
Getting Connected — The Power of Using Hash Objects

ABSTRACT

The Hash Object and the Hash Iterator Object¹, two data step component objects, offer a simple and powerful solution for many complex tasks. This
paper will describe the hash object and show how to merge a number of data sets using hash objects, base SAS, and object dot notation. It will also
illustrate how the program data vector (PDV) enables the interaction of data set variables and the data variables within the objects. The hash object is
an in-memory solution allowing direct access via keys during execution. It is fast and can contain an unlimited number of key items and data items.
The only limitation is available memory. As memory size increases and the constraints of available memory lessen, the usefulness of hash objects can
only increase.

INTRODUCTION

Upon her balcony in the privacy of her garden, Shakespeare’s Juliet, mused on Romeo’s forbidden surname,

	 What’s in a name? That which we call a rose
	 By any other word would smell as sweet.2

 The hash object is a Data Step Component Interface (DSCI) or, more completely, a Data Step Component Object Interface. This is a descriptive
name for a sweet thing. What is in the name Data Step Component Object Interface? Data Step: It can only be used in a data step. It cannot be used in
a procedure. Component Object: It is a predefined structure, containing a hash function, map or multi-map, slots or hash buckets, and Adelson-Velsky
and Landis balanced binary trees for referencing keys and storing data.

Using object dot notation, the programmer only needs to declare, instantiate, and refine the definition of the hash object by assigning values as key
items and, optionally, data items. The hash object is then created as a variable in the program data vector at execution time, rather than compile time,
and will only exist for the duration of the data step. This difference in timing creates an issue between the Data Step PDV and the object. Data Step
programming must be used to create variables in the program data vector at compile time to interface with the key items and keyed data items in the
hash object. Data Step programming creates vaiables in the PDV that are either numeric or character. Object dot notation creates a variable that is
an object containing keyed data items. If composite keys are defined, they can be a mixture of character and numeric types. The data definition can
also be a mixture of types. The bridge between the hash object and the data step program is the PDV. Variables created with Data Step programing at
compile time host the items in the hash object and must match the attributes of the variables with which the hash object is loaded.

Data sets used for illustration. The code for the creation of
the data sets is included at the back of this paper.

data _null_;
 *if _n_=0 then set work.cust(keep=policy_id First_name Last_name Country);
 attrib policy_id length= $ 10
 First_name length= $ 15
 Last_Name length= $ 15
 Country length= $ 15
 ;
 if _n_=1 then do;
 dcl hash CMP(dataset:’work.cust(where=(Country=”Russia”or Country=”USA”)’);
 CMP.definekey (‘policy_id’);
 CMP.definedata (“policy_id”,”First_name”,”Last_Name”,”Country”);
 CMP.definedone();
 call missing(Cust_id, First_name, Last_Name, city, Country, Cust_dt);
 end;
 set work.pol;
 rc=CMP.find();
 if rc=0 then CMP.output(dataset:’DumpH (where=(Country=”Russia”)’);
 else CMP.output(dataset:’else1’);
run;

Bevery Johnson was a remarkable woman and an adventuress. She was the first woman to climb the face of El Capitan in Yosemite National Park. It
took her 10 days to make the ascent. When she reached the top, a videographer was waiting to interview her. The interviewer asked her what kept her
going. She said that she kept asking herself the same question, “How do you eat an elephant?” The answer, “One bite at a time.” The answer is very
appropos hash objects in the era of big data. The hash object is capable of containing an infinite number of key items and data items in each slot or
bucket; however, since it is a memory resident object, it is constrained by available memory. To handle large amounts of data, it needs to take the data
one bite at a time. To work efficiently with hash objects, it is necessary to judiciously use keep options and subsetting where options, or pre-filter data
to limit the number of variables and the number of observations to what is required.

The second is more versatile breaking the declaration and instantiation into separate statements. These statments can be separated by code.

	 dcl hash h_obj;
	 h_obj=_new_ hash ();

The first statement declares the name reference, h_obj, a hash object, and the second statement uses the operator _new_ to assign the object to h_obj.
This second method shows more clearly that the hash object is a variable in the PDV.

	 dcl hash h_obj ();

To write a declare statement you can use “declare” or the abbreviated “dcl”. There are two ways to declare and instantiate a hash object. The first of-
fers the convenience of combining the declaration and the instantiation in one statement:

When a data step set statement is used to input values into the PDV and retrieve values from a hash object, the timing of the flow of data into any
variables that share the same name has to be considered. The data step inputs its values first, and any values drawn from the hash object overwrite the
values from the data step.

data work.cust2;
 set work.cust;
 where policy_id in (“98355”,”65547”);
run;
 data work.share;
 if _n_=0 then set work.cust(keep=cust_id first_name Last_name);
 /*attrib policy_id length= $ 10
 First_name length= $ 15
 Last_Name length= $ 15
 ; */
 if _n_=1 then do;
 dcl hash SHAR(dataset:’work.cust(where=(last_name=”Shakespeare”or last_name=”Montague”)’);
 SHAR.definekey (‘cust_id’);
 SHAR.definedata (“First_name”,”Last_Name”);
 SHAR.definedone();
 *call missing(First_name, Last_Name);
 end;
 set work.cust2 (keep=cust_id first_name Last_name);
 rc=SHAR.find();
 If rc ne 0 then call missing(first_name, last_name);
 Shar.output(dataset:’H_Dump’);
run;

With the default of argument tag Multidata: ‘N’
It is easy to declare a hash iterator to traverse the data in the hash object; for example:
	 dcl Hiter hobji(‘hobj’);
The methods used to traverse the data are first, next, prev, last, and setcur(key:‘value’). If the argument tag Ordered: ‘Y’ is used in the hash declara-
tion, the data can be traversed and output in ascending or descending order. The key items are traversed sequentially similar to the data in an SQL
table with a unique key.

With the Multidata argument tag “Y”
The data in a hash object needs different methods to traverse the keys when the Multidata argument tag is “Y” because the keys must be accessed
sequentially and hierarchically. The hash object has a head node or header node, and non-unique data is attached as an ordered list or data chain, so
one must traverse the data across the head nodes and down the linked data.

Methods used for traversing the hash key items using a hash itereator or do loops.

It seems to me that the actual structure of the keys and data in a hash object most resembles a web, the strands a mesh of references and the nodes the
intersections. The following is a simple conceptual representation to aid understanding the methods used with the hash iterator and do loops to extract
data from a hash object.

Key item Data item

Key item

Key item

Key item

Key item

Data item

Data item

Data item

Data item

object.first ();

object.last();

object.prev ();

object.next();

Multidata: ‘N’

There is also a object.setcur(key: ‘value’). It is usually used with a lteral to begin an iteration at a specific point in the data.

Key item

Key item

Key item Key item

Key item

Key item

Key item

Key item Data item

Data item

Data item

Data item

Data item

Data item

object.find () object.has_next (result: r) object.find_next()

If the Multidata:’Y’ argument tag is used in the hash declaration, nested do loops can be used with methods to extract data from the hash object. One
loop crosses the head nodes and the other runs down or up the hierarchially arranged chain of non-unique key data.

Data Item Data Item

Object dot notation has two attribute statements. One returns the number of head keys and the other returns the size in bytes of the keys and data in
a single hash Item. These can be used in a calculation to get the approximate size of the hash object. When using the Multidata argument tag ‘Y’ the
size of hash items can greatly vary.

 variable_name=object.Item_size
	 variable_name=object.Num_items

object.find () object.has_prev (result: r) object.find_prev()

There are also methods for operating in the oposite direction.

data work.loop_out_all
 work.loop_out_unq
 work.loop_out_dup;
 attrib Policy_id length= $ 10
 vin length= $ 17
 Year length= $ 4
 Make length= $ 17
 ;
 If _n_=1 then do;
 dcl hash lp(dataset:’work.pol’, ordered:’Y’, multidata:’Y’);
 lp.definekey(‘Policy_id’);
 lp.definedata(‘Policy_id’,‘vin’,’year’,’make’);
 lp.definedone();
 Call missing (Policy_id, Vin, Year, Make);
 end;
 do until(eof1);
 set work.cust (keep=Policy_id Cust_id First_name last_name) end=eof1;
 rc=lp.find();
 * output work.loop_out;
 If (rc = 0) then do;
 output work.loop_out_unq;
 output work.loop_out_all; /*unique*/
 lp.has_next (result: r);
 do while (r ne 0);
 rc=lp.find_next();
 output work.loop_out_all; /*non-unique*/
 output work.loop_out_dup;
 lp.has_next (result: r);
 end;
 end;
 end;
 lp.output(dataset: ‘H2_dump’);
 stop;
run;

data work.mg (drop=Abbr_vin);
 attrib
 policy_id length= $ 10 First_name length= $ 15 Last_Name length= $ 15 city length= $ 15
 vin length= $ 17 Year length= $ 4 Make length= $ 17 Abbr_Vin length= $ 2 claim_no length= $ 10;
 If _n_=1 then do;
 dcl hash a(dataset:’Cust(where=(city=”London”)’,ordered:’Y’);
 a.definekey(‘policy_id’);
 a.definedata(’first_name’,’last_name’,’city’);
 a.definedone();

 dcl hash b(dataset:’pol’);
 b.definekey(‘Abbr_vin’);
 b.definedata(‘year’,’make’);
 b.definedone();

 dcl hash c(dataset:’claim’);
 c.definekey(‘policy_id’,’vin’);
 c.definedata(‘claim_no’);
 c.definedone();

 call missing(policy_id, First_name, Last_name, city, vin, Year,
		 Make, claim_no);

 end;
 do until (eof2);
 set work.Pol (keep=Policy_id vin) end=eof2;
 a_rc=a.find();
 if a_rc ne 0 then call missing(First_name, last_name, city);
 b_rc=b.find(key: cats((substr(vin, 2,1)),substr(vin,10,1)));
 if b_rc ne 0 then call missing (Year, make);
 c_rc=c.find(key: policy_id, key: vin);
 if c_rc ne 0 then call missing(claim_no);
 c.output(dataset:’cl’);
 output work.mg;
 /*If (C_rc=0) then output work.mg;*/
 end;
 Stop;
run;

Last_Name_N_ _ERROR_ Policy_id First_name City YearVin Claim_NoAbbr_vinMake

The do loop enters the first values into the PDV: Policy_id, Vin, and
Abbr_vin. the a.find method uses the value in the PDV to retrieve
First_name, Last_name, and city from hash object a. The b.find method
uses a concatenation of values in the vin number to match the values of
Abbr_vin the key variable in the b object and the value of year and make
are retrived. Finally the c.find method uses the keys policy_id and vin to
retrive the claim_no from the c object.

ARGUMENT TAGS
(Dataset: dataset: name<(options)>’)
Is a very convenient way to load a hash object. A do loop is another alternative.

(Multidata: ‘Y’ | ‘Yes’)
Maps multiple data items to a key item

(Duplicate: ‘R’ | ‘E’)
Determines how duplicates are delt with. The ‘R’ replaces the first data item and the ‘E’ stops the program when a duplicate is detected.

(hashexp: n)
Sets the number of hash slots or buckets. n is an exponent of 2. For 9.3 the default for the number of hash buckets is 8 or 256 slots. To work efficient-
ly the key items must not be distributed too densely or too thinly in the slots. 9 (512 slots) or 10 (1024 slorts) is recommended for one million items.

(Ordered: ‘A’ | ’Y’ | ‘D’ | ‘N’)
Sorts the data using the key items like the by in a proc sort. An efficient feature if one may need sorted data later. It can make a proc sort unnessary.

(Suminc: ‘variable-name’)
Use as a counter. The variable-name keeps a count in the PDV.

The object.definedone is used to finalize the intialization of the hash object. It has one agrument tag: (Memrc: ‘y’). It is used to evaluate whether the
method was successful or not. A return code of 0 indicates that the hash object was loaded and a non-zero indicates failure, usually because of insuf-
fiecient memory. The non-zero code can be used with the object.delete method to remove the hash object.

data hashexp_arg;
	 format exponent 4.;
		 buckets comma10.;
	 do exponent = 0 to 20;
		 buckets = 2**exponent;
		 output;
	 end;
run;

The definedata method has one argument tag: ALL:’Y’. It will define all the data loaded into the hash object as data items. When you use the define-
data method if you want the key data ouput it must be defined as a key and as a data item.

Calculates the number of slots:

data _null_;
	 amt=getoption(‘xmrlmem’)
	 put amt=;
run;

Check size of memory

Macros for variables for a hash object

%let dsn1=work.cust;
%let out_dsn1=Mro_varlist;
%let dsn_cmp=work.pol;

proc contents data=&dsn1
 out=work.&out_dsn1 (keep=libname memname name type length nobs varnum)
 noprint;
run;
proc sort data=work.&out_dsn1;
 by varnum;
run;

/*dataset for the hash object*/
proc sql noprint inobs=1;
 select libname, memname
 into :H_lib, :H_dsn
 from &out_dsn1;
quit;

%put &H_lib &H_dsn;

/* &Attr_mv Attributes ** &Key_mv Key variables **** &Data_mv Data variables *** &Miss_mv Call missing variables ******/
/*Attrib macro variable*/

data H_mac_v(keep=name Key_Item attr varnum R_name re_name);
 set work.&out_dsn1;
 if type = 2 then A_type=”$”;
 else if type = 1 then A_type=” “;
 Attr=Catx(“ “,name,”length=”,A_type,length);
 Key_Item=quote(compress(name));
 R_name=cats(“R_”,name);
 Re_name=catx(“ “,name,”=”,R_name);
 where varnum in (2 3 4 5 6);
run;

/**********attrib and keep statements**************/
proc sql noprint;
 select attr, name, Re_name
 into :Attr_mv separated by “ “,
 :Keep1_mv separated by “ “,
 :Re_name separated by “ “
 from H_mac_v;
 *where varnum in (1 2 3 4 5 6);
 where varnum between 2 and 6; /*select varnum for attrib*/
quit;

%put &Attr_mv;
 %put &Keep1_mv;
%put &Re_name;

/***********KEY Macro variable*****************/
proc sql noprint;
 select Key_Item
 into :Key_mv separated by “,”
 from H_mac_v
 where varnum in (2); /*select varnum for key item*/
quit;

%put &Key_mv;

/***************Data Macro variable and Call missing ******************/
proc sql noprint;
 select Key_Item as D_Item,name
 into :Data_mv separated by “,”,
 :Miss_mv separated by “,”
 from H_mac_v
 /*where varnum in (1); /*select varnum for data item(s) and call missing*/
 where varnum between 2 and 7;*/
quit;

%put &Data_mv;
%put &Miss_mv;

data work.examp&H_dsn;
 *if _n_=0 then set work.&H_dsn(keep=&keep1_mv);
 attrib &Attr_mv;
 if _n_=1 then do;
 dcl hash exp(dataset:”work.&H_dsn”);
 exp.definekey (&Key_mv);
 exp.definedata (&Data_mv);
 exp.definedone();
 call missing(&miss_mv);
 end;
 set &dsn_cmp;
 rc=exp.find(key: policy_id);
 if rc=0 then exp.output(dataset:’DumpH’);
 if rc=0 then output work.examp&H_dsn;
run;

REFERENCES
	 Bloom, Janice and Secosky, Jason, Getting Started with the DATA Step Hash Iterator, Paper 271-2007, SAS Global Forum 2007.
	 Burlew, Michele M. SAS® Hash Object Programming Made Easy, Cary, NC: SAS Institute, 2012.
	 Carpenter, Art, Carpenter’s Guide to Innovative SAS Techniques, Cary, N: SAS Institute, Inc., 2012.
	 Dorfman, Paul and Shajenko, Lessia S. , Hash Crash and Beyond Paper 037-2008 SAS Global Forum 2008.
	 Dorfman, Paul and Vyverman, Koen, The SAS Hash Object in Action, Paper 153-2009 SAS Global Forum 2009.
	 Dorfman, Paul and Vyverman, Koen, Data Step Hash Objects as Programming Tools, Paper 241-31, SUGI 31.
	 Dorfman, Paul, Vymerman, Koen, and Dorfman, Victor, Black Belt Hashigana, Paper 023-2010, SAS Global Forum 2010.
	 Hinson, Joseph The Hash-of-Hashes as a “Russian Doll” Structure: An Example with XML Creation, Paper 021-2013, SAS Global Forum 		
		 2013,
	 Loren, Judy How Do I Love Hash Tables? Let Me Count the Ways!, Paper 029-2008 SAS Global Forum 2008.
	 Ray, Robert and Secosky, Jason, Better Hashing in SAS® 9.2, Paper 306 2008.
	 SAS Community Hash_Object_Resources
	 SAS Institute Inc., SAS® 9.3 Component Objects Reference, 2011.
	 Secosky, Jason and Janice Bloom, Getting Started with the DATA Step Hash Object, Paper 271-2007, SAS Global Forum 2007.

Endnotes

¹ The Hash Object and the Hash Iterator Object first appeared in SAS 9.0. In later versions of SAS, the Java, Logger, and Appender Objects were
added and the hash and hash iterator objects were greatly improved.

2 Romeo and Juliet, Act II, Scene 2, line 43.

3
data match ;
	 set small point = _n_ ; * get key/data attributes for parameter type matching ;
	 * set small (obs = 1) ; * this will work, too :-)! ;
	 * if 0 then set small ; * and so will this :-)! ;
	 * set small (obs = 0) ; * but for some reason, this will not :-(;

Paul Dorfman Hash Crash and Beyond p. 2

Contact information:

	 Philip Burtch burtch@mac.com or philip.burtch@usaa.com

http://www2.sas.com/proceedings/forum2007/271-2007.pdf
https://support.sas.com/pubscat/bookdetails.jsp?pc=62230
https://support.sas.com/pubscat/bookdetails.jsp?catid=1&pc=62454
http://www2.sas.com/proceedings/forum2008/037-2008.pdf
http://support.sas.com/resources/papers/proceedings09/153-2009.pdf
http://www2.sas.com/proceedings/sugi31/241-31.pdf
http://support.sas.com/resources/papers/proceedings10/023-2010.pdf
http://support.sas.com/resources/papers/proceedings13/021-2013.pdf
http://www2.sas.com/proceedings/forum2008/029-2008.pdf
http://www2.sas.com/proceedings/forum2008/306-2008.pdf
 Hash_object_resources
http://support.sas.com/documentation/cdl/en/lecompobjref/63327/HTML/default/viewer.htm#titlepage.htm
http://www2.sas.com/proceedings/forum2007/271-2007.pdf
http://www2.sas.com/proceedings/forum2008/037-2008.pdf

Data work.cust;
 infile datalines dsd;
 input Cust_id: $10.
 policy_id: $10.
 First_name: $15.
 Last_Name: $15.
 city: $15.
 Country : $15.;

 datalines;
pe12489,81880,Seth,Pecksniff,London,Eng
sh15878,11489,,Shakespeare,London,Eng
sh15878,98355,Shakespeare,,London,Eng
ma48798,22389,Thomas,Mann,Princeton,USA
ch12489,81889,Martin,Chuzlewit,London,Eng
do78521,12587,Amy,Dorrit,London,Eng
to12587,36901,Leo,Tolstoy,Yasnaya Polyana,Russia
ga78521,38525,Elizabeth,Gaskell,Knutsford,Eng
ni33691,66381,Nicholas,Nickleby,London,Eng
cl11483,22871,Arthur,Clennam,London,Eng
go78224,36999,Oliver,Goldsmith,London,Eng
ti78902,65547,Montague,Tigg,London,Eng
ti78902,58749,Tigg,Montague,London,Eng
ta48963,22158,Mark,Tapley,London,Eng
ch78984,44879,Chevy,Slyme,London,Eng
ja48548,22487,John,Jarndyce,Bleak House,Eng
gu77892,14856,William,Guppy,London,Eng
 ;
run;

Data work.Pol;
 infile datalines dsd;
 input Policy_id:$10.
 vin: $17.
 Year: $4.
 Make: $17.
 Abbr_Vin $2.;
 datalines;
11489,1FA00000030000001,2003,Ford,F3
22389,1G100000050000002,2005,Chevrolet,G5
81889,JHG00000030000003,2003,Honda,H3
12587,1FA00000050000004,2005,Ford,F5
36901,1GC00000030000005,2005,Chevrolet,G5
38525,JHG00000030000006,2003,Honda,H3
66381,1FB00000050000007,2005,Ford,F5
22871,1G100000030000008,2003,Chevrolet,G3
36999,JHG00000050000009,2005,Honda,H5
81889,1FA00000030000010,2003,Ford,F3
12587,1G100000050000011,2005,Chevrolet,G5
36901,JHG00000030000012,2003,Honda,H3
65547,1FA00000030000013,2003,Ford,F3
65547,1G100000050000014,2005,Chevrolet,G5
58749,JHG00000030000015,2003,Honda,H3
58749,1FA00000050000016,2005,Ford,F5
22158,1GC00000030000017,2005,Chevrolet,G3
98355,JHG00000030000018,2003,Honda,H3
22158,JHG00000030000019,2003,Honda,H3
44879,1FB00000050000020,2005,Ford,F5
44879,1G100000030000021,2003,Chevrolet,G3
22487,JHG00000050000022,2005,Honda,H5
14856,1FA00000030000023,2003,Ford,F3
65547,1G100000050000024,2005,Chevrolet,G5
65547,JHG00000030000025,2003,Honda,H3
 ;
run;

Data

data work.claim;
 infile datalines dsd;
 input Policy_id:$10.
 claim_no: $10.
 Vin: $17.;
 datalines;
81889,7141,JHG00000030000003
12587,7249,1FA00000050000004
22871,7681,1G100000030000008
98355,7897,JHG00000030000018
36901,8113,JHG00000030000005
;
run;

