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ABSTRACT 

The development and adoption of electronic health records (EHR) is creating exciting times in 

healthcare research. Today, copious amounts of EHR and secondary data lie at the tips of the 

researcher’s fingers and robust data management techniques are essential in transforming the data to 

maximize its potential. Data derived from the EHR is critical for grant applications, pilot studies and is 

becoming the main source of data for research projects. The role of the data manager becomes crucial 

to research projects utilizing EHR and secondary data in order to maximum it’s analysis potential.  

 

Data managers encounter roadblocks when dealing with healthcare data and using some SAS® tips and 

tricks on bulky, cumbersome datasets can transform them into clean and simple ones that are analysis 

ready. Dealing with longitudinal data, containing multiple observations per patient is the livelihood of 

researchers; however, poor restructuring and misidentification of the necessary data points can 

frustrate the analysis process. PROC TRANSPOSE is often the first PROC considered when a data 

manager is trying to restructure longitudinal data for analytics. In this paper examples are shown that 

detail how a FIRST. and LAST. function can overcome the limits of PROC TRANSPOSE and conditional 

IF/THEN statements within the DATA procedure, how a PROC SQL procedure can be used to eliminate 

unwanted records within a longitudinal dataset and how a PROC TRANSPOSE and MERGE procedure 

can be used to make comparisons between a first visit and follow-up visits. This paper attempts to 

answer the age old question of “What is a researcher to do, when needing to look down longitudinal 

data and manipulate it?” Have no fear, utilization of PROC SQL and a LEFT JOIN in a novel way will save 

the day…and your sanity. 

 

INTRODUCTION 

EHR is a compilation of patient health information produced during one or more visits to a healthcare 

site. In the healthcare industry the terms EHR, Personal Health Records (PHR), Electronic Patient 

Records (EPR) and Electronic Medical Record (EMR) are used interchangeably. EHR data can be 

complex and integrate multiple data elements including demographic information, patient vitals, blood 

work and laboratory data, physical exam information, medications, medical history, current procedural 

data, and billing information.  The information may be stored using an Oracle® or a Microsoft® SQL 

Server relational database with the information organized into a series of independent tables that are 

inter-connected through unique identification keys.1  

 

While the structure of EHR data is relevant to patient clinical management, the organization of the 

data is often less than ideal for use by analyst for research and quality reporting purposes. To be 

successful, data managers must be efficient in identifying methods to organize and restructure data 

and to assure its usefulness in analysis. Methods traditionally used and initially thought of when trying 



to accomplish data transformations can prove to be limiting and cumbersome when facing EHR data. 

Data managers are challenged to “think outside” the proverbially SAS® box when encountering these 

data types.  

 

This paper will focus on identifying some of the non-traditional methods used by our team to 

restructure this valuable but complex data so that it can be used for healthcare research projects and 

quality reporting. 

 

FIRST. /LAST. EXAMPLE: 

Data managers/programmers for research and quality projects in a healthcare setting spend much of 

their time identifying the correct “who” and correct “what.” In this example, the right lab test for all 

patients needs to be identified. More specifically, the lab test needs to be the first done post-

admission. If the patient doesn’t have a post-admission blood test, then the first instance prior to 

admission needs to be kept and those records flagged. 

 

Knowing that this is a multi-record per patient dataset, the first inclination is to use PROC TRANSPOSE. 

Because SAS® only adds/subtracts things on the same horizontal line; transposing each of the lab test 

dates would be a reasonable first step.  After that subtract the time from admission, and then use an 

array to find the correct record. This methodology would require a lot of transposes, since there are 

over 15 different types of lab tests and no limit to the number of each kind of test a patient has 

performed in one day. Additionally, due to the complexity there are several places to make an error. In 

this situation, take a step back and evaluate the process. Thinking outside the box, it would be simpler 

plan to first break up the data sets. Do all the records really need to be kept together?  

 

1) Create a count and order the labs available per patient and per lab test type. This will give 

identify those patients who only have one test available, regardless of whether it’s done prior 

to or post admission. 

 

 
 



 
 

2) Next, prep the data to evaluate the timeliness of these tests by creating the “timetolabs” 

variable then flag those results that occurred prior to admission (the bad ones!). Also, prep 

some variables to be used in the resultant dataset: one for the lab test’s name, one for the units 

of measurement associated with the lab tests, and lastly a flag variable for each lab test. 

 

 



 
 

3) Pull out just those with lab variables prior to admission and select their last lab test of each 

category available. This will identify the lab test closest to when the patient was admitted to the 

hospital. 

 

  
 

4) Pulling out just those with post admission tests and selecting their first test value. By switching 

from the LAST. function to the FIRST. function, this provides the lab test closest to admission in 

this dataset. 

 

 
 

5) Merge those pre-admission and post-admission tests into one database ready to be transposed: 



 

 
 

6) Finally you can transpose the datasets and get them merge back to reflect the right lab tests, 

with appropriate flags and units. 

 

 
 

Breaking apart the dataset and using a FIRST. and LAST. function helped identify the correct records by 

looking down datasets. PROC TRANSPOSE can be powerful when used appropriately, but isn’t always 

the right SAS® function to start off with. The FIRST. and LAST. functions were needed to identify those 

records needing to be transposed. 

 

Here’s the code to double check that no patient was lost: 



 
 

90-DAY PRIOR ADMIT EXAMPLE: 

As stated before, SAS® only manipulates things within the observation, in other words, the 

manipulation only occurs on the same horizontal line or row. In this PROC SQL merge/match example, 

the job is to identify patients having hospital admission for the same diagnosis during the prior 90-

days. Patients with prior admissions would have their record flagged so the record can be excluded 

from the final analysis dataset. For this example, it was necessary to look “upward” through the 

discharge dates in a normalized hospital administrative dataset to find all the possible prior 90-day 

discharges for the patient by comparing this date with a admit date that would normally occur much 

later in the dataset. The comprehensive list of all patient records compiled monthly from the electronic 

health record database and the hospital accounting database used in this example is called the 

ADMINISTRATIVE dataset. 

 

PROC TRANSPOSE could be used to align the index admit date with the prior discharge date within the 

same observation, but it was determined after many fruitless days of coding that it would be more 

effective to use a PROC SQL procedure: 

 

1) The ADMINISTRATIVE  dataset (736,178 records and 372 variables) was used as the primary 

source of all data (the universal_ID variable is the unique patient identifier in this dataset): 

 

 
 

2) A master patient dataset, PATIENTLIST (1,027 records with 127 variables), containing only 

patients meeting predefined exclusion and inclusion criteria, such as the ICD-9  code for disease 

of interest, the correct date range, the correct age range, the correct facilities, etc. was created 

from this ADMINISTRATIVE dateset: 



 

 
 

3) Macro variables (&impdate1 through &impdate7) to set the correct date for each facility 

(hospital_1 through hospital_7) were defined using the following example code for hospital 

facility #1:  

 
4) Macro variable lists (&ids_hosp1 through &ids_hosp7) to set the patients at each facility 

(hospital_1 through hospital_7) were defined using master patient dataset, PATIENTLIST, and 

the following example code for hospital facility #2: 

  

 
 

5) A PROC SQL procedure was used to LEFT JOIN this master dataset to the 736,178 record 

ADMINISTRATIVE dataset in order to align the index admit date with the prior discharge date to 

create the PATIENTS_NOREADS dataset. This resulting dataset had 1031 records and 130 

variables. The highlighted area shows those patients that had a prior admission; however, these 

patients were discharged 837, 604 and 349 prior to the index admit date with none being 

discharged in the previous 90 days: 

 

  



 

After the PROC SQL merge/match, a simple DATA step using a FIRST. function was used to filter out the 

all but the most recent duplicated event. Patients with multiple prior admission events represented 

approximately 0.4% of the analysis population and the final analytical dataset contained 1027 unique 

patient events. 

 

The process flow to create the desired analytical dataset for this example is: 

 

Inclusions/
Exclusions

PROC SQL
Merge/Match

Procedure

PATIENTS_NOREADS
1031 Records
130 Variables

PATIENTLIST
1027 Records
127 Variables

ADMINISTRATIVE
736,178 Records

372 Variables

ADMINISTRATIVE
736,178 Records

372 Variables

FIRST.
Function

PATIENTS_NORE_NODU
1027 Records
130 Variables

 
 

The PROC SQL code for this project is: 

 

 
 



LOOKING DOWN LONGITUDINAL DATA: 

By nature, EHR data provides a longitudinal look at a patient. For researchers and those interested in 

looking at how patients are faring over time, this represents a wealth of opportunity. Over a particular 

time period, patients can be represented a multitude of times in any particular data extract taken from 

an EHR system. This potentially means a list of patients with multiple unique rows in the dataset.  

 

One of the most challenging things in our histories as SAS® programmers has been looking down a 

dataset (in this case a series of patient records) and grabbing important information (in this case the 

next patient encounter date and information from that encounter) and then reporting it on that 

information on the first record. 

 

Here is an example of what a series of records in our EHR might look like after putting the pieces of the 

relational database together (the universal_ID variable is the unique patient identifier in this dataset): 

 

 
 

Let’s say, as a researcher it is important to identify any patient with a subsequent encounter at a 

healthcare system AND then make a comparisons between the first visit and their follow-up visits. For 

example, what if you were looking to see if they had the same principle diagnosis, DRG code, and see 

the changes in their BMI on their on their next visit. In this instance, you would need to look down the 

dataset and report back values related to diagnosis code, DRG code and BMI on the subsequent visit.  

You can see from the example data above that there are many individuals with multiple repeat visits. 



 

For the purposes of this example let’s focus on Universal_ID number “U-99991”: 

 

 
 

This patient has 6 visits it contributes to this dataset since 2008, all with varying data points.  As a 

programmer with minimal exposure to PROC SQL and extensive knowledge of the DATA step and PROC 

TRANSPOSE, the natural inclination maybe to transpose each variable individually and merge those 

transposed datasets back together.  In the real world, this could account for a lot of transpositions and 

the creation of numerous datasets. To bypass this mess, here is an array that can be adapted to do 

several things, including transposing all variables in one step; however, for the purposes of this 

example, it will provide only the following information for the following inpatient visit: BMI, DRG 

codes, and principal diagnosis code: 

 



 



 
 

 
 

The key to this array is highlighted in red; it determines which variables are brought to the previous 

visit’s record. As you can see the resultant dataset contains the output from the array and the data 

from the next visit labeled as such.  The above array, although effective, really isn’t efficient. It 

produces a lot of unnecessary bi-product, most of which isn’t seen because of the drop statement at 

the tail end of the code. Additionally, there are a lot of key strokes involved, which in the programming 

world can translate to misspellings, missed ‘;’ and other opportunities for your code to break.  



 

Programmers familiar with PROC SQL and those “thinking outside the box” can simplify the code to 

look down a dataset. The use of a left join to join the original dataset to itself, but looking for the next 

patient encounter, identified by the calculation of the time to readmission, can simplify the code and 

produce the same results without renamed variables (aside for the ones you want). 

 
 

 
 

CONCLUSION 

If you are a researcher who uses EHR and secondary data, it’s sometimes necessary to stray from your 

comfort zone and get creative in how you handle traditional data restructuring procedures. PROC SQL, 

as well as inventive uses of already familiar SAS® procedures/functions, proves to be good tools that 

can provide the necessary programming flexibility. PROC SQL can reduce the number of variable re-

names and lessen the need for creating in-between variables while achieving the same end as a DATA 

step as well as providing a means to look up and down datasets. Meticulous pre-planning can also aid 

in a data manager’s success of restructuring longitudinal data. Here are some helpful tips:  

 

1) Map out the analysis dataset structure. 

In this step, BE BOLD and break the datasets into manageable sizes, if needed. This 

could save in trying to account for multiple conditions in IF/THEN statements. 

2) Outline the variables that will be needed to achieve the desired results. 

 In this step, again BE BOLD and eliminate superfluous variables, this will help you 

visualize where your data needs to go. 

3) Determine and/or create unique variable key(s) that will aid in joining the datasets. 

 In this step, BE CREATIVE and put in the most thought into this part. 

 



To be successful, data managers must be efficient in identifying methods to organize and restructure 

data to assure its usefulness in analysis and a little dose of the SAS® can brighten any data manager’s 

healthcare blues. 
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