
The Complexities of an Address

Barry Mullins, MPH

Health Integrity LLC, Dallas, TX

ABSTRACT

Addresses can come in many forms that are messy, unorganized and not standardized. Trying to match

people by their addresses could take days to manually match, but with SAS can be done quickly.

However, without standardizing the addresses, SAS can miss matches or even give you false positives.

This paper will discuss the steps to standardizing and fuzzy matching addresses. I will show examples of

standardizing addresses and parsing out the pieces using PRXCHANGE and TRANWRD. Also, I will discuss

the importance of removing common words, like street, to help increase the accuracy of matching

addresses to one another using COMPGED. The examples are depicted in SAS EG 4.2.

INTRODUCTION

There are many reasons a person may want to match people, businesses, and addresses from multiple

databases. Businesses may have old mailing lists and want to merge them to a new client list without

having duplicates. Investigators may want to know if services are being provided to multiple people at

the same address or if multiple people live at the same address for finding insurance fraud. A hospital

may want to confirm the most recent billing address for a clinic visit. Matching the addresses could be

manually performed, however, that could be a full-time job considering there can easily be over 100,000

entries in one of these databases. SAS can do most of the work for you with a short program and once

the program is written it can be used for future queries or is even transferrable to other areas of study.

Significant problems with matching is that there may not be a common identifier, such as Social Security

number, there is chance for human error, such as typographical errors, and there may be no

standardization in the way an address is entered. Without a common identifier, fuzzy matching is going

to have to be used. Fuzzy matching is the use of multiple variables to match on, such as name, street

address, zip code and/or date of birth. In order to fuzzy match effectively, the values of a variable need

to be standardized and then scored. In the following examples, TRANWRD and PRX (Perl Regular

Expressions) are going to be used to standardize the data, and COMPGED will score the results for

address matching. However, please note that these functions are not the only ways to fuzzy match.

STANDARDIZATION OF DATA

No matter the field of study, data is dirty. It is messy, incomplete or even missing, and addresses are no
different. To effectively and efficiently match the address data, it first needs to be standardized. To
standardize the addresses, common values will be deleted and then different parts of the address will
be parsed out into new variables.

The following examples will use the two spreadsheets below. There are 12 matches and 1 nonmatching
address in each dataset.

There are two lists of addresses that need to be matched. As can be seen, there are matches, but they

are not exact. These lists could easily be manually matched since they are small, but with records of

100,000 or more, it would not be efficient.

The first step in standardizing is to create SAS Macros that clean the data and parse the values into new

variables.

Macro 1 – Address

%MACRO ADDRESS (VAR=,VAR2=);
&VAR = TRANWRD(&VAR,”NORTH “,”N “);
&VAR = TRANWRD(&VAR,”NORTHWEST “,”NW “);
&VAR = TRANWRD(&VAR,”NORTHEAST “,”NE “);
&VAR = TRANWRD(&VAR,”SOUTH “,”S “);
&VAR = TRANWRD(&VAR,”SOUTHWEST “,”SW “);
&VAR = TRANWRD(&VAR,”SOUTHEAST “,”SE “);
&VAR = TRANWRD(&VAR,”EAST “,”E “);
&VAR = TRANWRD(&VAR,”WEST “,”W “);

The SAS character function, TRANWRD, has several uses and one of these is replacing words with new

words or strings. This function was used to shorten directions.

If _n_=1 then do;
keys= prxparse(“s/\sST |\sSTREET |\sAVE |\sAV |\sAVENUE |\sDR |\sDRIVE |\sLN |\sLANE |\sRD |\sROAD |\sPKWY
 |\sPARKWAY |\sBLVD |\sBOULEVARD |\sPL |\sPLACE |\sPLAZA |\sCT |\sCRT |\sCOURT |\sCIR

 |\sCIRCLE / /I”);
end;
retain keys;

&VAR2 = prxchange(keys,-1,&VAR);

The Perl Regular Expression functions, PRXPARSE and PRXCHANGE, are then used. PRX functions look at patterns in
the data, but for this purpose, exact character strings were used. PRXPARSE “holds” the patterns for other PRX
functions. In the next step it is seen that the PRXCHANGE function finds the patterns that the PRXPARSE (keys) is
holding and converts them to the new pattern, which is blanks. The loop scans each address and replaces the
common words, such as Street and DR, as blanks. This helps to increase the accuracy of scoring the matches.

&VAR2 = LEFT(PRXCHANGE(‘s/ #|STE | SUITE | BUILDING | BLDG / ZTE /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = LEFT(PRXCHANGE(‘s/ FRWY | FREEWAY / FWY /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = LEFT(PRXCHANGE(‘s/ EXPRWY | EXPRESSWAY | EXPWY / EXPY /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = LEFT(PRXCHANGE(‘s/ HIWAY | HIGHWAY / HWY /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = LEFT(PRXCHANGE(‘s/ RM | ROOM / ZRM /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = LEFT(PRXCHANGE(‘s/ P O BOX | PO BOX | POBOX | P0 BOX | P OBOX | PO BOS | BOX | POB | PMB | P O DRAWER | PO
DRAWER | POST OFFICE DRAWER | DRAWER | PBS BOX / ZPB /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));
&VAR2 = TRANWRD(&VAR2,”ROUTE “,”RTE “);
%MEND ADDRESS;

The last several statements of this macro convert the many iterations of each character string into one common

string.

 Concatenates the new value ‘ZTE’ with a blank before and after.

&VAR2 = LEFT(PRXCHANGE(‘s/ #|STE | SUITE | BUILDING | BLDG / ZTE /’,-1,CAT(‘ ‘,&VAR2,’ ‘)));

 Removes leading blanks Needed for substitutions Tells SAS to look to the end for matches

The PRXCHANGE function has several advantages over TRANWRD. First, you can have multiple strings to look for in
one statement. Secondly, TRANWRD can change character strings that you do not want changed. For example, if
you use TRANWRD to replace ‘ST’ with ‘Street’, then it will also change ST (Saint) Lucia, to Street Lucia.

The second macro (Breakup_ADD) breaks the pieces of an address, e.g. suite, into new variables.

Macro 2 – Breakup_ADD

%MACRO BREAKUP_ADD (PATTERN=,VAR=,NUM=,NEWVAR=);

IF _N_=1 THEN DO;
 RETAIN ExpID&NUM;
 PATTERN=”/&PATTERN/I”;
 ExpID&NUM=PRXPARSE(PATTERN);
END;

CALL PRXSUBSTR(ExpID&NUM, &VAR, POSITION&NUM);

The first half of the macro creates a DO Loop that looks for the patterns in the addresses that were created in the
first macro, e.g. ZRM. When the pattern is found, it outputs the starting position of the pattern.

IF POSITION&NUM = 1 THEN DO;
 MATCH = SUBSTR(&VAR,POSITION&NUM);
 &NEWVAR=MATCH;
END;

IF INDEX(&VAR,”&PATTERN”) THEN &NEWVAR=SUBSTR(&VAR,POSITION&NUM);
IF INDEX(&VAR,”&PATTERN”) THEN SUBSTR(&VAR,POSITION&NUM)=””;

%MEND BREAKUP_ADD;

The last half searches for the pattern using the INDEX function. When the pattern is found, SAS parses
out the pattern with extra information to the newly created variable using the starting position found
from the first part of the macro. The second INDEX statement replaces the piece of information that was
moved into a blank space.

Let’s look at the macros in action to see exactly what is occurring.

DATA LIST11;
SET LIST1;

LIST1_NAME=COMPRESS(COMPBL(Name),”.,*<>”);
STREET_LIST1=UPCASE(COMPRESS(COMPBL(Street_Address),”.,*<>”));
ZIP5=Zip_Code;

The first few statements delete characters and spaces from the Name and Street Address for each line.

%ADDRESS (VAR=STREET_LIST1,VAR2=STREET1);

The macro ADDRESS goes through the following steps.

1. Scans the variable, STREET_LIST1, and shortens directions.

 200 Northwest Bark Street  200 NW Bark Street

2. Creates a new variable, STREET1, from STREET_LIST1 and deleted common character strings

 200 NW Bark Street  200 NW Bark

3. Lastly, it changes other pieces of an address to a new string (pattern).

 1001 Park Street Suite 100  1001 Park ZTE 100

%BREAKUP_ADD (PATTERN=ZPB,VAR=STREET1,NUM=1,NEWVAR=PO_BOX_STREET);
%BREAKUP_ADD (PATTERN=ZTE,VAR=STREET1,NUM=2,NEWVAR=SUITE_STREET);
%BREAKUP_ADD (PATTERN=ZTE,VAR=PO_BOX_STREET,NUM=3,NEWVAR=SUITE_STREET);
%BREAKUP_ADD (PATTERN=ZRM,VAR=STREET1,NUM=4,NEWVAR=RM_STREET);
%BREAKUP_ADD (PATTERN=ZRM,VAR=SUITE_STREET,NUM=5,NEWVAR=RM_STREET);

The macro BREAKUP_ADD goes through the following steps.

1. Searches variable for specified pattern and outputs the starting position.

 The first %BREAKUP_ADD macro statement searches for the pattern, ‘ZPB’, in variable,

STREET1.

 When pattern is found, it outputs the starting location to the Position variable.

2. If a pattern is found, SAS uses the starting position that was output and extracts the address

from that point to the end of the string.

 900 Main ZPB 54

i. Variable: STREET1  900 Main

ii. Variable: PO_BOX_STREET  ZPB 54

3. This is completed for each pattern: ZPB, ZTE and ZRM.

4. In the case that there are two patterns in one string, two extra statements are ran for Suite, ZTE,

and Room, ZRM.

 100 Green ZPB 100 ZTE 12

i. The first %BREAKUP_ADD macro statement moves first pattern ‘ZPB’ and all

information after it to the variable PO_BOX_STREET.

 Variable: STREET1  100 Green

 Variable: PO_BOX_STREET  ZPB 100 ZTE 12

ii. Then another statement scans the variable, PO_BOX_STREET, for the pattern

‘ZTE’, which then moves the suite information to the variable SUITE_STREET.

 Variable: PO_BOX_STREET  ZPB 100

 Variable: SUITE_STREET  ZTE 12

PO_BOX_STREET = STRIP(TRANWRD(PO_BOX_STREET,’ZPB’,’’));
SUITE_STREET = STRIP(TRANWRD(SUITE_STREET,’ZTE’,’’));
RM_STREET = STRIP(TRANWRD(RM_STREET,’ZRM’,’’));

PO_BOX_STREET=COMPRESS(PO_BOX_STREET,”#”);
SUITE_STREET=COMPRESS(SUITE_STREET,”#”);

/*KEEP LIST1_NAME Street_Address STREET1 ZIP5 PO_BOX_STREET SUITE_STREET RM_STREET; */
RUN;

The last statements clean up the variables by removing the patterns.

PROC SORT DATA=LIST11 OUT=LIST1_NODUP NODUP;
BY STREET1;
RUN;

To remove duplicate streets, a PROC SORT with the NODUP option is run. This removes the duplicates

that are in the same spreadsheet. For this project, duplicates were not wanted even if two entries had a

different name in the LIST1_NAME variable. If in your analysis, you want all duplicates, then this SAS

code should not be run.

As can be seen in the output above, the SAS Macros that were created scan the Street_Address variable,

shorten directions and remove common character strings that are output into the STREET1 variable.

They also scan the data for the specified patterns, output the starting position into the Position variable

and then extract that information from the address and put it in a new variable. The same program is

run for the second list to get standardized addresses.

SCORING THE MATCHES WITH COMPGED

Fuzzy matching/merging is not 100% accurate, so a measure is needed to help differentiate how

accurate a match is by scoring. To score the “accuracy” of an address match, the SAS function COMPGED

is used. COMPGED measures the “generalized edit difference” between character strings. A COMPGED

score of 0 means that the character strings are exactly alike. The higher the score, the bigger the

difference between the two strings. For example, the difference between “dog” and “do g” is an extra

blank, and COMPGED would give it a score of 10 points.

More on Computing Generalized Edit Distances can be found at:

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002206133.htm

The example below is scoring the differences for the addresses before they are standardized.

Proc sql noprint ;
 create table ACTUAL_STREET_MATCH as

http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002206133.htm

 select A.NAME as LIST1_NAME ,
 A.Street_Address as LIST1_STREET, /*Note: names should be changed if same name is in both datasets*/
 A.ZIP_CODE as ZIP5 ,
 B.NAME as LIST2_NAME ,
 B.Street_Address as LIST2_STREET ,
 B.ZIP_CODE as ZIP5S ,
 compged(A.Street_Address,B.Street_Address,400,’I’) AS SCORE

For COMPGED, the two variables being compared are put in parenthesis (A.variable1,B.variable2,# - the
highest score, difference accepted, ‘i’ – states that case is not important). The score of 400 is quite large
and will give many false positives; however, since these addresses are not standardized, then they will
have higher scores.

 From LIST1 AS A,
 LIST2 AS B
 WHERE A.ZIP_CODE=B.ZIP_CODE

The WHERE statement tells SAS that only addresses with exactly the same Zip Code are to be scored
with COMPGED. This creates a more accurate score because multiple zip codes could have the same
street names. A 3 digit variable could also be created from the original Zip Code with the first 3 digits to
make a broader search. This could be helpful if there are data entry errors in the Zip Codes.

 AND A.Street_Address NE “”
 AND CALCULATED SCORE<390

It also states that only scores less than 390 are to be included in the output.

Order by SCORE;
quit ;

Looking at the output above, there are 7 matches found out of the 12 matching addresses.

The last example shows scoring the differences for the addresses after standardization.

Proc sql noprint ;
 create table STANDARD_STREET_MATCH as
 select A.LIST1_NAME ,
 A.ZIP5 ,
 A.STREET1 ,
 A.PO_BOX_STREET ,
 A.SUITE_STREET ,
 A.RM_STREET ,
 B.LIST2_NAME ,
 B.ZIP5S ,
 B.STREET2 ,
 B.PO_BOX_STREETS ,
 B.SUITE_STREETS ,
 B.RM_STREETS ,
 compged(A.STREET1,B.STREET2,250,’I’) AS SCORE

The high score limit in this example for the standardized list is 250, which is lower than what was used

for the actual addresses.

 From LIST1_NODUP AS A,
 LIST2_NODUP AS B
 WHERE A.ZIP5=B.ZIP5S
 AND A.STREET1 NE “”
 AND CALCULATED SCORE<240
order by SCORE;
quit ;

The output for the standardized scoring, below, has given much better results. All 12 matches out of 13
were found. The last two received scores of 100 and 200 because there were typographical errors that
standardization cannot correct, however, the name and Zip Code are the same, so it would be very likely
that these are matches.

CONCLUSION

This paper has presented several key functions in SAS that can help with fuzzy matching, TRANWRD and

PRX functions. Fuzzy matching is not 100%, but with this skillset, you can drastically cut the time down in

matching addresses. Just remember: Clean data is good data.

REFERENCES

1.) SAS(R) 9.2 Language Reference: Dictionary, Fourth Edition

2.) An Introduction to Perl Regular Expressions in SAS 9. Ron Cody, Robert Wood Johnson Medical

School, Piscataway, NJ. SAS Institute Inc. Proceedings of the Thirty-first Annual SAS Users Group

International Conference 2006.

3.) The Basics of the PRX Functions. David Cassell, Design Pathways, Corvallis, OR. Proceedings of

the SAS Global Forum 2007.

4.) Fuzzy Matching using the COMPGED Function. Paulette Staum, Paul Waldron Consulting, West

Nyack, NY. Proceedings of Northeast SAS User Group 2007.

CONTACT

For comments and questions, please contact the author at:

Barry Mullins, MPH

mullinsb@healthintegrity.org

mailto:mullinsb@healthintegrity.org

