

Page 1

Strategies and Techniques for Debugging SAS® Program Errors and Warnings

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

Abstract
As a SAS® user, you’ve probably experienced first-hand more than your share of program code bugs, and realize that debugging
SAS program errors and warnings can, at times, be a daunting task. This paper and presentation explores the world of SAS
errors and warnings, provides important information about syntax errors, input and output data sources, system-related
default specifications, and logic scenarios specified in program code. Attendees will learn how to apply effective techniques to
understand, fix, and resolve errors and warnings, allowing program code to work as intended.

Introduction
From the very beginning of computing history, program code, or the instructions used to tell a computer how and when to do
something, has been plagued with errors, or bugs. Even if your own program code is determined to be error-free, there is a high
probability that the operating system and/or software being used, such as the SAS software, have embedded program errors in
them. As a result, program code should be written to assume the unexpected and, as much as possible, be able to handle
unforeseen events using acceptable strategies and programming methodologies.

The focus of this paper is to understand the various types of program errors and their causes, in order to achieve greater
success when investigating and identifying program errors before and when they occur. By accomplishing this, users expect to
improve their chances of preventing, fixing and/or removing program errors the best way possible.

The SAS Log – Notes, Warnings and Errors
Users are provided with a broad range of assistance while using the various services offered by the SAS system, including the
display of SAS log messages related to compile-time and execution-time scenarios. The types of SAS log messages include
notes, warnings and errors, where the specific notes, warnings and errors relate to the degree of success (or lack thereof) when
applying the rules of the language, to specific data types, and to the creation and use of macro variables. To help in
understanding the various types of program errors found in the SAS System, a classification system is applied along with a brief
description, as illustrated in Table 1.

The type and severity of error encountered depends on the specific application being worked on. The SAS log displays violations
related to syntax, semantic, execution-time, data and macro-related errors. The assortment of notes, warnings and errors
provide users with helpful information to better understand and, hopefully, debug DATA, PROC and macro step program code.

Type of Error Description

Syntax Error
The rules associated with the use of a programming statement in the SAS language are
violated. Typical examples of a syntax error include misspelling of dataset or variable names,
and forgetting a semicolon.

Semantic Error
An element in a statement is specified incorrectly preventing SAS from knowing how to
interpret your code. Typical examples of semantic errors include misspelling a variable name
and incorrectly specifying an array’s elements.

Execution-time Error
An error that produces a Note or Warning on the SAS Log, but allows the program to continue.
An example includes observations arranged in incorrect BY-group order.

Data Error
An error that is generated when one or more data values do not match an INPUT statement
specification.

Macro-Related Error
An error that occurs during macro compilation or execution. An example includes a local macro
variable that should have been defined as a global macro variable.

Logic Error
An error that does not have a Note, Warning or Error associated with it, but contains erroneous
or unexpected results. Examples include using a “<“ when a “>” comparison operator should
have been specified.

Table 1. Error Classification and Description

Page 2

Understanding Where Error Processing Occurs
In the SAS System, error processing occurs during the compilation and execution phases of SAS processing. As illustrated in
Table 2, of the six types of errors, SAS recognizes five of them either at compile or execution time.

Errors During

Compilation Phase

Errors During

Execution Phase

Syntax Error Execution-time Error

Semantic Error Data Error

Macro-Related Error Macro-Related Error

Table 2. Types of Errors and Error Processing Phases

Difficult to Find Errors
Users, with the aid of the SAS Log, are able to determine the cause of many types of errors, but there are situations where SAS
is able to offer very little help with – Logic (or “Usage”) errors. A good strategy to use in the detection and resolution of Usage
errors is to first develop a baseline understanding of what the program code is expected to do and then carefully compare
these expectations to the output that was generated. To detect Usage errors in a DATA step, users can use the DATA Step
Debugger (for more information, see Debugging SAS® Programs, by Michelle Burlew, pps. 110-138).

To illustrate a difficult to find Usage error that not only had me perplexed for longer than I’d like to say, but had me looking for
alternate coding techniques to alleviate the problem.

Exploring SAS System Options
Users are able to examine their current SAS System options, along with the current default settings by using one of the
following approaches:

1. Using the PROC OPTIONS statement

PROC OPTIONS;
RUN;

2. Viewing the OPTIONS window

3. Accessing the contents of DICTIONARY.OPTIONS using the SQL procedure

PROC SQL;
 SELECT * FROM DICTIONARY.OPTIONS;
QUIT;

4. Accessing the virtual table SASHELP.VOPTION using any procedure and/or DATA step

PROC PRINT DATA=SASHELP.VOPTION;
RUN;

DATA and PROC Step Debugging with System Options
Using one or more SAS System options will allow users to:

 Process information to be displayed in the SAS Log;

 Run programs with specific observations;

 Stop a program when certain errors are encountered.

Page 3

SAS System options can be specified singly, or in combination, depending on needs. A number of SAS System options will now
be presented and illustrated to show their debugging capabilities.

Using DSNFERR / NODSNFERR System Option
The DSNFERR system option can be used to tell SAS to stop processing when a reference to a data set does not exist.

 Example:
 options DSNFERR;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using ERRORABEND / NOERRORABEND System Option
The ERRORABEND system option can be used to tell SAS to abnormally terminate for many errors including syntax errors.

 Example:
 options ERRORABEND;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using ERRORS= n System Option (default is 20)
The ERRORS= n system option can be used to tell SAS the maximum number of observations to print complete error messages
for.

 Example:
 options ERROR=100;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using FMTERR / NOFMTERR System Option
The FMTERR system option can be used to tell SAS to produce an error when it cannot find a format.

 Example:
 options FMTERR;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using MSGLEVEL= N / I System Option
The MSGLEVEL=I system option can be used to tell SAS to print notes, warnings, errors and informational messages for merge,
index and sort usage.

Example:
options MSGLEVEL=I;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Page 4

Using NOTES / NONOTES System Option
The NOTES system option can be specified to tell SAS to print all notes to the SAS Log.

Example:
options NOTES;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using DATASTMTCHK=COREKEYWORDS System Option
The DATASTMTCHK=COREKEYWORDS system option can be used to prevent a data set from being overwritten when there is a
syntax error in a MERGE, SET, UPDATE or MODIFY statement.

Example:
options DATASTMTCHK=COREKEYWORDS;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using REPLACE / NOREPLACE System Option
The NOREPLACE system option can be specified to prevent the replacement of permanent data sets.

Example:
options NOREPLACE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using SOURCE / NOSOURCE System Option
The SOURCE system option can be used to write all source code to the SAS Log.

Example:
options SOURCE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Using SOURCE2 / NOSOURCE2 System Option
The SOURCE2 system option can be specified to write all included source code (used with the %include statement) to the SAS
Log.

Example:
options SOURCE2;
 data libref.movies;
 set work.movies;
 %include ‘c:\include-sas-code.sas’;
 < other SAS statements >;
 run;

Page 5

Using OBS=0 and NOREPLACE System Options
This combination of options tells SAS to execute the step and analyze the syntax of your code without reading any input data.

Example:
options OBS=0 NOREPLACE;
 data libref.movies;
 set work.movies;
 < other SAS statements >;
 run;

Macro Debugging Strategies and Techniques
A number of macro debugging strategies and techniques exist. But, before assuming an error is macro-oriented, a general
litmus test can be applied to first determine whether the error is a macro-related or a non-macro problem.

 If the message displays a number, then the error is most likely due to non-macro SAS code;

 Otherwise, the error can be assumed to be a macro-related error.

Isolating Macro Issues
It’s often useful to isolate macro issues by displaying their value after macro resolution to help determine whether problems
exist. One approach used by macro enthusiasts to isolate macro issues is to:

• Specify the %PUT statement to isolate problems;

• Display the contents after macro resolution to the SAS log;

• Inspect and verify:

 a macro variable’s value;
 ampersand resolution;
 a specified condition was met;
 leading or trailing blanks in a value.

Other strategies and techniques exist for isolating macro issues. The following approaches are presented to illustrate
techniques that the author has effectively used.

MLOGIC and Flow of Execution
The MLOGIC option is an effective debugging tool that is used to trace the macro’s execution writing the results of the trace
information to the SAS log. The following example code illustrates using the MLOGIC option.

SAS Code

OPTIONS MLOGIC;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

Page 6

SAS Log Results

1 OPTIONS MLOGIC;

2 %MACRO statsproc (PROC, DSN);

3 %IF %UPCASE(&proc)=MEANS %THEN %DO;

4 PROC MEANS DATA=&dsn; RUN;

5 %END;

6 %ELSE %DO;

7 PROC UNIVARIATE DATA=&dsn; RUN;

8 %END;

9 %MEND statsproc;

10 %statsproc (means, SASUSER.movies);

MLOGIC(STATSPROC): Beginning execution.

MLOGIC(STATSPROC): Parameter PROC has value means

MLOGIC(STATSPROC): Parameter DSN has value SASUSER.movies

MLOGIC(STATSPROC): %IF condition %UPCASE(&proc)=MEANS is TRUE

NOTE: There were 22 observations read from the data set SASUSER.MOVIES.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

MLOGIC(STATSPROC): Ending execution.

MPRINT and Generated SAS Code
The MPRINT option is an effective debugging technique to display the SAS statements that have been generated by macro
execution. The results of the MPRINT option are written to the SAS log. The following example code illustrates using the
MPRINT option.

SAS Code

OPTIONS MPRINT;

%MACRO statsproc (PROC, DSN);

 %IF %UPCASE(&proc)=MEANS %THEN %DO;

 PROC MEANS DATA=&dsn;

 RUN;

 %END;

 %ELSE %DO;

 PROC UNIVARIATE DATA=&dsn;

 RUN;

 %END;

%MEND statsproc;

%statsproc (means, SASUSER.movies);

Page 7

SAS Log Results

1 OPTIONS MPRINT;

2 %MACRO statsproc (PROC, DSN);

3 %IF %UPCASE(&proc)=MEANS %THEN %DO;

4 PROC MEANS DATA=&dsn; RUN;

5 %END;

6 %ELSE %DO;

7 PROC UNIVARIATE DATA=&dsn; RUN;

8 %END;

9 %MEND statsproc;

10 %statsproc (means, SASUSER.movies);

MPRINT(STATSPROC): PROC MEANS DATA=SASUSER.movies;

MPRINT(STATSPROC): RUN;

NOTE: There were 22 observations read from the data set SASUSER.MOVIES.

NOTE: PROCEDURE MEANS used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds.

Debugging with Benchworkzz® Software
Users who have written and executed a SAS program of DATA, PROC and/or macro code are all too familiar with the sometimes
tedious and time-consuming process of debugging a program using the valuable content displayed in the SAS log. The typical
debugging approach has users starting at the top of the log, carefully inspecting, one by one, each helpful note, warning, error
and informative message. This approach not only provides a better understanding of how a program works in relation to its
intended design, but offers greater insight in how SAS works. For many SAS users, the process of examining the log for notes,
warnings, errors and informative messages is a normal course of action, while others look to leverage this time-consuming
process by using a software tool. One such tool, Benchworkzz, developed by Benchworkzz, LLC in Austin, Texas, is designed to
provide users with an easy-to-use productivity and diagnostic tool to help discover all those SAS log NOTE, WARNING, ERROR,
and INFO messages. By using the Benchworkzz debugging tool, users have an all-in-one tool a help scrub and sanitize program
code systematically and economically.

The Benchworkzz Application Interface
Once the Benchworkzz tool is launched, you immediately see the application interface, illustrated in Figure 1. The Benchworkzz
tool is particularly useful for simplifying the process of finding any, and all, SAS log NOTE, WARNING, ERROR, and INFO
messages produced during the compilation and execution phases of SAS processing.

Figure 1. The Benchworkzz Application Interface

Page 8

Benchworkzz Navigation and Drop-down Menus
The process of navigation within Benchworkzz is simplified with an assortment of built-in drop-down menus: Modules, Edit,
Tools, Windows and Help, as illustrated in Figure 2. The Modules drop-down menu provides users with the ability to access the
Log Validation module or the Text Parser module (each module will be discussed separately later in this paper). The Edit drop-
down menu offers users with the familiar assortment of editing features, such as Undo, Redo, Cut, Copy, Paste and Select All.
The Tools drop-down menu provides users with features such as Launch on Startup, Shortcut On Desktop, Ftp Settings and
Options. The Windows drop-down menu offers users the ability to Cascade, Tile Vertically, Tile Horizontally, Close All and
Arrange Icons. Finally, the Help drop-down menu provides users with Help Topics, BenchworkzzGlobal.com, About Benchworkzz
for SAS and Check for Updates.

Figure 2. Benchworkzz Drop-down Menus

Using the Benchworkzz Log Validation Module
The Log Validation module provides users with a powerful search engine that helps filter specific NOTE, WARNING, ERROR and
INFO log status events, see Figure 3.

Figure 3. Benchworkzz Log Validation Module

The Log Validation Module Drop-down Menus
Users are provided with a number of powerful Log Validation Module drop-down menus for opening Log input files, a
repository of master reference keywords that represents serious errors reported in the log, and a repository containing user-
supplied optional keywords for less severe keywords that can be ignored during processing, as shown in Figure 4.

Figure 4. Log Validation Module Drop-down Menus

Page 9

To illustrate the workings of the Log Validation Module, a simple DATA step hash object code (containing a number of
intentional errors) was submitted in the SAS System, shown in Figure 5.

SAS Code

data _null_;

 if 0 then set mydata.actors; /* load variable properties into hash tables */

 if _n_ = 1 then do;

 declare Hash MatchTitles (dataset:'mydata.actors'); /* declare the name MatchTitles

 for hash */

 MatchTitles.DefineKey ('Title'); /* identify variable to use as key */

 MatchTitles.DefineData ('Actor_Leading',

 'Actor_Supporting'); /* identify columns of data */

 MatchTitles.DefineDone (); /* complete hash table definition */

 end;

 set mydata.movies end=eof;

 if eof and

 MatchTitles.find(key:title) = 0 then /* write data using hash MatchTitles */

 MatchTitles.output(dataset:match_on_titles);

run;

Figure 5. DATA Step Hash Object Code (with errors)

After the DATA step hash object code was executed, the contents of the SAS log was saved to a folder on my hard drive. By
clicking the Open Log File drop-down menu the Please Select a SAS Log File window appears allowing navigation to the folder
where the SAS log contents was saved, as shown in Figure 6. The Run button was then clicked to run the log validator

Figure 6. Please Select a SAS Log File Window

Page 10

With the SAS log file selected, the Log Validation Module is ready to process the file. After clicking the Run button to initiate the
log validator, the results from the log validation process are displayed, as shown in Figure 7. The results show 25 Log lines were
processed by the Log Validation process with 4 events found: 3 ERRORS and 1 NOTE.

Figure 7. Log Validation Results

Users are able to produce log validation reports as well. By clicking the Reports drop-down menu, users are able to view (and
print) a summary report, as shown in Figure 8, or a detailed report, as shown in Figure 9.

Figure 8. Log Validation Summary Report

Figure 9. Log Validation Detailed Report

Page 11

Using the Benchworkzz Text Parser Module
The Benchworkzz Text Parser provides users with the ability to search SAS Log files, as well as any text file, for a list of phrases
and specific terms; text matching, wildcard and regular expressions, as illustrated in Figure 10.

Figure 10. Benchworkzz Text Parser Module

To illustrate how the Benchworkzz Text Parser Module works, the DATA step hash object code we used earlier with the Log
Validation Module was executed and the SAS log results copied from the log window and pasted into the Text Parser Module.
With the default setting, All ERRORs, selected only ERROR-type messages will be captured and displayed in the lower panel of
the Text Parser window, as shown in Figure 11.

Figure 11. Errors Displayed in the Text Parser Module

Page 12

Search Profiler Editor
Users have access to a powerful editor, the Search Profiler Editor, to assist with finding specific text within the log or file, a text
replacement feature where selected text can be replaced with some other text, a text matching process for finding text that
starts and/or ends with specific text, an exclusion feature to exclude specific text, and a user-supplied repository where search
keywords and/or phrases can be entered, as shown in Figure 12.

Figure 12. Search Profiler Editor - Find and Replace Dialog Box

Conclusion
The focus of this paper has been to understand the various types of program errors along with their causes, in order to achieve
greater success in investigating and identifying program errors before and when they occur. Various strategies and techniques
were illustrated to debug SAS program errors and warnings, including using system options to debug DATA and PROC step code,
system options to debug macro code, return codes to assist the debugging process, and a brief introduction to Benchworkzz
software to understand, fix, and resolve errors and warnings. The expectations are to improve our chances of preventing, fixing
and/or resolving program errors allowing code to work as intended.

References
Benchworkzz® for SAS® User’s Guide; Benchworkzz, Austin, Texas, USA.

Brin, Sergey and Lawrence Page (1998), “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Computer Science
Department, Stanford University, Stanford, California, http://infolab.stanford.edu/~backrub/google.html.

Burlew, M., Debugging SAS® Programs: A Handbook of Tools and Techniques, SAS Publishing.

Delwiche, Lora d. and Susan J. Slaughter (2003); “Errors, Warnings and Notes (Oh My) A Practical Guide to Debugging SAS®
Programs,” Proceedings of the 2003 SAS Users Group International (SUGI) Conference.

DiIorio, Frank., The SAS(r) Debugging Primer, http://www2.sas.com/proceedings/sugi26/p054-26.pdf.

Fahmy, Adel (2010); “Logging the Log Magic: Pulling the Rabbit out of the Hat,” Proceedings of the 2010 PharmaSUG
Conference; Benchworkzz, Austin, Texas, USA.

Lafler, Kirk Paul (2013); “Strategies and Techniques for Debugging SAS® Program Errors and Warnings,” Proceedings of the 2013
MidWest SAS Users Group (MWSUG) Conference; Software Intelligence Corporation, Spring Valley, California, USA.

Russell, Kevin and Russ Tyndall (2010); “SAS® System Options: The True Heroes of Macro Debugging,” Proceedings of the 2010
NorthEast SAS Users Group (NESUG) Conference; SAS Institute Inc., Cary, North Carolina, USA.

SAS Institute Inc., SAS® Language Reference: Concepts, Cary, NC: SAS Institute Inc., 1999. 554 pages.

Staum, R., To Err is Human; to Debug, Devine, http://www2.sas.com/proceedings/sugi27/p064-27.pdf.

http://infolab.stanford.edu/~backrub/google.html
http://www2.sas.com/proceedings/sugi26/p054-26.pdf
http://www2.sas.com/proceedings/sugi27/p064-27.pdf

Page 13

Acknowledgments
I want to express my sincerest thanks to Kenny Bissett and Lizette Alonzo, SCSUG 2013 Conference Chairs, for accepting my
abstract and paper; and the SCSUG 2013 Conference Committee and Executive Boards for organizing a great conference!

Trademark Citations
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Benchworkzz® for SAS® product or service names are registered
trademarks of Benchworkzz, LLC, Austin, Texas USA. Other brand and product names are trademarks of their respective
companies.

About the Author
Kirk Paul Lafler is consultant and founder of Software Intelligence Corporation and has been using SAS since 1979. He is a SAS
Certified Professional, provider of IT consulting services, trainer to SAS users around the world, and sasCommunity.org emeritus
Advisory Board member. As the author of five books including PROC SQL: Beyond the Basics Using SAS, Second Edition (SAS
Press 2013) and PROC SQL: Beyond the Basics Using SAS (2004), Kirk has written more than five hundred papers and articles,
been an Invited speaker and trainer at four hundred-plus SAS International, regional, special-interest, local, and in-house user
group conferences and meetings, and is the recipient of 22 “Best” contributed paper, hands-on workshop (HOW), and poster
awards.

Comments and suggestions can be sent to:

Kirk Paul Lafler
Senior Consultant, Application Developer, Data Cleaner and Analyst, Trainer and Author

Software Intelligence Corporation
E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler
Twitter: @sasNerd

mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

