Type, Point and Click — A Practical Guide to SAS Enterprise Guide® Prompts
Patricia Hettinger, SAS Professional, Oakbrook Terrace, IL

ABSTRACT

Your SAS Enterprise Guide project is set up. Processes have been created, linking code in the desired order. Now if only you didn’t
have to keep changing your code every time your input file name changed or your date range or ....

This paper gives an overview of the prompts available in SAS Enterprise 5.1 and ways to automate your project. We will also touch
on the general nature of macro variables, and the various quoting and unquoting functions. We will also explore the many additional
prompt features available in stored processes.

INTRODUCTION

SAS® Enterprise Guide® is a fantastic tool for visualizing your data and processes. If you are already linking your programs together, you have
done the first step of true automation. Now the next step is to make your process truly reusable by letting whoever is running it choose various
options such as file names, dates, and even passwords. At the end of this paper, we will set up a practical demonstration, interfacing to a
ConnectDirect script (formerly know as NDM) that will let us transfer any file visible to your SAS Enterprise Guide UNIX session to a select
mainframe. Although developed for SAS Enterprise Guide 5.1, most of this information will still be valid for earlier releases.

THE NATURE OF SAS ENTERPRISE GUIDE PROMPTS

All prompts work by passing parameters to a SAS program in batch mode. These are picked up by SAS as macro variables. Since all SAS
macro variables are character in nature, any prompts set by SAS Enterprise Guide are character as well. However SAS Prompt Manager has
code manipulation behind the scenes that will let us create variables to name file directories, files, numbers and dates. Versions 4.3 and 5.1
even act like Windows Explorer, allowing you to point and click to file names as in our NDM example later.

Several of the prompt options will allow you to select more than one value at run time. These include text, numeric and date prompts. The old
Parameters Manager in SAS Enterprise Guide 4.0 and 4.1 would resolve these multiple values as value1-delimiter-value2-delimiter etc.
Version 4.2, 4.3 and 5.1 handle this differently, setting each value into its own variable, plus a variable keeping track of the count. For example,
suppose you wanted a prompt that would let you enter a number of last names as a customer search tool. Let's name the macro variable
custname.

We'll create the prompt and enter the text we want to see when the prompt is in use (figure 1). We will require at least one value, set here and
on the next screen (Figure 3). We will not use the prompt value throughout the project for reasons discussed later. Figure 2 shows how we can
set the minimum number of values allowed to one and the maximum to five. The length allowed for each value will range from two to twenty.
Note that we also had to specify multiple values in the ‘Number of values’ drop box:

B Add New Prompt 3

General | Prompt Type and Values
Hame: General  Prompt Type and Values
Prormpt type:
Displayed text: e
Erter Customer Names Text v Option for multiple values
Desoription Methad for populating prompt: Number of values: /p
User enters valies | | Multiple values v
Minimur value count: Maximum value count:
Options 1 5
[] Hide fromuser 7] Requies anorvblank value B .
Minirum length Marirum length
[[] Read-only values  [] Use prompt value throughout projsct >
20
Include Special Yalues
[ ok J[ cones ][ Heb [ Allpossible values ] Missing values

Figure 1: Naming the prompt Figure 2: Setting the value and lengths allowed



At run-time:

45 Specify Values for Project Prompts E
General Resel qroup defauls
Enter Customer Narmes
Emin
Jones
Hettinger X
Bradford =
Harrizon =
=N

Figure 3: Run-time view for custhame
After the last value is entered, Smith, Prompt Manager creates eight macro variables. These are:

custname — Harrison custname1 - Harrison custname2 - Bradford
custname3 - Hettinger custname4 - Jones custname5 — Smith
custname0 - 5 custname_count — 5

If only one value was entered, just custname and custname_count would exist. Referring to custname without a suffix gives us the first value
entered, Harrison. Custname0 and custname_count contain the number of values entered from the screen. The other variables, custname1
through custname5 may be thought of as an array, referring to each customer name by reference. Processing these can be tricky. The
appendix of this paper has one example using a macro do-loop and the various masking/unmasking functions. If we had defined this variable
as a text range instead, we would have created two variables, custname_MIN and custname_MAX.

Why didn't we want to use these values throughout the project when we set up this prompt (figure1)? If we had, all of the values in the array
would have remained except where they were changed. This is despite actually deleting the values we didn’'t want anymore. So if we decided
we simply wanted three values the next time we ran, like ‘Patel’, ‘Whang’ and ‘Butkovich’, the custname_count variable would have still been
five and we would have ran with ‘Jones’ and ‘Smith’ again. Not using them throughout the project gives us a clean slate each time

Selecting multiple dates is even more complicated. Figure 4 shows what a date prompt named Pickdates would look like at runtime. You have

our choice of picking today’s date, some increment backward or forward or a specific date.
EA Specify Values for Project Prompts E

I™ Show only required items (denoted by ]

General Reset aroup defaults

* Select Dates
] e

Today X
[vsterday §
Tomorrow o
Cunst dag of last year
Cusrent day of nexd year
Cunent dag of lact morih
Cunsnt dag of rest ot
N days ago

M clsps from nows

coce

Figure 4: Selecting multiple dates — the choices

If we chose ‘Today’ and ‘Yesterday’ when running this on July 7, 2012 and July 20, 2012, even more variables would be created than in the
previous example:

PICKDATES_REL3 - D-1D PICKDATES_REL2 - DOD PICKDATES_COUNT -3
PICKDATESO -3 PICKDATES - 20Jul2012

PICKDATES1 - 20Jul2012 PICKDATESZ - 07Jul2012 PICKDATES3 - 06Jul2012
PICKDATES_LABEL - July 20, 2012 PICKDATES_LABEL1 - July 20, 2012

PICKDATES_LABEL2 Today PICKDATES_LABELS3 Yesterday

We've seen the array variables before but what are the REL and LABEL variables? The REL variables refer to the displacement from the run
date and the labels may be used in reports and analyses. DOD refers to the current date and D-1D one day prior. You will probably never use
the REL variables but the labels would be very useful in a report.

Note that none of the date variables are enclosed with single quotes and a ‘d’ at the end. 20Jul2012 should be 20Jul2012'd.  You will need to
put it in quotes and append a ‘d’ to the end. Sounds simple, doesn'tit? PICKDATES1 right off the prompt looks like 20Jul2012. This is not a
valid date literal so you decide to enclose in quotes and add the ‘d’ suffix to get 20July2012'd. However, just setting a variable to
‘&pickdates1’d results in just that: ‘&pickedates1'd. You can use the %bquote function to resolve the &pickdates1 and add the other characters
as %bquote(‘'&pickdates1’d). The log will show this as “20Jul2012’d but when you try to use it an expression, you will get an error. Unmask the
resulting value so that it can be used as a literal in the data step as %unquote(%bquote(‘'&date1'd)).



Another way to get the proper quotes for your dates and text variables is to set them in a data step. You could use a null data set as output as
in the example below. Note the single quote is enclosed in double quotes.
DATA null ;
pickdatesl = "'"||"&pickdatesl™||"'d";
CALL SYMPUT ('pickdatesl',pickdatesl);
run,

ABOUT PASSWORDS

SAS Enterprise Guide version 5.1 offers considerable improvement for protecting passwords obtained with a prompt. As figure 5 below
demonstrates, you can specify a masked value when selecting how the run-time prompt will look. The log will show NDM_PASSWORD =
XXXXXX. You will want to keep symbolgen turned off though, as well as avoiding %put statements as either will still show the unencrypted
value in the log. The suffix of any password variable must be _password.

B Add New Prompt E|

Gerneral| Prompt Type and Yalues
Prompt type:
Test “
Method for populating prompt: Mumber of valuesx:
User enters values | | Single walue W
Teut tppe:

Single line b

ird entry]

Ihclude Special Valuzs

[ &l possible values [ Missing values

Default value:

Hint:

Ok ” Cancel ][ Help

Figure 5: Masking a password

When you use the suffix, it will ask how you want the password encrypted. If you are going from one operating system to another, you may find
no encrypted value works. In fact, the file transfer application whose build is discussed later in this paper cannot use an encrypted password.

For those using older versions of SAS Enterprise like 4.2 and 4.3, you will find SAS Enterprise still showing the unencrypted value first thing in
the log. To avoid this, you will have do two things. One is to uncheck the ‘Use prompt throughout project’ box when adding the password
prompt. The other has to do with your SAS Enterprise Guide settings. Uncheck the ‘show generated wrapper code in SAS log’ which is one of
the Results General options. This may be found by selecting ‘Options’ under the Tools menu bar. If you do not uncheck this, everything set by
a prompt will be clearly visible in the log, including your password. There is nothing you can do code-wise to suppress this unless you run a
separate program first that turns off the log altogether. This would be one line of code: Options nosource nosymbolgen;

A PRACTICAL DEMONSTRATION — SETTING UP A FILE TRANSFER PROGRAM

You might have wondered why so many SAS job requirements specify being able to write UNIX shell scripts. This is because, believe it or not,
there are some things involving the system environment too complicated for SAS, as in this example. We will interface to a Korn shell calling
ConnectDirect aka NDM. The shell sends a file from a UNIX box to a mainframe selected from a list. See the appendix for the full code. SAS
will be used to set up a GUI interface and to do some editing on the front end. Keep in mind that mainframe files are considerably more
complicated than UNIX ones. We have an Irecl as we do on UNIX but we also have various record formats like variable, fixed, variable block
and fixed block. Our file we are creating on the mainframe will need the record format and Irecl specified but the Korn script will do some
rudimentary block size calculations where appropriate.



First we'll select Prompt Manager from the SAS project view in figure 6:

Fle ER Vew Teds Poges Toos Heb (9 @Ayt BB X 0 8T egbrocesshion
IM" R e X
A X fswe s bR Selcted Server: SASAp (Cormected) » 4 Aale rogam + | Bxpot v SandTo e
Nye LUy | p
No Prngt: Detrns \C | |C k ‘ —‘

Figure 6: Prompt Manager

The first prompt we will need is one for the UNIX file to be transferred. Enterprise Guide 4.3 lets us set up a prompt that will look much like
MS/Windows in selecting a file. We will call our first prompt UNIXFILE. The displayed text will read 'Enter UNIX File to be Sent:' and it will be
set up like Figure 7:

B Add New Prompt 7|

General | Prompt Tepe and Values |

Frompt twpe:

[ Fite or directon, ~

tethod for populating prompt Mumber of valuss:

File or directon tpe:

-
Servern
| YourServer Vl
Selection type: & Files 0 Directories
File Extensions
Add
D elete
Powve Up
b o Drowvun
Default walue:
| [ Browse_. |
[ 0K ][ Cancel | [ Help |

Figure 7: File/directory prompt setup
Note that we could select either files or directories. Since this application transfers a file, we will select ‘Files'.

The next prompt will need is the mainframe file name. This should be a prefix you have -CREATE- authority over. File security works
differently on the mainframe than UNIX. With UNIX, it is possible to have write authority without read authority. The mainframe is different,
having a hierarchy of READ, WRITE and CREATE where CREATE authority automatically gives you READ and WRITE.

Our prompt will be called MVSFILE and will be set up as straight text. There will be no default value or guidelines on how to enter the name as
in figure 8. The display text will be 'Enter Target MVS File Name:'

B Add New Prompt E3
General | Prompt Tepe and Walues |

Frompt type:

N

tethod for populating prampt: Murber of values:

| zer enters walues R | | Single value L |

T ext type:

| Single line L |

kinirmurm length: k aximum length:
Include Special Walues
[ Al possible walues [ Missing values

Default value:
I |

Hirk:

[ Ok, ] [ Cancel ] [ Help ]

Figure 8: Unformatted text set up



Our next prompt will be the mainframe id. We will call this MVSID and let the user select from a list at run-time. 'Select MVS ID: ' will be the
display text. We will set the default value to be Cp.m290.com which will look like ‘My Mainframe’ at run-time. The other possible values will be
Cp.m190.com and Cp.m390.com. This will be a static list. To use a dynamic list, there must be a data source available to you in a SAS folder.
How to put this source in such a folder is beyond the scope of this paper but for values that don't change that much, a static list should be fine.
We could also select 'Allow user to specify additional (unformatted) values' but we'll go with the addresses in Figure 9 for right now.

BE Edit Prompt H

General Prompt Tepe and Walues I
Frompt type:

I Text - I

tethod for populating prompt: Mumber of values:

IUser zelects walues from a static list vI ISithe walue vI
kA inimunm length: kA axirnum length:

— Include Special WYalues

I Al possible values | Missing values

— Append formatted walues with unformatted values
Lizt of walues:

Unformatted “Wwalue Formatted [Dizplayed] Yalue | Default Audd I
CP.rZ290.COM CP.k2390.COk (- Get Values, I
CP k190 C0Ok CP k190, COR [

Delete I
CP. kA 230.C0O [

Clear D efault I

kd ove up I
FMove down I

I Allows user to specify additional [unfarmatted)] values

Ok I Cancel I Help I

Figure 9: Entering allowable values

We will do the record format much the same way, since the four basic types, fixed, variable, fixed block, and variable block should suffice for
the vast majority of our file transfers. The prompt will be named RECFM, displayed as 'Select Record Format: ' at run-time. We will make fixed
block (FB) the default (Figure 10)

BE= Add Mew Prompt X|

General Frompt Type and Walues |

Prompt tppe:

| T et - J
Fethod for populating prompt: Murmber of values:
|_| ser sele values from a static list v] [Single walue “']

Firmirmum lerngth: b a=irnum length:
Include Special VWaluss
[] &l possible values [ ] Missing values

[[] Append formatted valuss with unformatted valuss
List of values:

Unfarmatted Walues Formatted [Displayed) Value Default [ Add ]
F F @) [ Get Walues. .. ]
FB FB - D elete
L L ') [ Clear Default ]
“WB VB O‘ bMowve up

[1 &llowve user to specify additional (unformatted)] values

L (=] ] [ Cancel ] [ Help ]

Figure 10: Default for record format



Next we'll set up a prompt for the Irecl which will be named LRECL. The prompt will display as 'Record Length (LRECL)?". Values of ten to a
thousand should handle the vast majority of our files (Figure 11)

B Edit Prompt

General | Prompt Tupe and Yalues ]

Prompt type:

| Mumeric - |

b ethod for populating prompt: Murnber of values:

| Uszer enters values A | | Single walue -

Allow only integer values

bdinimum number of decimal places allowed: bl &xirnum number of decimal places allowed:
Minirmum +value allowed: M aximum value allowed:
[10 | [1000 |

Include Special Values
[ &l possible values [ Mizsing values

D efault Walue:
80 |

[ u]8 J [ Cancel ] [ Help

Figure 11: Allowable LRECL values

We will want NDM to send an email when it's done so we'll set up a variable named ENOTIFY with the email address. At run-time, this will be
displayed as 'Enter Notification Address:' . We can put in some known addresses as in figure 12 but we will also allow the user to specify
another address.

BE Add Mew Prompt

G ensral Frompt T yppe arsd Wallses ]
| Prompt twpe:
T ==t - |
bt =thvod for popadating pronmnpl: Murmber of waluss:

T walues from a static: list Srgle walue Bl ]

Firirnunn lemgth: A azirnun length:
Inchude S pecial Walues
[] AN possible values [ Missing values

[[] Append formatted walues with unformatted values
List of values:

LI mformeat bed Waliee Formatted [Displayped] W alue D efavdt I Acd ]

patricia_hettinger@att . met patricia__hettinger@att . net O I Get Walues ]
D elete

I Clear D efault ]

% =V (]

b owe Do

"‘B{Muw wuser o specifiy additional [unformatted] walues

[ N ] [ Cancel ] [ Help ]

Figure 12: Letting the user enter other values



We will do the same thing with USERID (mainframe user id), allowing the user to either use some known id like XSELL234 (figure 13) or to
specify another one. The display text will be 'Enter MVS User Id:'

B Add Mow Prompt _-l

5 eyl FPrompt Type ard Walaes |
FPrommgt tyspees:
I T et oy
b ebleced For ool atireg paosmngot: Pl Linnsbrer of v aslioie s
| User selects walues rom & static st T .EH“-EHE el —

Bl i lergti el mairnmann lerugti:
Inshede S pecial YWalues
[] A0 poszible values: [ ] Missing values

[ Append formatted walues with unlformatted valses
List of wabsss:

Urniformatted Valse Formatted [Dizplaved) Valse = Defaul [ Add ]

FoELLZ 34 FoELLZ234 (] [ Get Valuss. .. ]
D elste

[ Clear D efault ]

b o nap

MMowve dowen

"m,Alnw wser bo specily additional [uedommmatted] waluss

L Ok ] [ Cancer | [ Help ]

Figure 13: Mainframe user id

Now for our password. We must pass this to the mainframe as plain text. We will call it NDM_PASSWORD and set it up as illustrated in
Figures 14 and 15. Figure 14 shows the displayed text 'Enter MVS Password' and Figure 15 more of the prompt type.

B Add New Prompt 3] B8 Add New Prompt =
General | Prompt Type and Vahes } G:nela\[ | Frompt Type and Values
ront type
Mame: Pt P

[Tent v

WD M_|

Method for populating prompt. Mumber of values:

Displayed text [User enters vaues | [ singe value v
Erter WS Password: [
ext type:

Descripton: [ single e ]

M. nale line [f

Multidine text

Include Special Walues
: . All possible values Missing values

Ootions O anp O 9

[] Hidefromuser  [/] Requires a non-blank value Defaul valie

[] Read-only valies [] Use prompt value thaoughout project | |

[ ok J[ cowa J[ Heo I: ok [ coed [ v |

Figure 14 - the _PASSWORD suffix Figure 15 - masking at run-time

Now that we have our prompts set up, we need a SAS program to use them. Our SAS program that calls the Korn script is very simple - just
turning off symbolgen and turning the mainframe variables MVSFILE, USERID and NDM_PASSWORD to upper case on the strong likelihood
your receiving MVS system would consider these in error otherwise. We then use the systask command to execute the Korn script.

options NOsymbolgen;

%$let MVSFILE=%trim (%upcase (&MVSFILE)) ;

%$let USERID = %trim(%upcase (&USERID)) ;

$let UNIXFILE=%trim (&UNIXFILE) ;

$let MVSID=%trim (&MVSID) ;

$let RECFM=%trim (&RECFM) ;

$let LRECL=%trim (&LRECL) ;

%let NDM PASSWORD=%TRIM ($UPCASE (&NDM PASSWORD) ) ;
SYSTASK COMMAND "/UNIX_path/NDMZMVS.ksh SUNIXFILE &MVSFILE &MVSID &RECFEFM
&LRECL &USERID &NDM PASSWORD &ENOTIFY";

RUN;



We will call this program SAS2NDM.SAS. Now we have to associate the program with our prompts. We could do this from the editor or by
right-clicking on the program icon in Enterprise Guide’s Project View and clicking on ‘Properties’ as in Figure 16:

CpeEn »
Sas Expork [

i

i

Save SASEMNDR As .
= Fun =2=2rRMDOh on YourServer

Selaect S=erweaer >

ondikion >

Zreakse Stored Process. ..

¥

Send Toa >
Plowe SAS52ZRDM to Frocess Flowe s
Link =2=2rR0OM to. ..

Copey

X ¢ g

D=lete

Renams

Froperties
Figure 16 — Selecting properties

A properties box will open up. If you select prompts and then ‘add’, you will see a list of all the available prompts (Figure 17).
We will add all of them in the order given.

EE properties for getcust
Genoral e T
Results
Prompts
Summary Fhefiost Eremeis e
SAS Mo — e —— e ——
¥ Select Prompts E 4
T hiz item
Select additional prampts to use:

LM FILE

M SFILE

[ =1}

RECFM

LRECL

ErROTIFY

LISERID

rMDOK_PASSWORD

| Cancel |
Add. . r - Prompt kd anager. .. |
Ereesiclioe criiing EremEis vl Ths e
Mare (F11...
oK Cancel |

Figure 17: Adding prompts to our code



RUNNING CODE WITH PROMPTS

Now that you'd added the prompts to your code, your screen should look like this at run-time (Figure 18)

2] Specify Yalues for NDM2Mainframe
[ Shows only requined items (denoted by =]

Genaral

* Enter UNIX File to be Sent;
I

* Enter Target MWS File Mame;
* Select MVS ID:
* Select Record Format:

8
* Record Length (LRECL)?

0
* Enter Motification Address:

* Enter MW'S User Id;

* Enter MWS Password:

X

Beset qioup defondls

[ Fun_J [ Concal ]

Figure 18: Run-time

Let's take a better look at the first prompt, selecting the file on UNIX to be sent. In order to browse for a file, you must be able to reach it
through a SAS metadata server as in Figure 19 below. Of course you could always type or copy the complete path as well.

M Select a File |._|®
Lookin: | Adhoc v - X % = §5
Servers
Servers éoglifwer pe Modfied Size "
[Z] UNIAFilet et Text Document 91272012 9:30:02 AM 96,000 KB
[Z] UNIXFile2 bt Text Document 9202012 1:05:03 PM 5000 KB
] UnFile 3. Text Document 911272012 4:00:02 PM 16000 KB
hs
File name: v|
Files of type: v|
Open H Cancel ]

Figure 19 — Browsing files from the metadata server

PROMPTS AND STORED PROCESSES

The ConnectDirect program above became so popular that it turned into a stored process, easily accessible from any project that had access.
The first version was the one you just saw in this paper. It worked well but didn’t address one common problem.  The systems all had different
allowable data set prefixes that people kept forgetting. They also kept forgetting the MVS data set naming conventions. The maximum
allowable name length is 44. The nodes are separated with periods, with each node having the maximum length as eight. No node can begin
with a number. Some special characters are allowed but for the sake of simplicity, their use would not be allowed in the revised process.

One thing you can do in a stored process that isn’t possible otherwise is set up prompt dependencies. We created a dependency between our
MVSID (mainframe id) prompt and a new prompt called MVSPREFIX. For this to work, MVSPREFIX had to be populated from a dynamic list
as figure 20 demonstrates. This was a small SAS data set called MVS_DSN_Prefixes with two variables, SYS_ID and DSN_PREFIX. There



were only six observations. Note that CP.M190.COM and CP.M390.COM had more than one allowable prefix

SYS_ID DSN_PREFIX
CP.M290.COM NANS.00
CP.M190.COM SAPM.CIA
CP.M190.COM HTS.00
CP.M390.COM FARV.OUT
CP.M390.COM FARV.IN
CP.M390.COM INDRA.SOUC

We found the MVS_DSN_Prefixes data set in a SAS folder, set the method for populating the prompt as ‘User selects values from a dynamic
list', and selected DSN_PREFIX as source variable. The user may not input any other values.

m B Edit Prompt E .

Browse | Search SAS Folders |

General  Frompt Tepe and Values I

Locki | Shared System Data Frompt type:
| Test L]
[I_i SAS Folders Name Methad for populating prompt: Mumber of values:
D MVS_DSN_Prefixes |User selects waluss fram a dynamic list v | |Single value -
Ij IP Addresses Minimum length: M azirmum length:
| |
Data source:

|MVS_DSN_Prefixes Browse...

Untormatted Values
Calurmr:

| campaign_desc ﬂ

<zelect a colurmng
515 1D

ILlse ‘Unformatted Y alues” I::lll;] [Dcfault farmat [$256.)

[ Append formatted values with unformatted values

Include Special Values

[ &l possible values

Sort order: Dratault value:
|Dsfault sort arder ﬂ |[Nons] ﬂ Select...

I Allow uzer to specify additional [unformatted) values

Ok | Cancel Help

Figure 20 — Populating MVSPREFIX from a dynamic list

|
W
M




Adding the prompt to the program and running it from the project gives us all of the possible data set prefixes regardless of the MVS ID.
Another new prompt, mf_file_name was created for the rest of the MVS data set name. The rules for this part of the name had to be putin a
SAS program, as they were too complicated for Prompt Manager. See appendix C for the version with the MVS data set validation added.

Ef Specify Yalues for Project Prompts

I Show only required itermns [denoted bp =]

Genaeral Feset group defaults
*  Enbter UM File to be Sent
|fstagdir/output.proiecl'l b=k Erowse I
*  Select MWS ID:
CP.MMZ290.CORM -

*  Select MWYS DSMH Prefia:
SAPM.CIA - Amd,

HTS.00

FARW OUT
FARMW.IM
INDRA SOUC

IFB [=]]
=+ HRecord Length [LRECL)?
|20

*  Enter Motification Address:

* Enter MYS User Id:

> SELL =54 ~1

+ Enter MWS Fassword:

Run Cancel |

Figure 21 Run-time from Project MVS DSN Prefix

If we create this as a stored process on either a logical or workspace server, we can set up MVSPREFIX to only show those values associated
with the selected MVS id. You'll see an extra option in the prompt section: dependencies

B ofb Frampts g_sas_

Input Prompts:

Dizplayed Text M ame Type [RE=TEN] -
= l’;‘;’ General

Standard group

2 Enter UNES File L. UMNE<FILE File or directon

3 Select MWS ID: W SID Tent .
Y Select WS DS...  MWSPREFI= Text f
@ Enter the rezt of t... mf_file_names T et
B Edit Prompt H w
General ] Prompt Type and “alues ] D ependencies ] Prewview...
M arne:
[MYSPREFI

Dizplaved text:
|Select MYS DSN Prefix:

D escription:

J * Delete
FParent group:
| @ \General -
Options Mews
I Hide at i time v Requires a non-blank walue

|

I Read-only values & Use prompt walue throughout project

Figure 22: Editing a prompt in a stored process
In creating a dependency, the system id will determine which DSN prefixes we can select. Note that while MVSPREFIX must be sourced from

11



a dynamic list, the prompt on which it depends can be source from a static list or even straight text entry. For those of us familiar with SQL, this
may be thought of as a WHERE statement - WHERE SYS_ID = &MVSID.

BE Edit Prompt E

General I Frompt Type and Yalues Dependencies I

— Thiz prompt depends on the walue of the following prompts:

Frompt | Description of Dependency
EEN ~ IMVS DSN Prefixes.SYS_ID = Value of "Select MYS |

Delete

\_I&-
[
o

— Dependency
Colurmn: Operatar: Walue of:
lsys_id | [ETE - | Select MYS ID:

T he following prompts depend on the walue of thiz prompt:

Frompt | Description of Dependency

Mo ather promptz depend on thiz prompt

Figure 23: Prompt dependency details

Now when we run this as a stored process, we'll see only the prefixes allowed for that MVS system ID:

EiL Specify Values for Project Prompts

I Show only required items [denoted by

| General Feset group defaults |

*  Enter UM File to be Sent

Ia"stagdir.-"output. project b=t Erowse |

*  Select MYS 1D:
|CP.M2z30.cOmM -

*  Select MYS DSK Prefia:

ANS.CO | fimd,

* Select Record Format:

IFe =

+ HRecord Length [LRECL]?
|a0

*  Enter Motification address:

=+ Enter M5 Paszsword:

Run Cancel I

Figure 24: Stored Process MVS DSN Prefix appearance as a function of MVS ID
If your connection has more than one server, make sure you create your stored process to run on the same server where your dynamic list is

defined. If you do not, nothing will show up for your prompt. If a value is required for the prompt, you won't be able to run the stored process at
all.

12



CONCLUSION

The NDM demonstration is just one of several applications you can build with prompts to automate common processes, reduce error and just
generally make your work day more productive. Just another reason to get started with SAS Enterprise Guide!

ACKNOWLEDGEMENTS

Thank you, Joe and Paul Butkovich for reviewing this paper and presentation

13



CONTACT INFORMATION

Your comments, questions and experiences are valued and encouraged. Contact the author at:

Patricia Hettinger

Oakbrook Terrace, IL 60523

Phone: 331-462-2142, cell 630-309-3431
Email: patricia_hettinger@att.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

APPENDIX

A. Macro to use multiple character prompts in a ‘WHERE’ statement

%MACRO proctext;
%LET listval =; *&Iistval will be our resulting variable;

%DO i=1 %TO &custname_count; *&custname_count is the number of values selected;
%IF & = &custname_count % THEN %DO;

%LET listval = *build the string;

&listval "%unquote(%NRSTR(&custname)&i. )"; *quoting and unquoting;
%END;
%ELSE %DO;
%LET listval = &listval "%unquote(%NRSTR(&custname)&i. )",;
%END;
%END;
PROC SQL;
SELECT * FROM
dictionary.tables
WHERE memname IN (&listval);

*&listval evaluates to list as in Figure 4 like ‘Jones’,” Bradford’,’Hettinger’,”Harrison’;
QUIT;

%MEND proctext;

%proctext;

14



B. NDM UNIX to Mainframe Korn shell script

l/usr/bin/ksh
NDMAPICFGxxxx//ndmapi.cfg
export NDMAPICFG

#above will vary by your system

SEHEHEET L L B L T
## This script is to transfer one file from a UNIX to one of several OS/390 servers

# There are eight parameters that are needed: Parameter 1 = The from file - fully qualified,
#  Parameter 2 = The to file - fully qualified, Parameter 3 = snodep - receiving system
#  Parameter 4 = recfmp - OS/390 record format, Parameter 5 - Ireclp - OS/390 record length
#  Parameter 6 - sid - OS/390 user id, Parameter 7 - pw - MVS password
# Parameter 8 - notify - email address for ndm notification
L L L L L L L L L L L
fromfile=$1
tofile=$2
snodep=%$3
recfmp=$4
Ireclp=$5
sid=$6
pw=3$7
notify=$8
if [[ $# != 8 ]];then
print "Need eight parms"
exit

fi
if [ $recfmp = "FB" ]];then

if [ $lreclp -It 278 ]];then let blksize=$Ireclp*100

elif [ $lreclp -gt 277 ]];then let blksize=$lreclp*10

fi # calculate blocksize if record format is fixed block
elif [[ $recfmp = "VB" ]];then let blksize=32760 #literal for variable blocked
elif [[ $recfmp = "V" ]];then let blksize=$Ireclp+4 #variable unblocked
elif [ $recfmp = "F" ]];then let blksize=$Ireclp #fixed unblocked
fi
set -v
Ixxx/indmcli -x << EQOJ # Above path will vary according to your system
submit maxdelay=0 procl process
snode=$snodep
snodeid=($sid,$pw) #mainframe id and password
notify=$notify
copy01 copy from (file=$fromfile

sysopts=":datatype=text:"
PNODE

15



ckpt=5m
compress extended=(CMP=5
WIN=15
MEM=9)

to (file=$tofile
disp=(RPL,CATLG,CATLG) #RPL overwrites current file if it exists
DCB=(DSORG=PS,RECFM=$recfmp,LRECL=$Ireclp,BLKSIZE=$blksize)
unit=XXX # varies according to your system and whether you want tape or disk
snode

)
if (copyO1l !=0) then
failed run task pnode
sysopts="echo '$JOBJSTEP NDM FAILED""
eif
pend;
EQJ

C. Data Set Name Validation Code
$LET RC=0;
Data null ; data step handles this sort of thing better
attrib file name format=$50.;

file name="&MVSPREFIX..&mf file name";
flength=length (file name);

rc=0;

call symput ('MVSFILE', file name); this will be our MVSFILE value

if length(file name) gt 44 then do; check for total length

file print;

put @1 'ERROR! File Name Too Long' ;

rc=99;

end;

Array name part(6) $15.;

do i=1 to 6;

name part (i)=scan(file name,i,'.");

if length(name part(i)) gt 8 then do; check for length of each node
file print;

put @1 "ERROR! Node #" i "Greater than 8 positions long for " name part (i);
rc=99;

end;

IF (UPCASE (SUBSTR (NAME PART(I),1,1)) LT 'A' OR

UPCASE (SUBSTR (NAME PART(I),1,1)) GT 'Z') AND NAME PART(I) NE ' '
THEN DO; node cannot begin with number or special character

file print;

put @1 "ERROR! Node #" i "Must begin with a character " name part(i);
rc=99;

end;
if notalnum(trim(name part(i))) gt O no special characters at all
and name part (i) ne ' ' then do;

file print;

16



put @1 "ERROR! Node #" i " Special Characters Not Allowed " name part(i);
rc=99;

end;

end;

call symput('rc',rc);

run;

[

sput &rc;

run;

gmacro handle name (rc);

%if &rc = 0 %then %do; run ConnectDirect if name OK
options NOsymbolgen;

%$let MVSFILE=%trim (%upcase (&MVSFILE)) ;

%$let USERID = S$trim(%upcase (&USERID)) ;

%$let UNIXFILE=%trim (&UNIXFILE) ;

$let MVSID=%trim (&MVSID) ;

$let RECFM=%trim (&RECFM) ;

$let LRECL=%trim (&LRECL) ;

$let NDM_PASSWORD=%TRIM(%UPCASE(&NDM_PASSWORD));
systask command "/UNIX path/NDM2MVS.ksh &UNIXFILE &MVSFILE &MVSID &RECEFM
&LRECL &USERID &NDM PASSWORD &ENOTIFY";

RUN;

DATA NULL ;

FILE PRINT;

PUT @1 'ConnectDirect Transfer Submitted';
run;

%end;

%else %do;

DATA NULL ; print message if anything wrong in the name
FILE PRINT;

PUT @1 'TRANSFER NOT RUN - INVALID MVS NAME';
RUN;

send;

%mend;

thandle name (&rc) ;

runy;

17



