When was my data last updated? Automating data monitoring and notification
Drew Turner, Texas Parks and Wildlife Department, Austin, TX

Abstract

Knowing when data was last updated can prove invaluable when verifying data integrity. If you have ever spent
time troubleshooting a process only to find out that your root problem was outdated data, then you know the
importance of keeping track of how recent your data is. Having that information about your data—how much
there is and how recently it was updated—awaiting you first thing in the morning increases efficiency, and the
ability to analyze and compare past results enables you to recognize trends and better predict future activity.
This paper will describe a method to identify when a table was last updated (whether stored in a separate
database or the SAS server), how to store that information for later analysis and finally how to automatically
notify you of the results.

Introduction

At my organization, knowing when new data was last added to a table can save hours of time running reports
only to find out our output isn’t what we were expecting because data was missing, and then we must re-run
those reports. It was with this in mind that we set about to determine how to keep our data up-to-date and
notify users when data was last added to mission critical tables. Finding when a table was last updated can be
accomplished several ways, but to ensure reliability and provide additional customized information, we
developed the methodology explained in this paper. Detailed below are two methods to retrieve relevant data,
how to process and store that data, how to get notification of the day’s results, and finally how to schedule the
project.

Get your data

The first step is to get the most recent data through the first method, which utilizes the PROC Contents
procedure. The PROC Contents function provides descriptive information on a table located on the SAS server, in
this case a table created from a scheduled Enterprise Guide project that runs daily. The Proc Contents procedure
has many options; however, this method only utilizes the DATA, OUT, DETAIL and PRINT options.

PROC Contents Method

The first option is the DATA option, which defines what data will be pulled. For this paper we will be using the
table BISPRO0O4.GL_OUTSTANDING_ENCUMBERANCES. Next, specify the level of detail needed, which (since this
example only necessiates general table attributes) is set to NODETAILS, the system default. The OUT option
specifies to which table to output descriptive information. Finally the PRINT option is set to NOPRINT, which
disables printing the results within the project. It may be useful to exclude this option during development in
order to view all the available information.

PROC CONTENTS DATA=BISPROO04 .GL_OUTSTANDING_ENCUMBERANCES NODETAILS
OUT=WORK.GL_SUMMARY_CHECK_INPUT NOPRINT;
run;

[SAS Enterprise Guide - SCSUG 2012 - Table Check & E-mails.egp
fle Edt Yew Tasks Progam ook Hep [E-(5- @ o° T 0 X |9 (4 |- BegProcessFlow -
Consolidated Coding = x

%] Progen’ | [2] Log| 53 Ouput Data4)| B Resuls |
€Y Refresh | Export ~ SepdTo » Create = Publsh | [5] Properties

The CONTENTS Procedure

Data Set Name BISPRO04.GL_OUTSTANDING_ENCUMBERANCES |Observations 51219
Member Type DATA Variables 24
Engine META Indexes 0
Created Thu, Sep 20, 2012 06:19:44 AM Observation Length 1309
Last Modified Thu, Sep 20, 2012 06:19:44 AM Deleted Observations |0
[Protecti Compressed CHAR
Data Set Type Reuse Space NO
Label Point to Observations |YES
Data Representation [WINDOWS_64 Sorted YES
[Encoding wiatinl Western (Windows) |

Engine/Host Dependent Inf
Data Set Page Size 16384
Number of Data Set Pages |918
Number of Data Set Repairs |0

Filename E\BISPRO\Target_‘ables\gl_outstanding_encumberances.sas7bdat
Rel Created 9.0202|
Host Created ["B4_ESRV
Alphabetic List of Variables and Attributes
#|Variable Type |Len|Format Informat [Label
18 ACCOUNT NUMBER| Char| 20 20. h20. ACCOUNT_NUMBER
16 APPN| Char| 25 j25. §25. APPN
12 AWARD_NUMBER| Char| 15 15. 15. AWARD_NUMBER
13 AY/| Char| 25 $25. $25. AY
|20] BUDGET_CONTROL_NUMS3ER| Char| 20 $20. $20.| BUDGET_CONTROL_NUMBER
119, BUDGET_ENTRY_NUMBER| Char| 20 $20. $20. BUDGET_ENTRY_NUMBER
21 B_PARENT| Char| 15 $15. $15. B_PARENT
14 CFDA/| Char| 240 $240. $240, CFDA
22 C_PARENT| Char| 15 $15. $15. C_PARENT
23| D_PARENT| Char| 15 $15. $15. D_PARENT
7 Encumberance_Net| Num| 8| COMMA20.2 Encumberance_Net
17 FUND| Char| 25 $25. $25. FUND
a2 INVOICE_NUMBER| Char| 50 $50. $50. INVOICE_NUMBER
1 LOWER_TASK_NUMBER| Char| 25 $25. $25. LOWER_TASK_NUMBER
24 ORG| Char| 25 $25. $25. ORG
9 ORIG_AY| Char| 25 $25. $25. ORIG_AY
15 PCA| Char| 25 $25. $25. PCA/
8| PROJECT| Char| 25 $25. h25. PROJECT]
_41 PURCHASE_ORDER_NUMBER| Char| 20 520. p20.| PURCHASE _ORDER_NUMBER
3 REQUISITION_NUMBER| Char| 20 $20. $20. REQUISITION_NUMBER
1 SUPPLIER_NAME| Char| 240 $240. $240. SUPPLIER_NAME
2 SUPPLIER_NUMBER| Char| 30 $30. $30. SUPPLIER_NUMBER
10| TOP_TASK_NUMBER| Char| 25 $25. $25. TOP_TASK _NUMBER
6| VOUCHER_NUMBER| Num| 8 VOUCHER_NUMBER
Page Sreak
v
Ready % Connection; Drew A, Turmer, tpwd-aav-sas.tpwd.state.tx.us |

Figure 1. Results of the PROC Contents on BISPRO04.GL_OUTSTANDING_ENCUMBERANCES.

While PROC Contents can provide information on SAS Tables, another method is needed to retrieve similar data
on non-SAS tables.

Pass-thru SQL Method

Utilizing pass-thru SQL allows the use of database specific coding, in this case the SCN_TO_TIMESTAMP and
ORA_ROWSCN functions, which can provide information not available about a table from the SAS server. The
table of interest, TPW_.TPWD_USAS_HX_EXTRACT, is updated daily in an Oracle database. One alternative to
this method is to query the ALL_TABLES system table to retrieve this information, but this approach only works if
statistics are being run on the table in question. Statistics are not being run on the

TPW.TPWD_USAS_ HX_EXTRACT table, hence the need for this method.

The pass-thru function of PROC SQL can fill entire papers on its usage and options, but this paper only covers the
main elements, which consist of the CONNECT statement, the CONNECTION TO statement and the DISCONNECT
statement. The CONNECT statement specifies what type of database to connect to and provides the user’s
credentials as shown below.

proc sql;
CONNECT TO oracle (user=query password=access path=BISPRO);

Once connected to the Oracle database, run the database specific code and retrieve the output by selecting
‘CONNECTION TO oracle’ as the query table. The ORA_ROWSCN function will return the last system change
number (SCN) for a row while the SCN_TO_TIMESTAMP function converts this SCN to a timestamp.

CREATE TABLE WORK.HX_UPDATE_TABLE as
SELECT * from CONNECTION TO oracle
(SELECT SCN_TO_TIMESTAMP(MAX(ORA_ROWSCN)) as Update_Time,
count(*) as row_count
FROM TPW.TPWD_USAS_HX_EXTRACT);

In this case, it is only necessary to know when the table was last updated and the number of rows in the table.
Once the data is retrieved, the DISCONNECT statement closes the connection to the Oracle server.

DISCONNECT from oracle;

Create a Stage Table

The data has now been retrieved and will be formatted for later reporting but still needs the application of
additional logic before storage. This paper describes how to store information about multiple database tables
on one SAS table, so the Table_name value is used to identify the database table in the description. Putting the
row count into the comma format makes it more readable when reporting on this data down the road, as does
separating the last update timestamp into a date portion and a time portion and storing them separately. Next,
determine at a glance if the table was up to date when this ran. To do this, add a case statement to determine if
today’s date matches the last update date, and store a character string indicating the result. And finally, in order
to record exactly when these records were added to the dataset, the current date and time are recorded with
the DATETIME function.

CREATE TABLE WORK.USAS_HX_CHECK AS

SELECT DISTINCT
"TPW.TPWD_USAS_HX_EXTRACT" as Table_name,
tl.row_count FORMAT =comma20. as NOBS,
DATEPART(t1l.Update_Time) FORMAT =mmddyyl0. as CRDATE,
TIMEPART(tl.Update_Time) FORMAT =TIMEAMPM. as TIME,
CASE
WHEN DATEPART(tl.Update_Time) = TODAY()
THEN “TABLE UP TO DATE-®
ELSE “TABLE OUT OF DATE!IIfIrnnL=
END AS DATE_CHECK,
datetime() FORMAT =dateampm. as Run_Datetime

FROM WORK.HX_UPDATE_TABLE t1;

Write Data to a SAS Table

Now that the data is formatted and processed the next step is to combine the temporary tables to simplify the
creation of a final table. Append the GL_SUMMARY_CHECK table to the USAS_HX_CHECK table and create the
table Append_Table.

CREATE TABLE WORK.APPEND_TABLE AS
SELECT * FROM WORK.GL_SUMMARY_CHECK
OUTER UNION CORR
SELECT * FROM WORK.USAS_HX_CHECK

The first time the project runs, create a new table to store the data.

CREATE TABLE BISPR0O04.TABLE CHECK SCSUG12 AS
SELECT t1.CRDATE,
t1.DATE_CHECK,
t1.NOBS,
tl.Run_Datetime,
tl.Table name,
t1.TIME
FROM WORK.APPEND TABLE t1

After running this project the first time, change how new data is added to the TABLE_CHECK_SCSUG12 table to
insert new rows into the existing table instead of appending the new data to the existing table and then
rewriting the table. Use the INSERT INTO statement to avoid data integrity issues reading from and writing to
the same table, as well as to automatically update any indexes on the TABLE_CHECK_SCSUG12 table.

Insert into BISPRO04.TABLE_CHECK_ SCSUG12
SELECT t1.CRDATE,
t1.DATE_CHECK,
t1.NOBS,
tl.Run_Datetime,
tl.Table_name,
t1.TIME
FROM WORK.APPEND TABLE t1

Now that the new data has been added to the final table, send out an e-mail with the current day’s data. The
first step is to load data into macro variables.

Load Data into Macros

For each variable that the user wants to receive in a daily e-mail, load it into a macro variable. To do this use the
CALL SYMPUT routine that creates a macro variable for each variable, and sets it to the specified value. Each
variable is placed within the STRIP function to remove any leading or trailing spaces as shown below. The
Number of observations (NOBS) value is converted to a character data type and put in the comma format to
ensure proper formatting when displayed later in an e-mail.

DATA GL_SUMMARY;
SET GL_SUMMARY_CHECK;

CALL SYMPUT("RECORD_COUNT_ENCUM*®,STRIP(PUT(NOBS,COMMA20.))):
CALL SYMPUT("CREATE_DATE_ENCUM",STRIP(CRDATE));

CALL SYMPUT("TIME_ENCUM®,STRIP(TIME));

CALL SYMPUT("DATE_CHECK_ENCUM®, STRIP(DATE_CHECK));

run;

DATA USAS_CHECK;

SET USAS_HX_CHECK;

CALL SYMPUT("RECORD_COUNT_HX",STRIP(PUT(NOBS,COMMA20.)));
CALL SYMPUT("CREATE_DATE_HX",STRIP(CRDATE));

CALL SYMPUT("TIME_HX",STRIP(TIME));

CALL SYMPUT("DATE_CHECK_HX", STRIP(DATE_CHECK));

run;

Note that each table has a unique macro name for each column, which for the number of tables involved here
isn’t an issue, but may be an issue when using this method with a larger number of tables.

Notify Me

Now that the data is stored where it can be inserted dynamically, build the e-mail message. The code below
inserts the newly created macros into an e-mail. Note the option of specifying the recipient, the REPLY TO and
the CC addresses. Macro names must be preceded with the & sign as well as enclosed in quotes, as shown
below. Apostrophes will display exactly what is entered, which in this case would be the name of the macro.

FILENAME OUTBOX EMAIL
TO="Drew.Turner@tpwd.state.tx.us"
FROM=""Drew.Turner@tpwd.state.tx.us"
CC="Drew.Turner@tpwd.state.tx.us"
SUBJECT=""SCSUG 2012 Daily Table Check E-mail";

data null_;

FILE OUTBOX;

PUT "The SAS GL Outstanding Encumbrance Table has completed.';
PUT "There were &RECORD_COUNT_ENCUM records."';

PUT "Table Created on &CREATE_DATE_ENCUM at &TIME_ENCUM.';
PUT " *;

PUT "&DATE_CHECK_ENCUM™";

PUT ™ *;

PUT "The USAS HX Fille has been updated in BISPRO.";

PUT "There were &RECORD_COUNT_HX records.™;

PUT "Table updated on &CREATE DATE_HX at &TIME_HX.";

PUT ™ *;

PUT "&DATE_CHECK HX';

RUN;

e b

(N H9 0«9 5 SCSUG 2012 Daily Table Check E-mail - Message (Plain Text) ST £ T
NS | Message | Developer w

| I| ; iH - i x ﬁ‘I -l TI % & safe Lists ~ E Y by 83 Find

< 4 D Related ~
Reply Reply Forward Delete Moveto Create Other Block [=) Not Junk Categorize Follow Markas @ |
to All Folder~ Rule Actions~ | Sender v Up~ Unread @ Select~

‘ Respond Actions Junk E-mail I Options] Find
From: dturnerx @TPWD-AAV-SAS. tpwd.state. tx.us on behalf of Drew Turner Sent: Wed 9/26/2012 10:00 AM
To: Drew Turner

Cc

Subject: SCSUG 2012 Daily Table Check E-mail

i

The SAS GL Outstanding Encumberance Table has completed.
There were 50,314 records.
Table Created on ©9/26/2012 at 6:16:06 AM

TABLE UP TO DATE
The USAS HX File has been updated in BISPRO.

There were 2,179,152 records.
Table updated on ©9/26/2012 at 6:11:14 AM

il

TABLE UP TO DATE

<

Figure 2. Example E-mail notification of table row counts and run times.

Now Automate It!

Now the e-mail has a row count and last update time for the selected tables, so the next step is to automate
sending the data at a specific time. To schedule this, utilize Enterprise Guide’s scheduler, which is integrated
with the Windows system scheduler and is found on the file menu.

Schedule - SCSUG 2012 - Table Check & E-mails ?)X%]

Task ;_Schedule | Settings

i CAWINDOWSAT asks\Schedule - SCSUG 2012 - Table
[+

Rur: [EG PULLS\SCSUG 2012 Paper Project\EGS crip

Start in: "C:\Documents and Settings\dtumerx\Desktop\SAS EG |
| Comments:
Run as: | TPWDAdtumerx [Set password... J

[1Run only if logged on
Enabled [scheduled task runs at specified time)

[ok][cancel |

Figure 3. Runtime and user options available for scheduling a EG project.

When utilizing a network logon the user will need to enter his or her network password for the project to log
into their local machine to run. With that set, move to the schedule tab and specify at what time and frequency
to run the project. One thing to note with this approach is that using the Windows task scheduler on a local
machine necessitates leaving it on overnight (or turning it on prior to run time) for this project to run.

Schedule Task: Start time:
Dai o [sEa 3

Schedule Task Daily

Every |1 A1 dayls)

Show multiple schedules.

[ok][cancel |

Figure 4. Scheduling options available for an EG project.

Under the settings tab is the option to set the maximum run time for the project, which defaults to 72 hours.

Schedule - SCSUG 2012 - Table Check & E-mails ?X

| Task || Schedule | Settings |

Scheduled Task Completed
[Delete the task if it is not scheduled to run again.

Stop the task if it runs for: _121 < | hour(s)| inute(s).

4>
12

Idle Time
[] Only start the task if the computer has been idle for at least:

| minute(s)

If the computer has not been idle that long, retry for up to:
[| minute(s)

[] Stop the task if the computer ceases lo be idle.

Power Management

[] Don't start the task if the computer is running on batteries.
[] Stop the task if battery mode begins.

[(Jwake the computer to run this task.

[ok || Ccancel .]

Figure 5. Example of runtime option on scheduled EG project.

Conclusion

The examples covered here demonstrate how a SAS programmer can find when new data was last added to a
table using two separate methods. The data was prepared and stored for later analysis, and the user can notify
him or herself of the daily results. And finally the entire process was automated. These steps should enable
users to be informed of the status of their data and maybe even let their DBA know when their database is
having an issue.

References

Base SAS 9.2 Procedures Guide. Available at
http://support.sas.com/documentation/cdl/en/proc/61895/PDF/default/proc.pdf

Hummel, Andy, 2012 “Sending E-mails in your sleep” Proceedings of the SAS Global Forum 2012 Conference.
Available at http://support.sas.com/resources/papers/proceedings12/078-2012.pdf

Oracle database documentation on the Ora_rowscn pseudocolumn. Available at
http://docs.oracle.com/cd/B19306 01/server.102/b14200/pseudocolumns007.htm

Oracle database documentation on the scn_to_timestamp function. Available at
http://docs.oracle.com/cd/B19306 01/server.102/b14200/functions142.htm

Poling, Jeremy W., 2011, “Finding Oracle® Table Metadata: When PROC CONTENTS Is Not Enough” Proceedings
of the South Central SAS Users Group. Available at
http://www.scsug.org/SCSUGProceedings/2011/poling2/FINDING%200RACLE%20TABLE%20METADATA
%20WITH%20SAS. pdf

Contact Information
Your comments and questions are valued. Contact the author at:

Drew Turner

Texas Parks & Wildlife Department
Financial Analyst
Drew.Turner@tpwd.state.tx.us
512-389-8246

