
1

Paper 080-2013

The SQL Tuning Checklist: Making Slow Database Queries a Thing of the
Past

Jeff Bailey and Tatyana Petrova, SAS Institute, Inc., Cary, NC

ABSTRACT

The SQL query had been running for 36 hours before it was killed. The project team is panicking. The customer is
upset. What can you, a SAS

®
 programmer, do to get out of this dilemma? Something has to be done, but what?

Chances are you have been there. You have felt the pain. You have lived through the helplessness and fear of
imminent failure. Fortunately, it is possible to get out of this mess. This paper will show you the steps (and the
mindset) required to solve this all-too-common problem. This paper includes examples from DB2, Greenplum, Oracle,
and Teradata.

INTRODUCTION

We have all been there: our SQL statements are taking forever to run. Or worse, they run for so long (sometimes
days) that we must kill them. It is very frustrating. You feel helpless. You do not know what to do. You have no idea
how to begin. You begin the self-doubt death spiral. Your head fills with questions. What is the first step? Who can
help me? How can I get them to help me? Is this a lost cause? Then the finger-pointing starts, and the blame game
begins.

No single paper can turn you into an SQL tuning wizard. A book cannot do that either. It takes practice and
experience. That is the bad news. The good news is that you do not have to be a wizard in order to be effective. It is
entirely possible that you can read this paper, and in minutes, fix SQL performance problems that have plagued you
for weeks. Wait, it gets better. The ideas in this paper will help you avoid these situations in the future. This is nice
because the only thing better than solving a difficult problem is avoiding it in the first place.

Fortunately, you do not need to have a lot of SQL experience. Solving these problems is not that difficult if you have a
plan and know a few secrets. That is what this paper is about – a plan and a few secrets.

The paper will:

 describe a protocol that you can use to solve SQL performance issues

 detail specific techniques that you can use to discover the causes of SQL performance issues and correct
them

 introduce the cast of characters who might be able to help you and describe how to convince them to help
you

 discuss preventing SQL performance issues from occurring in the first place

Along the way, you will see SQL commands that can help you become self-sufficient. We will be discussing DB2,
Greenplum, Oracle, and Teradata. Do not worry if your database does not appear here. The steps are very similar,
and you will be able to apply what you learn to your environment. When it comes to SQL performance, mindset is
very important. We will help you develop the mindset that you will need to conquer the SQL beast!

THE SQL TUNING CHECKLIST

KEEP A RECORD

SQL performance issues tend to repeat themselves. You can rest assured that if you have a performance issue today
you will face something similar next year or perhaps next week. It is important to keep a record of the issues that you
faced and how you solved them. How you do this is up to you. Make sure that you can search your documentation
easily. Keep in mind that others might benefit from reading about how you conquered each issue.

Take away: Create an SQL Tuning Journal and use it to record SQL performance problems and solutions.

IS THERE A PROBLEM?

There is obviously a problem, right? The query takes forever to run. If you are like most of us, you want to
immediately start thinking about solutions. Before we do that, let us take a step back and ask a simple question.

andy
Text Box

2

Is there a problem?

In all likelihood, the answer will be a resounding “Yes!,” but humor us for a minute. Can you explain to someone how
you know there is a problem? If you have a query that runs for days and never comes back, it is most likely a
problem. But, there are times when a properly working query takes a long time to run. For now, it is best to assume
that queries that take days to run are a problem. You can use this checklist to determine if a long-running query is a
problem.

There is another question lurking here, and this question is easy to miss.

What is the business question that you are trying to answer?

The query could be answering the wrong question. Unfortunately, we usually discover this after tuning the query.
Seriously, we wasted a lot of time by not looking into the business reason for the problem queries. Do not spend a lot
of time on writing this business reason. Be brief and stick to facts. Document the business reason in your SQL Tuning
Journal.

At this point, we know that there is a problem, and we have an idea of the intent of the query. We have documented
this intent in our SQL Tuning Journal. Now, we need to dig a little deeper, so that we can discover the nature of the
problem. We can do that by asking another question.

Is this a new query?

If the answer is “Yes,” estimate how long you think the query should run. It is also a good idea to make a note of how
long is too long. It is important to remember that these are estimates. Do not get hung up on them.

If the answer is “No,” then this is an existing query, and something has gone wrong. This is a pretty good situation to
be in because it means that something has changed. In this case, you need to ask a different set of questions.

Has the query run faster in the past?

If the query has run faster, determine whether the query slowed down gradually or rapidly. Note the answer to this
question in your journal. This is important and will help you diagnose the root cause of the problem.

Add this information to your SQL Tuning Journal and move on to the next step.

Take away: Determine the business reason for the query. You might find that the wrong question is being
asked.

FIND THE SQL

This is perhaps the most important item on the SQL Tuning Checklist. If you do not have the SQL statement that is
being sent to the database management system (DBMS), there is very little you can do to tune it.

SAS communicates with relational databases using SQL. It does not matter if you are using DATA steps, the SQL
procedure, or SAS Information Maps. If you are dealing with a database, your SAS jobs are using SQL to do the
work. Fortunately, it is very easy for SAS to show you the SQL.

Run this SAS statement to show you the SQL that is being sent to the database:

OPTIONS SASTRACE=',,,d' SASTRACELOC=saslog NOSTSUFFIX;

How you run this statement depends on your SAS application.

 SAS Foundation – Issue the command from your display manager session.

 SAS Enterprise Guide - Add this statement to a code node.

 SAS Workspace Server – Include this statement in the autoexec.sas file. You can view the SQL statement
in the SAS log on the SAS Workspace Server.

 SAS Stored Process Server - Include this statement in the autoexec.sas file. You can view the SQL
statement in the SAS log on the SAS Stored Process Server.

 SAS
®
 Information Map Studio (SAS

®
Web Report Studio, and so on) – This one depends on your SAS

application. For example, to view the SQL in SAS Information Map Studio:

1. Open SAS Information Map Studio.

2. Select ToolsRun a Test Query.

3

3. In the Test the Information Map dialog box, click View SQL. The SQL query will appear in the View Query
dialog box.

4. Add the SQL statement to your SQL Tuning Journal.

The SASTRACE= option will write a lot of information to your SAS log. The key to using this option properly is
knowing where to find the important information amid all the “other” stuff. Let us look at an example using Greenplum.
You have a question, “Is the SAS DATEPART() function in my query being passed to Greenplum?” It is a pretty
simple question, but people ask this sort of thing all the time. Let us see how we can find the answer to this question.

First, we create some code and submit it.

PROC SQL;

 CONNECT TO GREENPLM (SERVER=gpserv USER=myuser PW=mypasswd

 DATABASE=db1 SCHEMA=myuser);

 EXECUTE (create table datetest(i integer, myTS timestamp)

 distributed by (i)) BY GREENPLM;

QUIT;

PROC SQL;

 CONNECT TO GREENPLM (SERVER=gpserv USER=myuser PW=mypasswd

 DATABASE=db1 SCHEMA=myuser);

 EXECUTE (insert into datetest values (1, '1961-10-01 01:01:01.01')) BY GREENPLM;

 EXECUTE (insert into datetest values (2, '1961-10-02 02:02:02.02')) BY GREENPLM;

 EXECUTE (insert into datetest values (3, '1961-10-03 03:03:03.03')) BY GREENPLM;

 EXECUTE (insert into datetest values (4, '1961-10-04 04:04:04.04')) BY GREENPLM;

 EXECUTE (insert into datetest values (5, '1961-10-05 05:05:05.05')) BY GREENPLM;

 EXECUTE (insert into datetest values (6, '1961-10-06 06:06:06.06')) BY GREENPLM;

 EXECUTE (insert into datetest values (7, '1961-10-07 07:07:07.07')) BY GREENPLM;

 EXECUTE (insert into datetest values (8, '1961-10-08 08:08:08.08')) BY GREENPLM;

 EXECUTE (insert into datetest values (9, '1961-10-09 09:09:09.09')) BY GREENPLM;

 EXECUTE (insert into datetest values (10,'1961-10-10 10:10:10.10')) BY GREENPLM;

QUIT;

LIBNAME mygplum GREENPLM SERVER=gpserv USER=myuser PW=mypasswd

 DATABASE=db1 SCHEMA=myuser;

OPTIONS SASTRACE=',,,d' SASTRACELOC=saslog NOSTSUFFIX;

PROC SQL;

 SELECT I, DATEPART(myTS) "The Date"

 FROM mygplum.datetest

 WHERE DATEPART(myTS) = '06OCT61'd;

QUIT;

We are interested in the final PROC SQL code. The question is, “Is the DATEPART() function being passed to
Greenplum?” If the function is not passed, then every row in the database is returned to SAS and post-processed.
Post-processing is less than optimal. You want to pay attention to WHERE clauses. It is particularly troublesome to
have WHERE clauses in post-processing.

3 options sastrace=',,,d' sastraceloc=saslog nostsuffix;

4 proc sql;

5 select distinct i, datepart(myTS) "TheDate"

6 from mygplum.datetest

7 where datepart(myTS) = '06OCT61'd;

GREENPL: AUTOCOMMIT turned ON for connection id 0

GREENPL_1: Prepared: on connection 0

SELECT * FROM myuser.DATETEST FOR READ ONLY

SAS_SQL: Unable to convert the query to a DBMS specific SQL statement due to an

error.

4

ACCESS ENGINE: SQL statement was not passed to the DBMS, SAS will do the

processing.

NOTE: Writing HTML Body file: sashtml.htm

GREENPL_2: Prepared: on connection 0

SELECT "i", "myts" FROM myuser.DATETEST FOR READ ONLY

GREENPL_3: Executed: on connection 0

Prepared statement GREENPL_2

8 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 1.73 seconds

 cpu time 0.67 seconds

Output 1. Output from PROC SQL Where the SAS DATEPART Function Is Not Passed to Greenplum

The SAS_SQL message in the log tells us that there is an issue. But the question remains, “What is being passed to
Greenplum?” In the log, we see three entries beginning with GREENPL_<some number>. The first lists a SELECT *
SQL statement. That looks bad, but it is not a problem. This PREPARE statement is SAS asking Greenplum to
divulge the column names and types included in the table. The import statement (identified by GREENPL_3) is
saying that the statement prepared by GREENPLM_2 is going to be executed. Here is the statement that is being
sent to Greenplum.

SELECT "i", "myts" FROM myuser.DATETEST FOR READ ONLY

Now.you know the answer to the question. No, the DATEPART function is not being passed to Greenplum. The
DISTINCT keyword and the WHEREclause are not being passed either.

The problem has to do with which SAS functions are passed to Greenplum. We can fix this by adding the
SQL_FUNCTIONS=all option to our LIBNAME statement.

LIBNAME mygplum GREENPLM SERVER=gpserv USER=myuser PW=mypasswd

 DATABASE=db1 SCHEMA=myuser

 SQL_FUNCTIONS=all;

The following output shows what happens after we add SQLFUNCTIONS=all to our LIBNAME statement.

9 libname mygplum greenplm server=gpserv user=myuser pw=XXXXXX

10 database=db1 schema=myuser

11 SQL_FUNCTIONS=ALL ;

NOTE: Libref MYGPLUM was successfully assigned as follows:

 Engine: GREENPLM

 Physical Name: sourplum

12

13 proc sql;

14 select distinct i, datepart(myTS) "TheDate"

15 from mygplum.datetest

16 where datepart(myTS) = '06OCT61'd;

GREENPL: AUTOCOMMIT turned ON for connection id 0

GREENPL_1: Prepared: on connection 0

SELECT * FROM myuser.DATETEST FOR READ ONLY

GREENPL_2: Prepared: on connection 0

 select distinct TXT_1."i", CAST(TXT_1."myts" AS DATE) from myuser.DATETEST TXT_1

where

CAST(TXT_1."myts" AS DATE) = '1961-10-06' FOR READ ONLY

GREENPL_3: Executed: on connection 0

Prepared statement GREENPL_2

5

ACCESS ENGINE: SQL statement was passed to the DBMS for fetching data.

17 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.55 seconds

 cpu time 0.04 seconds

Output 2. Output from PROC SQL When the DATEPART Function Is Passed to Greenplum

Again, SAS tells us that the statement prepared in GREENPLM_2 is going to be executed. Here is the new statement
that is being sent to Greenplum.

select distinct TXT_1."i", CAST(TXT_1."myts" AS DATE) from myuser.DATETEST TXT_1

where CAST(TXT_1."myts" AS DATE) = '1961-10-06' FOR READ ONLY

Now we see that the WHERE clause, the DISTINCT keyword, and the DATEPART function are being passed to
Greenplum. Greenplum is now returning a single row instead of the entire table. We always strive to have the DBMS
do as much work as possible.

The most convenient way to discover the SQL statement being passed is to use the SAS OPTION statement.
However, it is not the only way.

You can use DBMS features to display the SQL that is generated. For example, if you are using SAS with Teradata,
your database administrator (DBA) can use database query logging (DBQL). After query logging is enabled, your
DBA can use the DBC.DBQLogTbl table to find your query. This data dictionary table stores the text of the SQL
queries. If query logging is not enabled, your DBA will not be able to find the query. Fortunately, Teradata DBAs
usually enable query logging.

Finding user SQL text is easy in Teradata. With the other databases, it is a little more difficult. Let us briefly look at
what is involved.

DB2 users will need to look into the DB2 package cache. DB2 keeps the most frequently executed SQL statements in
memory. If your DB2 system is heavily used, the SQL statement you are looking for might not be available.
Describing how to do this would take a while, so in the References section of this paper, we have included a link to an
IBM DeveloperWorks article that explains how this is done.

Greenplum DBAs can look at the pg_stat_activity view. Your DBA must search for the right SQL.

In Oracle, finding the SQL statement is somewhat complicated. It requires joining the sys.v_$sql and sys.v_$sqltext
views. To find example code, search the Internet using “find SQL text oracle” as the search term.

The take away here is, yes, your DBA might be able to find your specific SQL statement in the morass of SQL that
has been running on the database. Do not make them do it. Help them out. Use the SAS OPTIONS statement (as
previously described). Not only will this statement save your DBA time, your use of this statement shows the DBA
that you are making an effort to solve the problem.

Finding the SQL might solve your problem without worrying about the next step, “What is the DBMS doing?” If the
previous example were an actual problem, we would be well on our way to solving it. It would be obvious that the
problem is that SAS is not passing the DISTINCT keyword or the date functions to Greenplum. We would not need to
worry about what the DBMS is doing and could jump to the “Come up with a Plan” step.

However, let us assume that nothing in the SQL statement stands out, and we need to dig further.

Before proceeding, add the SQL statement to your SQL Tuning Journal and get ready for fun.

Take away: Use the SASTRACE= and SASTRACELOC= options to find the SQL that SAS is sending to the
database.

WHAT IS THE DBMS DOING?

Now, we know the secret of uncovering the SQL that SAS is passing to the DBMS. Just knowing the query can take
us a long way, but at some point, we must delve into how the DBMS plans to execute the query.

The optimizer determines the best way to answer the question posed by the SQL -- if only the optimizer would tell us
exactly how it plans to get that answer. Many DBAs call this an “explain plan.” Fortunately, there is an SQL statement
that will make the query optimizer spill its secrets. It is called the EXPLAIN statement. There is no need to fear it. On
the other hand, there is a need to use it often.

Learning to decipher the output from the EXPLAIN statement can be daunting. Fortunately, you do not need to be an
expert to use it to solve your problem. The output is useful even if you cannot understand it. Simply sending the

6

output to your DBA (or a more experienced co-worker) might help you. In reality, running the EXPLAIN statement
shows that you have made an effort. DBAs love it when people make an effort.

Let us look at a Teradata example.

Bob walks up to the DBA and says, “Our Teradata server is really slow. My query never returns.” (For future
reference, it is never a good idea to tell a DBA that their database is slow. It might come back to haunt you.) He has
the query printed on a sheet of paper. He hands the paper to the DBA. Here is the SQL code.

SELECT a.store_id, a. transaction_id, b.date_id, b.employee_rk

 FROM eecdata.order_fact a

 , eecdata.order_fact b

 WHERE a.store_id = 1182041

 AND b.date_id = '2004-01-25';

(You might immediately see the problem. If so, please play along.) The DBA shows Bob how to run an EXPLAIN
statement. Notice, the only difference between the two sets of code is the EXPLAIN keyword. Here is the new code:

EXPLAIN

SELECT a.store_id, a. transaction_id, b.date_id, b.employee_rk

 FROM eecdata.order_fact a

 , eecdata.order_fact b

 WHERE a.store_id = 1182041

 AND b.date_id = '2004-01-25';

The DBA submits the EXPLAIN statement, and the following output is returned.

explain

select a.store_id, a. transaction_id, b.date_id, b.employee_rk

 from eecdata.order_fact a

 , eecdata.order_fact b

 where a.store_id = 1182041

 and b.date_id = '2004-01-25';

 1) First, we lock a distinct eecdata."pseudo table" for read on a

 RowHash to prevent global deadlock for eecdata.b.

 2) Next, we lock eecdata.b for read.

 3) We execute the following steps in parallel.

 1) We do an all-AMPs RETRIEVE step from eecdata.b by way of an

 all-rows scan with a condition of ("eecdata.b.DATE_ID = DATE

 '2004-01-25'") into Spool 2 (all_amps), which is duplicated

 on all AMPs. The input table will not be cached in memory,

 but it is eligible for synchronized scanning. The result

 spool file will not be cached in memory. The size of Spool 2

 is estimated with no confidence to be 639,092,024 rows (

 15,977,300,600 bytes). The estimated time for this step is 3

 hours and 49 minutes.

 2) We do an all-AMPs RETRIEVE step from eecdata.a by way of an

 all-rows scan with a condition of ("eecdata.a.STORE_ID =

 1182041") into Spool 3 (all_amps), which is built locally on

 the AMPs. The input table will not be cached in memory, but

 it is eligible for synchronized scanning. The result spool

 file will not be cached in memory. The size of Spool 3 is

 estimated with no confidence to be 79,886,503 rows (

 6,470,806,743 bytes). The estimated time for this step is 3

 hours and 34 minutes.

 4) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an

 all-rows scan, which is joined to Spool 3 (Last Use) by way of an

 all-rows scan. Spool 2 and Spool 3 are joined using a product

 join, with a join condition of ("(1=1)"). The result goes into

 Spool 1 (all_amps), which is built locally on the AMPs. The

 result spool file will not be cached in memory. The size of Spool

 1 is estimated with no confidence to be *** rows (*** bytes). The

 estimated time for this step is 11,230,292 hours and 55 minutes.

 5) Finally, we send out an END TRANSACTION step to all AMPs involved

7

 in processing the request.

 -> The contents of Spool 1 are sent back to the user as the result of

 statement 1. The total estimated time is 11,230,296 hours and 43

 minutes.

Output 3. Output from Teradata When Running the EXPLAIN Statement

This query is problematic. In all likelihood, this query will never work. If you subjected this query to our protocol, we
would see the problem before even running the EXPLAIN statement. However, this is too much fun to pass up, so we
look at the output. The final line of the output tells us that this query will take 11,230,296 hours and 43 minutes to
execute. That is 1,282 years! This query fails the test of reason. Something is very wrong.

If you look carefully at the query, you will see that it is a Cartesian product. You might hear this called a cross join.
This is bad. In Bob’s query, no WHERE clause predicate is associated with the two tables that are being joined. As a
result, each row of the table will be combined with every other row in the table. The ORDER_FACT table contains
798,959,903 rows. The query joins the ORDER_FACT table with itself, and as a result, 638,336,926,601,769,000
rows are returned!

From this simple exercise, we can tell that Bob does not know what he is doing. Unfortunately, we have all been Bob
at some point. At this point, the DBA is spending a great deal of time showing Bob that “the Teradata server is not
really slow.” Because of this experience, Bob might have trouble getting help from his DBA in the future.

The advantage to the EXPLAIN statement is that it tells you exactly what the database is going to do. The
disadvantage to the EXPLAIN statement is that it does not stand up and scream “Hey, there is a problem here – do
this instead!” Instead, the EXPLAIN statement leaves bread crumbs - small signs that will lead you toward your final
destination – a really fast SQL query. Although this might sound bad, it is not, because most of your problems are
going to be caused by bad statistics and missing indexes.

What Are Statistics?

The database optimizer needs help determining the best way to execute the query. The result of this work is called an
access plan. Most modern optimizers are cost based, which means they calculate how many computer resources will
be used to run the SQL. The optimizer will consider many different access plans and then choose the one that takes
the fewest resources. The optimizer needs statistical information in order to come up with a great access plan. This is
where statistics come in.

The optimizer considers table size, existing indexes, data cardinality, and data distribution. In DB2 environments, you
might hear the phrase “catalog statistics” used to refer to this information.

Someone has to tell the DBMS to gather these statistics. It is quite common for this to be forgotten. These statistics
are volatile; they can change often. Statistics that no longer resemble the data in the database are said to be stale.
Missing and stale statistics are a common cause of poorly performing queries.

The Teradata output (Output 3) contains the phrase “no confidence.” This phrase is a sign that no statistics were
gathered on the table. The output also includes the phrase “low confidence” to let you know that the statistics might
be stale. Ideally, your output will include the phrase “high confidence,” which denotes that the statistics are good and
the optimizer feels confident in its estimates.

Gathering statistics can be complicated. In general, you want to collect statistics on columns with indexes defined on
the columns. There is no way that we can fully cover gathering statistics in this paper; however, here are some simple
examples.

DB2 examples (runstats is a utility program. It is not an SQL command.):

To collect statistics on a table:

runstats on table myUser.myTable

To collect statistics on a table and all the indexes defined on it:

runstats on table myUser.myTable and indexes all

Greenplum examples (Statistics are gathered using an SQL statement.):

To collect statistics on a table:

analyze myUser.myTable

To collect statistics on a table and all the indexes defined on it:

runstats on table myUser.myTable and indexes all

8

Oracle examples (Statistics are gathered using the DBMS_STATS package.):

Gathering statistics in Oracle is quite involved. Here are some simple examples. For more information about this
topic, see the Oracle documentation.

To collect statistics a table:

EXEC DBMS_STATS.GATHER_TABLE_STATS('myUser'.'myTable');

To collect statistics on a table’s indexes:

EXEC DBMS_STATS.GATHER_INDEX_STATS('myUser'.'myTable_pk');

To drop statistics for a table:

EXEC DBMS_STATS.DELETE_TABLE_STATS('myUser'.'myTable');

Teradata examples:

To collect statistics on a column:

collect stats on myUser.myTable column (myCol);

To collect statistics on an index:

collect stats on myUser.myTable index (myIndex);

To drop statistics on a table:

drop stats on myUser.myTable;

Indexes

Indexes are database objects that allow the optimizer to quickly find a single row (or a small subset of rows). Indexes
are also very useful when joining tables together. Previously, we discussed a series of questions that you need to ask
about poorly performing queries. The line of questioning goes something like this:

Is this a new query? For new queries, it is not uncommon for performance issues to be caused by missing indexes. In
Output 3, you will see the phrase “all-AMPs.” Teradata uses this phrase when it sequentially scans tables. This
situation is commonly called a “table scan.” Table scans are not always a problem. If you are running analytic
processes, a table scan might be alright. If you want to see the data for a single customer, you do not want to perform
table scans.

Let us assume that this is a new query, and we would like to determine how to index it. To make this exercise easier,
we will use a contrived query. This query joins tables tab1 and tab2 together using the col1 column. Column col1
exists in both tables and is a primary key.

SELECT t1.col1

 , t2.col2

 , t2.col3

 , t1.col4

 , t2.col5

 , t2.col6

 FROM tab1 as t1

 , tab2 as t2

 WHERE t1.col1 = t2.col1

 AND t2.col2 = 'search criteria'

 ORDER BY t1.col4;

This is a simple query. We can look at it and tell a lot about it. What if the query was much more complicated? How
would you assess it?

It would be nice if we had a map showing the important parts of the query. Fortunately, we can create this map by
using a spreadsheet. Our map will have 4 columns: Table, Column, Role in Query, and Notes. You begin by listing all
the tables and columns. After you have created this list, move to the Role in Query column. In this column, note

9

whether a column participates in a join, a WHERE clause, an ORDER BY clause, or some other SQL construct. In
the Notes column, document whether the column needs an index defined on it.

Display 1. Example: SQL Mapping Spreadsheet

Display 1 shows the result of our work. The Notes column is where we detail what we believe needs to be done.
From this simple exercise, we have a list of the tables and columns referenced in the query. We also know which
columns are used for joins, searching, or sorting.

Your first inclination might be to index everything. This sounds like a great plan, but it is not. Because indexes are
used to maintain order, there is a cost involved. It takes time to create them. They consume disk space. Because the
indexes maintain order inserts tend to be slower. In short, it is rare that every column in the table will be indexed. It is
common to hear a DBA, or developer, lament that every column in an index must be maintained. This is a fancy way
of saying – each and every index has a cost.

By default, we like to see indexes and statistics on all join columns. Columns used for searching might need an index
as well. We usually index these columns by default, but too many indexes can negatively impact query performance.
You also have to decide whether to index the ORDER BY columns. You might decide to start with an index and see
how it affects performance.

DB2 UDB for Linux, UNIX, and Windows has a great feature that allows us to add non-maintained columns to an
index. The INCLUDE clause on the CREATE INDEX statement implements this feature. The additional columns are
there in case they are needed, but they are not used to order the index. You can use this construct to create “fully
spanning indexes.”

A fully spanning index is an index that contains all the columns needed by a query, so the query can be satisfied by
indexes alone. This is fast! Here are the indexes for our example query. This is a DB2 example that implements two
fully spanning indexes. We are collecting statistics as we create the indexes.

CREATE UNIQUE INDEX tab1_ndx

ON tab1 (col1, col4)

COLLECT STATISTICS;

CREATE UNIQUE INDEX tab1_ndx

ON tab1 (col1, col2)

INCLUDE (col3, col5, col6)

COLLECT STATISTICS;

How do you know if the indexes are helping or hurting? Use the EXPLAIN statement to see the effects of indexing.
Do not forget to collect statistics on the tables and indexes.

10

Take away: Many (perhaps most) SQL performance issues involve statistics and indexing.

DEVELOP A PLAN

At this point, we know that there is a problem. We have used the SASTRACE= option to find the problematic SQL.
We have taken the SQL and found the access plan the optimizers will use to execute it. We have determined which
columns in the tables have indexes. Finally, we have learned the current state of the statistics.

We will use this information to develop a plan for solving the problem. This plan does not need to be fancy or
extremely detailed. In fact, after you have created one plan, you can use it as a template.

Here is a typical plan:

Step 1: Determine who can solve the problem.

Step 2: Deliver the information (SQL query, explain plan, statistics information, and index information) that you
learned in the previous steps to the person identified in step 1.

Step 3: Get out of the way and let them solve the problem.

The goal here is to combine the necessary information into an easy-to-use format and pass it along to the person
who can help you. More than likely, this person is the DBA for your database environment. If you happen to be
creating a data warehouse, this person might be one of the developers working on the project with you. In a
development environment, you might be able to solve the problem.

DBAs have a reputation of being difficult to deal with. Some of it is deserved (as DBAs we can say that) but much of it
is not. I personally love it when an end user has taken the time to run through the previous steps. In many situations,
we can immediately see the problem and fix it. What we do not like is to be told what we have to do to fix the
problem. You should not say something like this, “We have a problem query. You need to create an index on column
C in table T.” You might be exactly right, but you might be wrong. If your DBA does not like you, he might do
EXACTLY what you tell him to do with negative results.

Let your DBA diagnose the problem.

Here is an example from the real world. A developer walks up to me (a DBA) and says “our extract, transform, and
load (ETL) job stream is slow. Fix this query.” The query was taking 45 minutes to run. The job stream was taking
over 9 hours to run. I asked to see SASTRACE= output for the entire run. We were able to speed up their query. It
ran in 22 minutes. After looking at the rest of the jobs, we found that there were repeated SELECT (*) queries.
Although each query was taking less than two minutes to run, there were a lot of these queries. We asked the
developers what the goal of the query was (See the “Is There a Problem?” section). The developers wanted to know
if a table was empty. We changed some of their queries to use SELECT MAX(col1), where col1 had a unique index
and current statistics. The job stream ran over 2 hours faster!

If the DBA had simply done what the developers told him to do, the developers would have missed a great
opportunity to improve the performance of the system. The point is, let the DBAs determine how to solve the issue.

Add the document (or e-mail message) that you used to request help to your SQL Tuning Journal. You will find it
useful in the future.

Take away: Present the problem to the person who will solve it in a clear and concise manner. This person
should not have to struggle to understand the issue. Do not tell the person what to do.

SOLVE THE PROBLEM

If you are not solving the problem, this step is easy. You get to work on other things while your DBA goes off and
works magic. That magic might include creating indexes, gathering statistics on your tables, rearranging table spaces
(this is moving table data from one set of disks to another in order to make processing more efficient), materializing
views, or some other technique.

Naturally, this question will come up, “How long will it take the DBA to solve the problem?” The answer depends on
how the problem will be solved. Adding an index and gathering statistics should not take a long time. On the other
hand, rearranging disk space on the database server might take weeks of planning and a weekend outage. If the
solution involves rearranging databases objects (for example, combining tables into materialized views, new tables,
and so on), the problem could take days or weeks to fix.

Remember to record the solution to the problem in your SQL Tuning Journal. Having a history of problems along with
the solutions will help you avoid problems in the future. The simple act of recording this information seems to make
your brain foresee problems, and avoiding problems is much faster than solving them.

11

You probably will not need to document a great deal of detail. Simply saying “statistics were out-of-date” could
suffice. As you add the solution to your journal, ask yourself, “Is this a re-occurring issue?” If it is, you might want to
discuss an overall strategy for avoiding it.

Here is an example. Oracle performs better if you drop indexes prior to loading a table. Let us assume you
experience many issues where performance is impacted because there are missing indexes. If your DBA just re-
creates these indexes, you have not solved the real issue. You still have an ETL job that is not fully re-creating the
indexes. It is best to deal with situations like this from a holistic perspective. We have also seen situations where the
ETL job did not drop all the indexes, and the Oracle loads ran slowly. Remember to look at the big picture.

Take away: Find out how the problem was resolved and record it in your journal.

VERIFY THE SOLUTION

Verifying the solution can be as simple as rerunning the query (or job stream) and comparing the output to your
previous results. If the fix was rewriting your code, verify that the output is correct.

When your DBA implemented the solution to your problem, she probably ran a new EXPLAIN statement and
compared the output to the one you supplied. This is a great way to see if the problem was fixed. If the explain plans
are the same, it means that your problem was not really solved. We recommend rerunning the EXPLAIN statement
and adding it to your SQL Tuning Journal.

The SQL Tuning Journal is a great educational tool. You can learn a great deal by comparing the plan with the
problem to the plan with the solution.

Take away: Rerun the EXPLAIN statement and compare it with the previous one.

POST-MORTEM EXAMINATION

We have arrived at the last item on our checklist – post-mortem examination. Ideally, this will be a very reflective
process. It is the time to understand the lessons that you have learned. Now is the time to ask the following
questions:

 What was the underlying cause of the issue?

 Who helped you solve the issue?

 How was the problem fixed?

 How can you avoid similar issues in the future?

Postmortems are commonly overlooked. Many people do not view it as real work and cast it aside to move on to
“more important” activities. We believe that a post-mortem examination is one of the most important things that you
can do. We include it our own work, and that is why we have included it in this paper. Solving performance issues
can be very painful and time-consuming. If you save your co-workers from this pain, you have acted nobly. Plus, it
feels great to help people.

Full investment in this part of the process allows the lessons to be fully understood. The lessons might be as simple
as learning a new technique for tuning SQL or a different way to code a SAS job. We hope that you take the time to
discuss how the problem could have been avoided in the first place.

One of the worst situations you can find yourself in is having a problem occur – repeatedly. This type of situation is
frustrating and demoralizing. The post-mortem examination will help you prevent recurring issues.

Let us look at an example. You are implementing a data warehouse. You are creating the ETL processes that will
ensure that the warehouse is loaded in an efficient manner. Every night, you have problems with slow loading. Every
morning, you have SQL performance issues. You look through your notes and notice that as the load file size
increases problems appear. Jobs that previously ran in minutes might now take an hour or more. Your notes also
show that you constantly have to ask your DBA to fix the performance issues in the morning. In the past, you have
used database-specific load utilities (rather than SAS) to fix the issue.

The loading issue might be easy. Get the team to evaluate the load jobs and change the SAS jobs so that the bulk
loading feature is used. Many people do not know how to use these features and just need to be made aware of
them. In short: develop a universal loading strategy for your warehouse and implement it before loading becomes an
issue. As a result, your jobs run much faster, and the time variance is mitigated.

The second problem is sneaky. From what you have learned in this paper, you can probably guess that there are
statistics issues here. If you have kept an SQL Tuning Journal, this should be obvious. (This is why you need to
document how your DBA fixes problems.) The holistic solution is to meet with your DBA and develop an official

12

strategy for collecting statistics during the ETL process. Having your ETL process automatically gather statistics is a
winning idea. It prevents you from having to deal with random performance issues every morning.

Having this information in your SQL Tuning Journal is very valuable. Taking this information and sharing it increases
its value exponentially. The question is, “How do you share this information?” The tools that we use are papers,
blogging, presentations, and workshops. We live in amazing times. It has never been easier to broadcast your
message. One of the great things about documenting your solutions on the web is that it is easy for other folks to find
solutions with a simple search.

Take away: This is the time to integrate what you have learned so that you fully understand it. Once you
understand it, shout the lessons from a mountain top.

CONCLUSION

Using the SQL Tuning Checklist is a painless approach to solving SQL performance problems. After reading this
paper, you are not an SQL tuning wizard, but you know that you do not have to be. It is the mindset that is important,
and now you have that. In addition, you now have a clear, concise, and actionable plan that you can use to tame the
wildest of SQL problems. You have a basic understanding of the cause of many of the issues that you will encounter,
and you know how to get your DBA to help you. Finally, you know how to avoid many of these issues in the first
place.

Please take the ideas presented here and customize them for your situation. If something does not work for you,
delete it. If something is missing, add it. Be sure to let us know what you have added. We will help you spread the
word.

REFERENCES

Bailey, Jeff. 2010. “Troubleshooting SAS and Teradata Query Performance Problems.” Cary, NC: SAS Institute, Inc.
Available at
http://support.sas.com/resources/papers/TroubleshootingSASandTeradataQueryPerformanceProblems.pdf.

Crooks, Ember. “Mining your package cache for problem SQL in DB2 for Linux, UNIX, and Windows.” IBM
developerWorks. November 12, 2012. Available at http://www.ibm.com/developerworks/data/library/techarticle/dm-
1211packagecache/index.html.

EMC Corporation. 2012. Greenplum Database 4.2: Database Administrator Guide.

ACKNOWLEDGMENTS

The authors extend their heartfelt thanks and gratitude to the following individuals:

Oak Barrett, EMC

Pravin Boniface, SAS Institute Inc.

Pat Buckley, SAS Institute Inc.

John Cunningham, Teradata

Marie Dexter, SAS Institute Inc.

Patrick Hennessy, EMC

Momolue Kiadii, Teradata

Greg Otto, Teradata

Austin Swift, SAS Institute Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors:

Jeff Bailey
SAS Campus Drive
SAS Institute Inc.
Jeff.Bailey@sas.com
LinkedIn: http://www.linkedin.com/in/jeffreydbailey
Twitter: http://twitter.com/Jeff_Bailey

http://www.ibm.com/developerworks/data/library/techarticle/dm-1211packagecache/index.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1211packagecache/index.html
mailto:Jeff.Bailey@sas.com
http://www.linkedin.com/in/jeffreydbailey
http://twitter.com/Jeff_Bailey

13

Tatyana Petrova
SAS Campus Drive
SAS Institute Inc.
Tatyana.Petrova@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:Tatyana.Petrova@sas.com

	2013 Table of Contents

