σ but differing means µ1 

and µ2. 

                                                           
11

 See Huberty and Olejnik (2006, chapter 13) for discussion. 
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The formula for the distribution of X for population j = 1 or 2 is given by: 

P(X=x | j ) = (2πσ
2
)
-1/2

 exp( -0.5 ((x - µj) / σ)
2 

)  … where µj is the mean for X for population j. 

DEVELOPMENT OF THE CLASSIFICATION FUNCTIONS 

Suppose a random sample for populations j = 1, 2 is taken and n1 is the size from population 1 and n2 is the size from 
population 2.  The base-rate population probability of j is denoted by P(j).  These probabilities are estimated by q j = 
nj/(n1 + n2).   

The probability that an observation with value X = x belongs to population j = 1, 2 is the conditional probability 
expressed by: 

P(j | X=x) for j = 1, 2. 

These are the probabilities which are needed to classify an observation x into a population.  The classification rule is 
to assign x to j=1 if:  

P(1 | X=x) > P(2 | X=x) … (A) 

Otherwise assign x to j=2. 

The P(j | X=x) probabilities can be calculated from the P(X=x | j ) distributions using Bayes theorem as shown: 

P(j | X=x) = P(X=x | j ) P(j) / P(x)  … (B) 

 Substituting (B) into (A) gives: 

P(X=x | 1 ) P(1) / P(x) > P(X=x | 2 ) P(2) / P(x)  … (C) 

The P(x) will cancel when forming the classification rule (D) and there is no need to evaluate them.  Equation (C) 
simplifies by cancelling the P(x) as well as the common factors in the normal distributions and then taking logarithms 
to produce: 

-0.5 * ((x - µ1)/σ)
2
 + log(q1) > -0.5 * ((x - µ2)/σ)

2
 + log(q2) … (D) 

The classification function CFj for j = 1, 2 is:  

CFj = -0.5 * ((x - µj)/σ)
2
 + log(qj) … (E) 

ESTIMATING CF FROM THE SAMPLES 

The samples from populations 1 and 2 are used to estimate the parameters µj and σ.  The sample means  ̅j estimate 

µj.  The pooled variance Sp
2
 estimates σ

2
 where Sj

2
 is the sample variance for sample j and 

Sp
2
 = {(n1 – 1)S1

2
 + (n2 – 1)S2

2
}/(n1 – 1 + n2 – 1) 

The sample CF is used in the sample based classification rule: 

-0.5 * ((x -  ̅1)/ Sp)
2
 + log(q1) > -0.5 * ((x -  ̅2)/ Sp)

2
 + log(q2) … (F) 

THE CLASSIFICATION FUNCTIONS AND LOG-ODDS-RATIO 

Returning to equation (A), the odds ratio of membership in j=1 versus j=2 is given by: 

P(1 | X=x) / P(2 | X=x)  =  ( P(X=x | 1 ) P(1) / P(x) ) / ( P(X=x | 2 ) P(2) / P(x) )  … (G) 

Logarithms are taken of equation G, and P(x) is cancelled to give equation (H): 

Log (P(1 | X=x) / P(2 | X=x)) = Log(P(X=x | 1 ) P(1)) - Log(/ P(X=x | 2 ) P(2)) … (H)  

Using equation (D), equation (H) becomes: 

Log Odds-Ratio = -0.5(-2x(µ1 - µ2) + µ1
2
 - µ2

2
) / σ

2
 + log(q1/q2) … (I) 

Equation (I) shows that the Log-Odds-Ratio from 2-group discriminant analysis is a linear function of x 

Log Odds-Ratio = β0 + β1 x   … (J) 

where β0 = - (µ1
2
 - µ2

2
) / 2σ

2
  +  log(q1/q2) and β1 = (µ1 - µ2) / σ

2
 

When fitting the 2-group discriminant analysis model to the sample, the estimates b0D, b1D for β0, β1 are found by 
replacing µ1, µ2, σ with  ̅1 ,  ̅2, and Sp in equation (J) 

b0D = - ( ̅1
2
 +  ̅2

2
) / 2Sp

2
  +  log(q1/q2) and b1D = ( ̅1  -  ̅2) / Sp

2
 … (K) 

 The “D” is added as a subscript to indicate that the method of fitting is by discriminant analysis. 
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If we make the assumption that (1/Sp) is a constant, then, as shown by (L), the expression for b1D is a linear 
transformation of a t-statistic with n1 + n2 – 2 d.f.  The term K is the constant (µ1 - µ2) / Sp

2
. 

b1D = {( ̅1  -  ̅2) - (µ1 - µ2)} / Sp
2
 + (µ1 - µ2) / Sp

2
 = t  (1/Sp) sqrt(1/n1 + 1/n2)  + K … (L) 

The appropriateness of the assumption of constant Sp is justified by having large sample sizes n1 and n2. 

CONNECTION WITH LOGISTIC REGRESSION 

The logistic regression model with predictor x also is formulated as: 

Log Odds-Ratio = β0 + β1 x. 

In the case of logistic regression the parameter estimates b0L, b1L are fitted by maximum likelihood. 

The “L” is added as a subscript to indicate that the method of fitting is Logistic Regression with maximum likelihood. 

CONNECTING b1D AND b1L 

Under the assumptions of Appendix A, b1D is essentially an unbiased estimator of β1.  The actual expectation is given 
by E(b1D) = ((n1 + n2 – 2)/ (n1 + n2 – 4)) β1.  Meanwhile, b1L is asymptotically an unbiased estimator of β1. 

The Wald chi-square for b1L gives the significance for rejecting the null that β1 = 0.   

For discriminant analysis, the null hypothesis that β1 = 0 makes (µ1 - µ2) = 0.  The hypothesis H0:  β1 = 0 vs. 
H1:  β1 ≠ 0 at significance “α” is tested by finding a critical value C so that the test statistic  T =  t  (1/Sp) sqrt(1/n1 + 
1/n2)  satisfies P(| T | > C) = α.  This test can be changed to finding a critical C’ so that P(| t | > C’) = α where 
C’ = C  / ( (1/Sp) sqrt(1/n1 + 1/n2) ).  But then C’ is the t-statistic value tα/2. 

For large n1 + n2 the square of the t-statistic is essentially a chi-square with 1 d.f.  The test above can be rephrased in 
terms of a chi-square. 

APPENDIX B: NECESSARY CHANGES TO %MFP8 

A. The “%then” must be removed in the sub-macro “fpmodels” 
 
%macro fpmodels(model,y,x,pref,base,m,stvars); 

     %else /*%then*/ 

 
B. For purposes of running in Windows %mfp8 must be modified by replacing “/” with “\” as shown in the statements 

below: 
 
%include "&MacPath.\boxtid.sas"; 
%include "&MacPath.\xtop.sas"; 
%include "&MacPath.\xvars.sas"; 
%include "&MacPath.\fpmodels.sas"; 
%include "&MacPath.\datasave.sas"; 
%include "&MacPath.\exlabb.sas"; 
%include "&MacPath.\exinc.sas"; 
%include "&MacPath.\labs.sas"; 
%include "&MacPath.\brename.sas"; 
%include "&MacPath.\funcfm.sas"; 


