
Using SAS to Read From and Write to EXCEL Workbooks Set Up as

Templates Which Are Not Set Up In Columns

Carl L Raish, Electric Reliability Council of Texas (ERCOT)

BACKGROUND INDORMATION

This paper will review some sample SAS code developed at to exchange information with some entities in the ERCOT

market. By way of providing some context to the code, ERCOT oversees the operations of a major portion of the electric

grid in Texas. Our functions include managing reliability of the grid by procuring ancillary services to ensure a

continuous balance between generation and load.

Among the services ERCOT procures is the Emergency Response Service; under the terms of this service electricity users

agree to reduce their consumption in the late stages of a grid emergency. ERCOT has a $50 million annual budget to pay

those users for committing to quickly reduce their electricity consumption; and we run auctions three times a year to

buy the service. The procurement is run in two stages: a resource identification phase and an offer phase.

ERCOT has established an Excel form as the mechanism for users (actually a Qualified Scheduling Entity … QSE …

representing those users) to identify customers potentially interested in providing the service. ERCOT processes the

form with SAS, and returns the form with diagnostic and other information to assist the QSE in submitting an offer. This

completes the resource identification phase.

In the offer phase, the QSE fills in additional fields on the form (especially including prices) and returns the form to

ERCOT.

The Excel form, pictured below, has three different types of tabs: Identification, Alt and other arbitrarily named tabs.

The Identification tab is used for identifying the QSE submitting the form and a set of contact information for the QSE.

The tab is set up with a named range, ’id_input_area’ to facilitate reading just the required fields with SAS. Cells outside

of the range contain information that the QSE should be aware of when submitting the form, but which is not needed

for processing the form.

A special version number cell is set up on the tab which is formatted with a white text color to make it less obvious. The

version number is changed whenever the form is modified and is used to validate that the QSE is submitting the current

form. Since the workbook is being processed with SAS, this is critical to ensure that the data required from the form is

pulled from the correct cells. The version number is set up on all tabs in the workbook.

The ‘Alt’ tab provides a way for the QSE, during the resource identification phase, to identify individual site participants

that may subsequently be grouped together into an aggregation of sites as a resource. The name ‘Alt’ must be used,

and, as a result, there can only be one Alt tab in the workbook. If the QSE chooses not to use the tab, it may be either

deleted from the workbook or simply left blank. No named ranges are set up on the ‘Alt’ tab; the version number cell is

set up as described above for the Identification tab, and a cell is reserved in A2, to be filled in by ERCOT as a control

number to be associated with submitted participants in all subsequent processing for the procurement.

The other tabs, American and Bankers Inc, are filled in as resources. The ‘R’ tab is a pre-formatted blank tab provided to

facilitate the addition of tabs by the QSE. The tab names are arbitrarily assigned by the QSE, and some of the cells are set

up as drop down lists. The cells referred to for the drop down list are off to the side of the form and are formatted with

a white color to make them less subject to tampering. No named ranges are set up on the these tabs; the version

number cell is set up as described above for the Identification tab, and a cell is reserved in A2, to be filled in by ERCOT as

a control number to be associated with the specific resource in any subsequent processing. The baseline options for the

drop down list associated with cell C4 are set on the standard form posted for use at the beginning of the resource

identification process and are filled in by SAS when outputting the approved form based on the baseline analysis

performed by ERCOT. These cells are also formatted with a white text color to make them less obvious.

READING THE SUBMISSION FORM WITH SAS

The complete code ERCOT uses to read these workbooks is included in Appendix A. The remainder of this section will

discuss what the code is doing step by step.

The first section of code, shown below, sets up several macro variables including version to compare against the ones on

the submitted form to make sure the most recent version is being used. All forms to be processed are dropped into the

folder specified by the ‘&offerpath’ macro variable. The first data step creates ‘fnames_list’ by scanning the folder and

selecting all Excel files found in the folder. The second data step creates a macro variable, ‘&numfiles’, which contains

the number of files to be processed.

Most of the rest of the code is nested inside a macro called ‘read_work_book’. The major macro do-loop inside this

macro cycles through the workbooks one at a time using the ‘&numfiles’ macro variable created in the preceding step.

The libname statement shown below is an example of mapping to an Excel workbook using the Excel libname engine.

The SAS explorer window for ‘mylib’ shows the tab names and named ranges for the particular Excel workbook … the

tab names end with dollar signs and named ranges do not. The tab name, wilkinson’s, in the workbook shows up in the

explorer window as wilkinson’’s; double clicking on the table in the explorer window, however, generates a message

that the table either does not exist or cannot be displayed.

Below is a sample of the normal log output obtained when running the proc contents on the workbook; this is an

example of the kind of errors issued when tab names containing special characters are processed.

The section of code shown below shows another way to generate a list of tab names by using proc datasets inside an

ODS group to create a SAS dataset, ‘tabnames’, of the tabs and named ranges in the workbook. This method is the most

successful I’ve found for producing a complete list of names while avoiding errors for tab names that contain special

characters (‘, &, (,), space). A viewtable of ‘tabnames’ for a test workbook with many combinations of potential

problem names is shown following the section of SAS code. In general, if SAS encounters a tab name with any of these

special characters other than a single quote, single quotes are added to the front and back of the tab name. If SAS

encounters a single quote as part of the tab name, it turns the single quote into two single quotes.

The subsequent data step creates two datasets, ‘tab_names_1’ and ‘bad_tab_names’. Tab names written to

‘tab_names_1’ that had a single quote within the tab name (that SAS doubled) are translated back to having a single

quote, and single quotes added at the beginning and end of the tab name. Tab names that had a single quote and an ‘&’

within the tab name are written to ‘bad_tab_names’; I have not found a way to manipulate these kind of tab names to

get SAS to read them. Further down in the code the ‘bad_tab_names’ data set is accumulated into the ‘all_

bad_tab_names’ to make available a list of all Excel files with problem tab names. For the time being, the listed

workbooks are modified manually by ERCOT to eliminate the special characters and reprocessed. If the

‘bad_tab_names’ dataset is not empty, an error message is displayed in the log, and no other tabs in the workbook are

processed.

The data step also excludes several tab names with restricted use for this application: the ‘Availability’, ‘Baseline’,

‘Exceptions’, ‘Identification’, etc tabs either are reserved for subsequent use by ERCOT or are simply excluded. If the

submitter has set up a print range in the workbook, that too is excluded from the ‘tab_names_1’ data set.

The next section of code, shown below, checks whether the required ‘Identification’ tab is present in the workbook. If it

is not present, an error message is displayed in the log, and no other tabs in the workbook are processed. The filenames

of workbooks with a missing identification tab are output to the ‘miss_id_tab’ dataset; further down in the code the

‘miss_id_tab’ data set is accumulated into the ‘all_ miss_id_tab’ to make available a list of all Excel files with missing

‘Identification’ tabs. If the ‘Identification’ tab is present, the ‘version’ data set is created; this data step reads just the

first row of the ‘Identification’ tab and keeps the version number stored in cell AA1.

The next section of code inputs identification information from the ‘id_input_area’ named data range; the range is two

columns wide, and the data needed is in the second column of some of the rows in the range (the other rows are

cosmetic merged cells to make the sections of the form stand out clearly). The QSE’s name is entered on the first row of

the range, and the QSE’s Duns number is entered on the second row of the range. The remainder of the range contains

contact information for the QSE and is read into the ‘id_info’ array. Note that because the headers option was set to no

on the libname statement, the incoming variable of interest is always ‘f2’. Since each row of the workbook is treated as

an observation by SAS, all needed variables are retained until the last row of the range has been read at which point the

observation is output to the ‘identification’ dataset.

The ‘identification_1’ dataset is the merge of the identification information with the version number, and the final data

step in this section of code creates a macro variable, ‘&numtabs’, for the number of tabs in the workbook. This macro

variable is used in the macro do loop to sequence through the tabs found in the workbook.

The next section of code shows the beginning of the macro do loop; the first data step does a direct access read of the

‘tab_names_1’ data set, based on the iteration of the macro do loop, to create a macro variable, ‘&sheet’, containing

the ‘sheet’ statement to be used with the subsequent proc import step. If the modified tab name is enclosed in single

quotes and also contains a single quote, the ‘sheet’ statement is created with double quotes to allow the proc import to

read that particular tab. Proc import is the only way I’ve found to read these tabs. Note again that the proc import uses

the following options: ‘mixed = yes getnames = no and scantext = yes’. The ‘mixed = yes’ option tells SAS that all cells are

to be treated as characters … all conversions to numeric variables are handled in the subsequent data step. The

‘getnames = no’ option tells SAS that data begins on the first row of the workbook; otherwise SAS would interpret the

first row as containing variable names. The ‘getnames = no’ option causes SAS to use automatic variable names: column

A becomes F1, column B becomes F2, etc. The ‘scantext = yes’ option tells SAS to scan each column to determine the

maximum length to use for each character variable.

The next data step parses and converts the data imported from each tab in the workbook and outputs it to the

‘resource’ data set; the code is set up to pull data from the f-variable associated with the appropriate cell locations

based on whether the tab being input is an ‘Alt’ tab or a standard resource tab. The _n_ automatic SAS variable in

combination with the f1 – f27 variables are used as positions within the row to define each of the variables being read

from the workbook … cells with labeling information and cells which are intended to be blank for aesthetic purposes are

skipped over. As mentioned above, because of the ‘mixed = yes’ option, all variables were read in as characters. In this

step, they are assigned to variables kept in the output dataset with the lengths of character variables controlled

specifically by the code for each variable and with numeric variables, if any, converted using the input function. As with

the ‘Identification’ tab, since each row of the workbook is treated as an input observation by SAS, all needed variables

are retained until the last row needed for the observation is output to the ‘resource’ dataset. Observations are output

for each incoming row with customer data provided that the esiid or unique_meter_id variables are greater than blank.

As with the ‘Identification’ tab, a version number for each tab is read from cell AA1 and used for subsequent validation

to identify whether the QSE is using the current workbook version.

The next section of code determines the number of observations in ‘resource’ dataset and if the number is greater than

zero merges the identification and resource information. The ‘combine_id_resource_1’ dataset contains observations

found with valid version numbers, and the ‘bad_version_1’ dataset identifies resources with invalid version numbers.

The final piece of code in the ‘read_work_book’ macro accumulates all the resource and error data sets across all

workbooks and tabs within workbooks. Finally, the code clears the libname assigned to the Excel workbook. An

additional section of code in a macro called ‘check_errors’ is shown in the Appendix; this code is included to display

error messages at the end of the log. The messages trigger investigations into problems with any of the workbooks

processed; in many cases the volume of workbooks and tabs produced is very large causing the log to be very long and

earlier error messages generated to be easily overlooked.

WRITING OUT PROCESSED FORMS

Resources that are read and output with the code described in the previous section proceed to an extensive validation

step, and if successful, continue with historical usage data analysis. SAS datasets summarizing the validation and analysis

are produced and stored for later use when approved forms are created to be returned to the QSEs. These forms are

then completed by QSEs and returned to ERCOT in the form of an offer to provide the service.

The complete code for writing out workbooks is contained in Appendix B. The process of writing out the approved

workbooks consists of using the Excel libname engine to move data from SAS datasets to Excel and using DDE commands

to open, save and close workbooks, and to execute various user defined Excel macros.

To get started, the options command sets the noxwait and noxsync options; this is needed to get the DDE commands to

function properly. Some macro variables are set up to establish paths to the permanent SAS datasets produced by the

validation and analysis steps and a path to the Excel templates used to generate the workbooks. The data step to create

‘okay_ers_inputs’ is fairly straight forward; code to take note of is the creation of the ‘blout1 – blout4’ variables … these

are used later on to populate a drop-down list in the workbook to provide baseline options for the specific resource.

When the QSE returns the form, one of these allowed options must be selected.

The next data step begins the process of creating tab names for the workbook to be created using the QSE provided

resource name as a basis. Some clean-up is done to remove any special characters that either will not be accepted by

Excel as tab names or that would create problems when SAS subsequently reads the workbook back in when the

submitted by the QSE as an offer. An important statement included in this part of the code is the final modification of

the tab name using the upcase function; the statement is needed because, unlike SAS, Excel will treat tab names with

the same letters and different cases as the same tab. By using the upcase function, SAS can recognize in the subsequent

step that a duplicate tab has been generated, and modify tab names to ensure separate tabs are written.

The next section of code splits the input data into two datasets, one containing site information to be written to an Alt

tab (because the QSE submitted it on an Alt tab), and one containing resource level information for sites submitted on a

standard resource tab. The code then deals with the possibility of duplicate tab names … submission of duplicate

resource names is allowed and the manipulation performed in the preceding step can also result in the duplication of

tab names. The code below appends an index number to any duplicate tab names found on a QSE-by-QSE basis to

eliminate the duplication … including any duplication created in the previous step by the upcase function. The

remaining steps in this section of code determine how many QSEs have resources in the batch of workbooks being

processed; a single workbook of resources is produced for each QSE in the batch. The macro variable ‘&numqses’ is

used in the macro do loop to sequence through all QSEs in the batch, and the ‘qse_list’ dataset contains the list of QSE

names and Duns numbers included in the batch. The ‘qse_erid_list’ contains a list of all resource tabs that need to be

created across all the workbooks in the batch.

The remainder of the code is contained in the ‘run_qse’ macro, which cycles through all QSEs in the batch and produces

a workbook for each QSE. The ‘fill’ dataset is just a placeholder dataset to be used later in creating tabs for each of the

resources being output. The ‘qse_erid_list_1’ dataset is a subset of the entire list of QSE’s tabs specific to the QSE being

processed during the iteration of the macro do loop. The last part of this section of code determines which Excel

template should be used for the QSE being processed. If an ‘Alt’ tab is to be created, the ‘ID_Alt_Template.xlsx’

template, is chosen; otherwise, the ‘ID_Template’ is chosen. The macro variable, ‘&id_template’, is set up to pass the

template selection on to the subsequent code.

The next data step issues system commands to create a copy of the appropriate template; this is done to prevent the

original template from getting corrupted during the processing. The following macro do loop uses proc export to create

tabs in the copied template workbook using the names in ‘qse_erid_list_1’ that was generated in the earlier step. The

placeholder dataset, ‘fill’, is exported to each of the tabs created; this is done, because proc export does not run unless

it has a dataset to export. In earlier versions of this code, the tabs were created using DDE commands, and we’ve found

that using proc export is a better alternative in terms of both speed and reliability.

The next set of code, which is not shown below, formats three summary reports for the QSE being processed and

exports them with proc export to the workbook being created for the QSE. After those exports are complete, the code

below runs; the first line uses an X command to launch Excel, and must be coded with the path to the actual excel.exe

on the pc running the code. The first data step causes SAS to pause and give Excel time to open and the filename

statement allows SAS to send DDE commands to Excel.

The next three data steps send DDE commands to Excel to open the workbooks needed to send data from SAS to Excel.

The open command is constructed in the required format using a macro variable for the path. Double quotes are used

inside the ‘open’ command to allow the macro variables to be resolved, the single quotes are needed by the syntax of

the DDE command, and the %unquote unmasks the single quotes created by the %str function to turn the single quotes

into values the SAS compiler recognizes. The sleep commands are all used to give time for the Excel command to

complete before the next command is issued by SAS.

 The first workbook opened is named ‘input data.xlsx’; SAS will later write data to this workbook that is needed to

populate tabs in the QSE workbook. The second workbook opened is named ‘rtab_template.xlsx’; this workbook is the

template used for creating resource tabs, and it contains links to ‘input data.xlsx’. The third workbook is named either

‘id_template_copy.xlsx’ or ‘id_alt_template_copy.xlsx’ depending on whether the QSE workbook being created needs

and ‘Alt’ tab or not. This workbook contains a tab named ‘Identification’ and is the template for that tab; the tab has

links to ‘input data.xlsx’. If the’ id_alt_template_copy.xlsx’ is used, it has a tab named ‘Alt’ and is the template for that

tab; the tab also has links to ‘input data.xlsx’.

A portion of the input data.xlsx workbook is shown below; the workbook has three tabs: ‘id_data’, ‘load_data’ and

‘site_data’ that were set up for the three different types of data to be written to the workbook. SAS will export data

needed for the’ Identification’ tab to the ‘id_data’ tab; resource level data to the ‘load_data’ tab; and site (customer)

level data to the ‘site_data’ tab. The workbook is set up with a named range, ‘id_inputs’, which refers to cells A1 – AA2;

this named range is used by SAS as the output location, when it writes to the ‘id_data’ tab.

Note that only one row is used for data going to the ‘Identification’ tab. Similarly, the workbook is set up with a named

range, ‘load_inputs’, which refers to cells A1 – P2; this named range is used by SAS as the output location when it writes

resource-level to the ‘load_data’ tab; only one row is used for resource-level data. Finally, the workbook has a named

range, ‘site_inputs’, which refers to cells A1 – T1000, that is used by SAS as the output location, when it writes site-level

data to the ‘site_data’ tab.

A portion of the ‘rtab_template.xlsx’ workbook is shown; the selected cell, A7, has a link to cell A2 on the ‘site_data’ tab

in the ‘input data.xlsx’ workbook. The link is set up as an IF statement so that if the cell being linked to is populated, the

value of the A2 cell is used, otherwise the cell is set to null. All cells in the ‘rtab_template’ in rows 7 and beyond are

similar links to the appropriate cells on the ‘site_data’ tab of input data.xlsx.

Cells on the template that need to be populated by SAS in rows 1 – 5 are similar links but connect to the ‘load_data’ tab.

The baseline cell, C4, can be directly populated, but also has an associated drop-down list in cells AD1 – AD4, which also

are links to the ‘input data.xlsx’ workbook. Using this technique, SAS can control the items showing up in the drop down

list; for this application it is the way ERCOT uses to control baseline selection options that are available to the QSE for

each resource.

A portion of the ‘id_alt_template.xlsx workbook’ is shown; the selected cell, C23, has a link to cell A2 on the ‘id_data’ tab

in the ‘input data.xlsx’ workbook. As with the ‘rtab_template’, the link is set up as an IF statement so that if the cell

being linked to is populated, the value of the A2 cell is used, otherwise the cell is set to null. All cells containing QSE

provided data in column C between rows 23 - 51 are links to the appropriate cells on the ‘id_data’ tab of input data.xlsx.

The submittal type cell, C26, can be directly populated, but also has an associated drop-down list in cells AC1 – AC10,

which also are links to the input data.xlsx workbook. Using this technique, SAS can control the items showing up in the

drop down list; for this application it is the way ERCOT uses to control the allowed submission type to be used by the

QSE.

Using the three workbooks with appropriate links and opened on the PC running SAS, the code is now ready to move

data from SAS datasets out to Excel. The libname, shown below, sets up a connection to the ‘id_inputs’ named range on

the ‘input_data.xlsx’ workbook; this is the output destination used by SAS for the data. The proc datasets deletes all

rows from the ‘id_inputs’ range … SAS requires that the range be blank if it is being used for output. The data step

outputs the required data to the named range and, since the ‘id_alt_template_copy.xlsx’ workbook is open and has links

on its ‘Identification’ tab to the cells in the ‘id_inputs’ range, the values of those links are updated by this data step.

It should be noted that when the Excel libname engine is used to write data out to an Excel workbook, it automatically

includes a title row first and then writes variable values. To work around this limitation, this code used the

‘input_data.xlsx’ workbook as the output destination rather than outputting directly to the final workbook.

The next data step, shown below, issues DDE commands to activate various tabs in the ‘id_alt_template_copy.xlsx’

workbook and to run Excel macros that are stored in ‘personal.xls’. Initially, SAS activates the ‘Identification’ tab and

runs a macro called ‘copy_paste_values_id_tab’, which is shown below. The macro does a ‘copy – paste special values’

on the AC1 – AC2 range and thus removes the links in the drop down list for the submission type. Then the macro does

a ‘copy – paste special values’ on the B22 – C51 range and thus removes the remaining links on the ‘Identification’ tab.

SAS then successively activates the ‘Exceptions’ tab, the ‘Availability_Results’ tab and the ‘Baseline_Info’ tab on the

‘id_alt_template_copy.xlsx’ workbook; and then runs two additional Excel macros, ‘expand_cols’ and ‘clear_lines’, on

each tab. These three tabs contain summary level information on the resources submitted by the QSE on the workbook

and were written by proc export as described above. The macros, shown below, ‘auto-fit’ all the columns on the

activated tab, and clear all cell outlines on that tab. The first of these macros eliminates the annoying task of expanding

columns in a workbook exported by SAS, and the second macro eliminates mysterious cell outlines that appear

somewhat randomly (as far as I can tell) on these tabs.

I should point out that I am not a VBA programmer, and that all the macros described in this paper were produced by

recording keystrokes that accomplished the desired tasks. In some case I have done minor editing primarily to clean up

and simplify the macros.

The next two sections of code deal, in a similar way, with outputting resource level and site level data; the first section

outputs to the ‘Alt’ tab and the second outputs to standard resource tabs. Since the code is similar, the description

below will focus on the standard resource tab.

The code to write out standard resource tabs is, again, embedded in a macro do loop to cycle through all the tabs that

needed to be written for the QSE. The first data step creates macro variables to specify the tab being output; as above,

the proc datasets clears the Excel range, ‘load_inputs’, prior to the output, and the second data step outputs resource

level to the range. The steps are repeated for the site level data; an important difference for site data is the output will

consist of one or more rows based on the number of sites associated with the resource.

The next data step, shown below, issues DDE commands to activate the tab being processed in either the

‘id_template_copy.xlsx’ or the ‘id_alt_template_copy.xlsx’ workbooks and to run Excel macros that also are stored in

‘personal.xls’. Initially, SAS activates the tab and runs a macro called ‘copy_paste_rtab_template_to_id_template’ or

‘copy_paste_rtab_template_to_id_alt_template’, which is shown below. The macro does a ‘copy – paste’ from

‘rtab_template.xlsx’ (only one tab in this workbook) to the appropriate tab (which was previously exported by SAS using

the ‘fill’ data set) on either the ‘id_template_copy.xlsx’ or the ‘id_alt_template_copy.xlsx’ workbook. This copies all the

fixed information and all the links to the destination workbook.

SAS then runs the Excel macro, ‘copy_paste_values_alt_tab’ shown below to eliminate all the links on the destination

tab. The final set of macros deletes unneeded formats and rows from the destination tab and runs the ‘expand_cols’

macro described earlier. We have also installed the Excel add-in called ‘clear excess formats’ and frequently run it

manually on the final workbooks … many of ours become quite large, and the add-in reduces them size by large

amounts.

The final section of code issues DDE commands to Excel to save and close the three open workbooks. The currently

active workbook at the beginning of this code is either ‘id_template_copy.xlsx’ or ‘id_alt_template_copy.xlsx’, so the

first ‘save as’ command applies to this workbook. The ‘save as’ command is constructed in the required format using

macro variables for the path and filename. Double quotes are used inside the ‘save as’ command to allow the macro

variables to be resolved, the single quotes are needed by the syntax of the DDE command, and the %unquote unmasks

the single quotes created by the %str function to turn the single quotes into values the SAS compiler recognizes. The

‘sleep’ commands are all used to give time for the Excel command to complete before the next command is issued by

SAS. SAS then issues a DDE close command to ‘close’ the currently active workbook.

The next two ‘save as’ and ‘close’ commands are issued to close the remaining two open workbooks, and, when the

second one is closed, a ‘quit’ command is issued to close down Excel. These commands are issued to allow SAS to deal

directly with closing Excel with no user intervention required inside Excel; a simple close command will make Excel open

a dialog box asking the user whether the workbook should be saved. Since ERCOT frequently runs large numbers of

QSEs in a single batch, this smoothes out the process considerably.

The final data step issues system commands to delete the two dummy workbooks that created by the previous step as

well as either the ‘id_template_copy.xlsx’ or ‘id_alt_template_copy.xlsx’ workbooks. This is done as a clean-up to delete

workbooks that are no longer needed and to remove potential conflicts with subsequent iterations inside the ‘run_qse’

macro.

Some Additional Tips

When we first started running this code all inputs and outputs to Excel were run using DDE commands; use of the Excel

libname engine greatly speeds up and improves the accuracy and reliability of the processes. Our latest iteration of the

code, as described, eliminates as much as possible use of DDE commands.

From the beginning we have always run a verify step after writing to Excel workbooks with SAS. Though communication

errors seem to have been eliminated with this version of the code, we still, from time to time, find other ‘logic’ errors

when we read the workbook back in with code similar to that shown in the beginning of this paper and running proc

compare to compare the resulting SAS dataset to the one used for the output code.

The code is fun to watch because both SAS and Excel are actively doing things on your desktop; it’s helpful to keep an

eye on the Excel, if the code appears to be hung up. In many cases it’s because Excel has encountered a condition,

usually an error, requiring user input via a dialog box. In these cases, you need to cancel submitted code in SAS and also

shut down Excel manually.

Not surprisingly, diagnosing errors, particularly distinguishing between SAS errors and Excel macro errors is a bit

mysterious … the error messages are usually very uninformative.

APPENDIX A

Complete Read-in Code

options symbolgen mlogic mprint linesize = 100 msglevel = i;

%global version_error;

%let version = 12.3;

%let contract_period = 2012 OctJan13;

%let version_error = No;

%let eridpath = d:\test;

%let offerpath = d:\test;

%let reportpath = d:\test;

libname perm "d:\test";

data fnames_list (Drop = rc fileid filecount i) ;

 length filename $ 300 ;

 rc = filename("Input", "&offerpath.");

 fileid = dopen("Input");

 filecount = dnum(fileid);

 DO i = 1 to filecount;

 filename = dread(fileid,i);

 if upcase(scan(filename,-1,'.')) in('XLS ', 'XLSM', 'XLSX') then Output;

 end;

 rc = DClose(fileid);

run;

/* create a macro variable of the number of filenames in the folder */

data _null_;

 set FNames_List nobs = numfiles;

 call symputx("numfiles",put(numfiles,4.));

 stop;

run;

%let i = 2;

 %do i = 1 %to &numfiles.;

/* read each workbook and all R-tabs and accumulate in dataset */

%macro read_work_book;

 %let first = 1;

 %do i = 2 %to 2;

 data _null_ ;

 obsnum = input("&i.",4.);

 set fnames_List point = obsnum;

 call symputx("filename",put(filename,$300.));

 stop;

 run;

 libname mylib "&offerpath.\&filename." mixed = yes header = no;

 ods trace on;

 ods output "Library Members" = tabnames;

 proc datasets library = mylib;

 quit;

 ods output close;

 ods listing;

 %let numbad = 0;

 data tab_names_1 (keep = filename tab_name) bad_tab_names (keep = filename

tab_name);

 length tab_name $ 35 filename $ 300;

 set tabnames;

 filename = "&filename.";

 if index(name, "''") > 0 then tab_name = "'" || trim(tranwrd(name, "''", "'")) ||

"'";

 else tab_name = name;

 if length(trim(tab_name)) >= 4 then do;

 if index(substr(tab_name, 2, length(trim(tab_name)) - 2), "'") > 0 &

 index(substr(tab_name, 2, length(trim(tab_name)) - 2), "&") > 0 then do;

 output bad_tab_names;

 call symputx("numbad",1);

 end;

 else do;

 if upcase(substr(tab_name,1,4))

 in('AVAI', 'BASE', 'EXCE', 'ID_I', 'IDEN', 'R$', 'SHEE')

 | index(tab_name,'Print_Area') > 0 then delete;

 else output tab_names_1;

 end;

 end;

 else if upcase(tab_name) ^= 'R$' then output tab_names_1;

 run;

 %if &numbad. = 1 %then %do;

 %put ;

 %put %str(ERROR: !!!!!!!!!!!!! Tab Name with Invalid Characters in Workbook

!!!!!!!!!!!!!!!!!!!);

 %put ;

 %end;

 %let dset = mylib.'identification$'n ;

 %let dsid2 = %sysfunc(open(&dset.));

 %if &dsid2. %then %do;

 %let rc = %sysfunc(close(&dsid2.));

 %end;

 %let rc=%sysfunc(close(&dsid2.));

 data miss_id_tab;

 length filename $ 300;

 filename = "";

 run;

 %if &dsid2. = 0 %then %do;

 %put ;

 %put %str(ERROR: !!!!!!!!!!!!! Identification Tab Missing !!!!!!!!!!!!!!!!!!!);

 %put ;

 data miss_id_tab;

 length filename $ 300;

 filename = "&filename.";

 run;

 %end;

 %else %do;

 data version (keep = version_id temp_merge_var);

 length version_id $ 5;

 set mylib.'identification$'n;

 version_id = compress(f27);

 temp_merge_var = 1;

 output;

 stop;

 run;

 data identification (keep = qsename qseduns temp_merge_var id_info1 - id_info23);

 length qsename qseduns id_info1 - id_info23 $64.;

 array id_info{23} $ id_info1 - id_info23;

 retain qsename qseduns id_info1 - id_info23;

 set mylib.'id_input_area'n ;

 if _n_ = 1 then qsename = f2;

 else if _n_ = 2 then qseduns = f2;

 if (_n_ >= 3 & _n_ <= 4) | (_n_ >= 6 & _n_ <= 11) | (_n_ >= 13 & _n_ <= 17)

 | (_n_ >= 19 & _n_ <= 23) | (_n_ >= 25 & _n_ <= 29) then do;

 i + 1;

 id_info{i} = f2;

 if i = 2 then id_info2 = upcase(id_info2);

 temp_merge_var = 1;

 if i = 23 then output;

 end;

 run;

 data identification_1;

 merge identification version;

 by temp_merge_var;

 run;

 data _null_;

 set tab_names_1 nobs = numtabs;

 put numtabs=;

 call symputx("numtabs",put(numtabs,4.));

 stop;

 run;

 %do j = 1 %to &numtabs.;

 data tab_names_2 (keep = tab_name temp_merge_var) ;

 length tab_name_quote $ 300;

 obsnum = input("&j.",4.);

 set tab_names_1 point = obsnum;

 if substr(tab_name, 1, 1) = "'" & substr(tab_name, length(trim(tab_name)),

1) = "'"

 & index(substr(tab_name, 2, length(trim(tab_name)) - 2), "'") > 0 then do;

 tab_name_quote = 'sheet = "' || trim(put(tab_name,$300.)) || '"';

 call symputx("sheet", tab_name_quote);

 end;

 else if substr(tab_name, 1, 1) = "'" & substr(tab_name,

length(trim(tab_name)), 1) = "'" then do;

 tab_name_quote = "sheet = " || trim(put(tab_name,$300.));

 call symputx("sheet", tab_name_quote);

 end;

 else do;

 tab_name_quote = "sheet = '" || trim(put(tab_name,$300.)) || "'";

 call symputx("sheet", tab_name_quote);

 end;

 temp_merge_var = 1;

 output;

 stop;

 run;

 proc import datafile="&eridpath.\&filename." replace out = import_resource

dbms = excel;

 mixed = yes;

 getnames = no;

 scantext = yes;

 &sheet.;

 run;

 data import_resource_1;

 set import_resource;

 temp_merge_var = 1;

 run;

 data resource (keep = version_resource filename tab_name renewal_opt_in

resource_type

 resource_name baseline analyze_offer1 - analyze_offer4

 esiid sub_metering unique_meter_id load_resource lr_in_as site_ownr site_name

 street city zipcode tspdsp_ia tspdsp_ia_year tspdsp_name tspdsp_duns

 noie_area wsale_meter priv_net onsite_gen gen_type load_desc

 temp_merge_var eridnum rundate);

 length version_resource $ 5 filename $ 300 tab_name $ 35

 resource_type resource_name baseline $ 64 renewal_opt_in $ 3

 esiid $ 64 sub_metering $ 3 unique_meter_id $ 64 load_resource lr_in_as $ 3

 site_ownr site_name $ 64 street city $64 zipcode $5. tspdsp_ia $ 3

 tspdsp_ia_year tspdsp_name tspdsp_duns $64. noie_area wsale_meter

 priv_net onsite_gen $3. gen_type $30. load_desc $256.

 analyze_offer1 - analyze_offer4 $ 3;

 format rundate datetime20.;

 retain version_resource temp_merge_var filename tab_name renewal_opt_in

resource_type

 resource_name baseline analyze_offer1 - analyze_offer4 eridnum rundate;

 merge import_resource_1 tab_names_2;

 by temp_merge_var;

 if tab_name = 'Alt' then baseline = 'ALTERNATE';

 if _n_ = 1 then do;

 temp_merge_var = 1;

 *tab_name = substr("&sheet.", 9, 1);

 tab_name = translate(tab_name, " ", "$");

 filename = "&filename.";

 rundate = datetime();

 eridnum = round(100 * (rundate - "01jun2009:01:00:00"dt),1);

 version_resource = f27;

 end;

 else if _n_ >= 2 & _n_ <= 5 & tab_name ^= 'Alt' then do;

 if _n_ = 2 then do;

 renewal_opt_in = '';

 resource_type = f3;

 analyze_offer1 = upcase(f5);

 end;

 else if _n_ = 3 then analyze_offer2 = upcase(f5);

 else if _n_ = 4 then do;

 resource_name = f1;

 if resource_name = '' then resource_name = 'Missing Resource Name';

 baseline = upcase(f3);

 analyze_offer3 = upcase(f5);

 end;

 else if _n_ = 5 then analyze_offer4 = upcase(f5);

 end;

 else if (tab_name = 'Alt' & _n_ >= 4) | (tab_name ^= 'Alt' & _n_ >= 7) then

do;

 esiid = compress(f1, "' ");

 sub_metering = upcase(f2);

 unique_meter_id = f3;

 if esiid > '' & unique_meter_id = '' & sub_metering = ''

 then sub_metering = 'NO';

 load_resource = upcase(f4);

 lr_in_as = upcase(f5);

 site_ownr = f6;

 site_name = f7;

 street = f8;

 city = f9;

 zipcode = f10;

 tspdsp_ia = upcase(f11);

 tspdsp_ia_year = f12;

 tspdsp_name = f13;

 tspdsp_duns = f14;

 noie_area = upcase(f15);

 wsale_meter = upcase(f16);

 priv_net = upcase(f17);

 onsite_gen = upcase(f18);

 gen_type = f19;

 load_desc = f20;

 if esiid > '' | unique_meter_id > '' then output;

 else if esiid = '' & unique_meter_id = ''

 & (sub_metering > '' | unique_meter_id > '' | load_resource > '' |

lr_in_as > ''

 | site_ownr > '' | site_name > '' | street > '' | city > '' | zipcode >

''

 | tspdsp_ia > '' | tspdsp_ia_year > '' | tspdsp_name > '' | tspdsp_duns

> ''

 | noie_area > '' | wsale_meter > '' | priv_net > '' | onsite_gen > ''

 | gen_type > '' | load_desc > '') then

 put /// 'esiid and umi both blank ' filename = tab_name = /// '';

 end;

 run;

 %let dset = work.resource;

 %let dsid3 = %sysfunc(open(&dset));

 %if &dsid3 %then %do;

 %let numloads =%sysfunc(attrn(&dsid3,NOBS));

 %let rc = %sysfunc(close(&dsid3));

 %end;

 %let rc=%sysfunc(close(&dsid3));

 %if &numloads. > 0 %then %do;

 data combine_id_resource bad_version (keep = qsename eridnum);

 merge identification_1 (in = in1) resource (in = in2);

 by temp_merge_var;

 if ^in1 | ^in2 | compress(version_id) ^= "&version."

 | compress(version_resource) ^= "&version." then do;

 output bad_version;

 call symputx("version_error", "Yes");

 end;

 output combine_id_resource;

 run;

 proc sort data = bad_version nodupkey;

 by eridnum;

 run;

 proc sort data = combine_id_resource;

 by eridnum;

 run;

 data combine_id_resource_1 bad_version_1 (keep = qsename filename tab_name);

 merge combine_id_resource bad_version (in = in1);

 by eridnum;

 if ^in1 then output combine_id_resource_1;

 else if first.eridnum then output bad_version_1;

 run;

 %if &first. = 1 %then %do;

 data all_resources;

 set combine_id_resource_1;

 run;

 data all_bad_versions;

 set bad_version_1;

 run;

 data all_tab_names;

 set tab_names_1;

 run;

 data all_bad_tab_names;

 set bad_tab_names;

 run;

 data all_miss_id_tab;

 set miss_id_tab (where = (filename > ''));

 run;

 %let first = 0;

 %end;

 %else %do;

 proc append base = all_resources data = combine_id_resource_1;

 run;

 proc append base = all_bad_versions data = bad_version_1;

 run;

 proc append base = all_tab_names data = tab_names_1;

 run;

 %end;

 %end;

 %end;

 %end;

 proc append base = all_bad_tab_names data = bad_tab_names;

 run;

 proc append base = all_miss_id_tab data = miss_id_tab (where = (filename > ''));

 run;

 %end;

%mend;

%read_work_book;

libname mylib clear;

%macro check_errors;

 %let tabs_not_read = No;

 data all_tab_names_1;

 set all_tab_names;

 tab_name = translate(tab_name,' ', '$');

 run;

 proc sort data = all_tab_names_1 out = all_tab_names_2 nodupkey;

 by filename tab_name;

 run;

 proc sort data = all_resources out = all_resources_1;

 by filename tab_name;

 run;

 data tabs_not_read (keep = filename tab_name);

 merge all_tab_names_2 (in = in1) all_resources_1 (in = in2);

 by filename tab_name;

 if in1 & ^in2;

 call symputx("tabs_not_read", "Yes");

 run;

 %if &tabs_not_read. = Yes %then %do;

 %put;

 %put %str(ERROR: !!!!!!!!!!!!!!!!!!!! Tabs Not Read Error - Check 'tabs_not_read' sas

data set !!!!!!!!!!!!!!!!!!!!!!!!!!!);

 %put;

 %end;

 %let all_bad_tab_names = No;

 data _null_;

 set all_bad_tab_names ;

 if filename > '';

 call symputx("all_bad_tab_names", "Yes");

 run;

 %if &all_bad_tab_names. = Yes %then %do;

 %put ;

 %put %str(ERROR: !!!!!!!!!!!!! Tab Name(s) with Invalid Characters found in Workbook

- Check 'all_bad_tab_names' sas data set !!!!!!!!!!!!!!!!!!!);

 %put ;

 %end;

 %if &version_error. = Yes %then %do;

 %put;

 %put %str(ERROR: !!!!!!!!!!!!!!!!!!!! Submission Form Version Error Found - Check

'All_bad_versions' sas data set !!!!!!!!!!!!!!!!!!!!!!!!!!!);

 %put;

 %end;

 %let all_miss_id_tab = No;

 data _null_;

 set all_miss_id_tab ;

 if filename > '';

 call symputx("all_miss_id_tab", "Yes");

 run;

 %if &all_miss_id_tab. = Yes %then %do;

 %put ;

 %put %str(ERROR: !!!!!!!!!!!!! Missing Identification Tab(s) found in Workbook -

Check 'all_miss_id_tab' sas data set !!!!!!!!!!!!!!!!!!!);

 %put ;

 %end;

%mend;

%check_errors;

APPENDIX B

Complete Write-out Code

options noxwait noxsync symbolgen mlogic mprint linesize = 200 msglevel = i;

%let contract_period = 2012 OctJan13;

%let local_drive = d:; * enter the drive letter for the templates and output

path ;

/* path to write xls files and to see if they already exist for this batch */

%let eridpath = Emergency_Interruptible_Load\&contract_period.\00 resource

Identification\3 Outgoing erids\okay;

%let templatepath = Emergency_Interruptible_Load\&contract_period.\00 resource

Identification\DDE Templates;

libname perm "Z:\Emergency_Interruptible_Load\&contract_period.\00 resource

Identification\sas datasets";

 /**/

 /* create dataset of qsenames and count of erids */

 /**/

data okay_ers_inputs (keep = eridnum qsename qseduns renewal_opt_in resource_name

 resource_type load_type baseline analyze_offer1 - analyze_offer4 blout1 - blout4

 load ss_gen non_ss_gen esiid sub_metering unique_meter_id load_resource

 lr_in_as site_ownr site_name site_name street city zipcode tspdsp_ia tspdsp_ia_year

 tspdsp_name tspdsp_duns noie_area wsale_meter priv_net onsite_gen gen_type load_desc

 id_info1 - id_info23);

 length eridnum 8 qsename qseduns $ 64 renewal_opt_in $ 3 resource_type resource_name

 baseline $ 64 analyze_offer1 - analyze_offer4 $ 3 blout1 - blout4 blout1 - blout4

load

 ss_gen non_ss_gen $ 30 esiid $ 64 sub_metering $ 3 unique_meter_id $ 64 load_resource

 lr_in_as $ 3 site_ownr site_name street city $ 64 zipcode $ 5 tspdsp_ia $ 3

tspdsp_ia_year

 tspdsp_name tspdsp_duns $ 64 noie_area wsale_meter priv_net onsite_gen $ 3 gen_type $

30

 load_desc $ 256 id_info1 - id_info23 $ 64;

 set perm.ers_inputs_okay_final;

 renewal_opt_in = '';

 load = 'Load';

 ss_gen = 'Self-Serving Gen';

 non_ss_gen= 'Non Self-Serving Gen';

 if bline1 = 1 then blout1 = 'DEFAULT-REGRESSION';

 if bline2 = 2 then blout2 = 'DEFAULT-MID 8 OF 10';

 if bline3 = 3 then blout3 = 'DEFAULT-MATCHING DAY PAIR';

 blout4 = 'ALTERNATE';

 if baseline = '' & bline1 = . & bline2 = . & bline3 = . then baseline = 'ALTERNATE';

run;

data okay_ers_inputs_1 (drop = temp_tab_name more i numbers letters);

 length tab_name $ 29 temp_tab_name $ 64;

 set okay_ers_inputs;

 if resource_name = '' then tab_name = 'Alt';

 else do;

 temp_tab_name = compress(resource_name, "'");

 temp_tab_name = compress(temp_tab_name, '"');

 temp_tab_name = translate(temp_tab_name," ",

 " !@#$%^&*()_+-={}|[]\:;<>?,./;");

 temp_tab_name = compbl(temp_tab_name);

 temp_tab_name = translate(temp_tab_name,"~", " ");

 more = 1;

 do i = 64 to 1 by - 1 while (more = 1);

 if substr(temp_tab_name,i,1) = '~' then substr(temp_tab_name,i,1) = ' ';

 else more = 0;

 end;

 tab_name = compbl(substr(translate(temp_tab_name, '_', '~'),1,26));

 if substr(tab_name, 26,1) = '_' then tab_name = substr(tab_name, 1, 25);

 letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz';

 numbers = '1234567890';

 if verify(substr(tab_name,1,3), letters) = 0

 & verify(compress(substr(tab_name,4)), numbers) = 0

 & substr(tab_name,4) > ''

 then tab_name = substr(tab_name,1,3) || '_' || substr(tab_name,4);

 else if verify(substr(tab_name,1,2), letters) = 0

 & verify(compress(substr(tab_name,3)), numbers) = 0

 & substr(tab_name,3) > ''

 then tab_name = substr(tab_name,1,2) || '_' || substr(tab_name,3);

 else if verify(substr(tab_name,1,1), letters) = 0

 & verify(compress(substr(tab_name,2)), numbers) = 0

 & substr(tab_name,2) > ''

 then tab_name = substr(tab_name,1,1) || '_' || substr(tab_name,2);

 if verify(substr(tab_name,1,1), letters) ^= 0 then tab_name = '_' || tab_name;

 tab_name = upcase(tab_name);

 end;

run;

proc sort data = okay_ers_inputs_1;

 by qseduns tab_name eridnum;

run;

data okay_ers_rtab_inputs okay_ers_alt_inputs ;

 drop count;

 set okay_ers_inputs_1;

 by qseduns tab_name eridnum;

 if tab_name ^= 'Alt' then do;

 if first.tab_name then count = 0;

 if first.eridnum then count + 1;

 if count > 1 & count < 100 then

 tab_name = translate(compbl(substr(tab_name,1,26) || put(count,2.)),'_',' ');

 output okay_ers_rtab_inputs;

 end;

 else output okay_ers_alt_inputs;

run;

proc sort data = okay_ers_rtab_inputs out = qse_erid_list nodupkey;

 by qseduns tab_name eridnum;

run;

proc freq data = okay_ers_inputs_1 noprint;

 tables qsename * qseduns / out = qse_list;

run;

 /**/

 /* create macro variable of number of qses */

 /**/

%let numqses = 0;

data _null_;

 set qse_list nobs = numqses;

 call symputx("numqses",put(numqses,5.));

 stop;

run;

%macro run_qse;

 data fill;

 a = 1; b = 1; c = 1;

 if a > 1;

 run;

 /* loop through QSEs */

 %if &numqses. > 0 %then %do i = 1 %to &numqses.;

 data _null_;

 obsnum = input("&i",4.);

 set qse_list point = obsnum;

 call symputx("qseduns",put(qseduns,$64.));

 call symputx("qseduns_fname",put(input(qseduns,13.),z16.));

 stop;

 run;

 /* set macro numerids to the number of r tabs for qse being processed */

 %let numerids = 0;

 /* create a file of eridnums for this qse */

 data qse_erid_list_1 ;

 set qse_erid_list (where = (qseduns = "&qseduns."));

 numerids + 1;

 call symputx("numerids",numerids);

 run;

 /* set macro variable for the template to be used (with or without and Alt tab) */

 %let ID_Template = ID_Template;

 data _null_;

 set okay_ers_alt_inputs (where = (qseduns = "&qseduns."));

 call symputx("ID_Template", "ID_Alt_Template");

 stop;

 run;

 /* copy ID_Template.xlsx into ID_Template_copy.xlsx */

 data _null_;

 length command $ 200;

 command="&local_drive.";

 call system(command);

 command="cd\&templatepath.\";

 call system(command);

 command="copy &ID_Template..xlsx &ID_Template._copy.xlsx";

 call system(command);

 run;

 %if &numerids. > 0 %then %do j = 1 %to &numerids.;

 /* create tabs for all the R tab_names needed for this qse */

 data _null_;

 obsnum = input("&j",4.);

 set qse_erid_list_1 point = obsnum;

 call symputx("tab_name", tab_name);

 stop;

 run;

 proc export data = fill outfile =

 "&local_drive.\&templatepath.\&ID_Template._copy.xlsx";

 sheet="&tab_name.";

 run;

 %end;

 data messages_erids_okay ;

 set perm.messages_erids_okay;

 where qseduns = "&qseduns." ;

 run;

 proc sort data = messages_erids_okay ;

 by qsename resource_name tab_name eridnum esiid unique_meter_id;

 run;

 data rtabs_with_messages (keep = qsename resource_name tab_name eridnum)

 alttabs_with_messages

 (keep = qsename resource_name tab_name eridnum esiid unique_meter_id);

 set messages_erids_okay ;

 if message1 ^= '' | message2 ^= '' | message3 ^= '' | message4 ^= ''

 | message5 ^= '' | message6 ^= '' | message_n ^= ''

 | message_s ^= '' | message_u ^= '';

 if tab_name = 'Alt' then output alttabs_with_messages;

 else output rtabs_with_messages;

 run;

 proc sort data = rtabs_with_messages nodupkey;

 by qsename resource_name tab_name eridnum;

 run;

 proc sort data = alttabs_with_messages nodupkey;

 by qsename resource_name tab_name eridnum esiid unique_meter_id;

 run;

 data messages_rtabs_okay;

 length qsename qseduns $ 64 renewal_opt_in $ 3 resource_name resource_type

 load_type baseline esiid $ 64 sub_metering $ 3 unique_meter_id $ 64 load_resource

 lr_in_as $ 3 street city $ 64 zipcode $ 5 message1 - message6 message_n message_s

 message_u $ 200 site_ownr site_name $ 64 tspdsp_ia $ 3 tspdsp_ia_year tspdsp_name

 tspdsp_duns $ 64 analyze_offer1 - analyze_offer4 noie_area wsale_meter priv_net

 onsite_gen $ 3 gen_type $ 30 load_desc $ 256 filename $ 300 tab_name $ 30;

 merge messages_erids_okay alttabs_with_messages(in = in1);

 by qsename resource_name tab_name eridnum esiid unique_meter_id;

 if in1;

 renewal_opt_in = '';

 run;

 data messages_alts_okay;

 length qsename qseduns $ 64 renewal_opt_in $ 3 resource_name resource_type

 load_type baseline esiid $ 64 sub_metering $ 3 unique_meter_id $ 64 load_resource

 lr_in_as $ 3 street city $ 64 zipcode $ 5 message1 - message6 message_n message_s

 message_u $ 200 site_ownr site_name $ 64 tspdsp_ia $ 3 tspdsp_ia_year tspdsp_name

 tspdsp_duns $ 64 analyze_offer1 - analyze_offer4 noie_area wsale_meter priv_net

 onsite_gen $ 3 gen_type $ 30 load_desc $ 256 filename $ 300 tab_name $ 30;

 merge messages_erids_okay rtabs_with_messages(in = in1);

 by qsename resource_name tab_name eridnum;

 if in1;

 renewal_opt_in = '';

 run;

 data messages_erids_okay_1;

 length qsename qseduns $ 64 renewal_opt_in $ 3 resource_name resource_type

 load_type baseline esiid $ 64 sub_metering $ 3 unique_meter_id $ 64 load_resource

 lr_in_as $ 3 street city $ 64 zipcode $ 5 message1 - message6 message_n message_s

 message_u $ 200 site_ownr site_name $ 64 tspdsp_ia $ 3 tspdsp_ia_year tspdsp_name

 tspdsp_duns $ 64 analyze_offer1 - analyze_offer4 noie_area wsale_meter priv_net

 onsite_gen $ 3 gen_type $ 30 load_desc $ 256 filename $ 300 tab_name $ 30;

 set messages_rtabs_okay messages_alts_okay;

 by qsename resource_name tab_name eridnum esiid unique_meter_id;

 if eridnum > .;

 /* output resource level messages */

 if first.resource_name | tab_name = 'Alt' then output;

 /* blanks out load level info on the esiid rows */

 else do;

 qsename = ''; qseduns = ''; resource_name = ''; baseline = '';

 message1 = '';

 output;

 end;

 /* insert blank line after last load */

 if last.eridnum & eridnum > . then do;

 qsename = ''; qseduns = ''; renewal_opt_in = ''; resource_name = '';

 resource_type = ''; load_type = ''; baseline = ''; esiid = ''; sub_metering = '';

 unique_meter_id = ''; load_resource = ''; lr_in_as = ''; street = ''; city = '';

 zipcode = ''; message1 = ''; message2 = ''; message3 = ''; message4 = '';

 message5 = ''; message6 = ''; message_n = ''; message_s = ''; message_u = '';

 site_ownr = ''; site_name = ''; tspdsp_ia = ''; tspdsp_ia_year = '';

 tspdsp_name = ''; tspdsp_duns = ''; analyze_offer1 = ''; analyze_offer2 = '';

 analyze_offer3 = ''; analyze_offer4 = ''; noie_area = ''; wsale_meter = '';

 priv_net = ''; onsite_gen = ''; gen_type = ''; load_desc = ''; eridnum = .;

 filename = ''; tab_name = '';

 output;

 end;

 run;

 proc export data = messages_erids_okay_1

 outfile = "&local_drive.\&templatepath.\&ID_Template._copy.xlsx" replace;

 Sheet = "Exceptions";

 run;

 /* writes out availability results to workbooks */

 data erid_avail_results;

 length resource_name site_name $ 64;

 set perm.erid_avail_results;

 where qseduns = "&qseduns." ;

 run;

 proc sort data = erid_avail_results ;

 by qsename resource_name eridnum esiid unique_meter_id contract_period

 time_period;

 run;

 data erid_avail_results

 (keep = qsename resource_name esiid unique_meter_id site_name

 min_esiid_ct contract_period time_period min_mw mw_1st_pctile mw_95th_pctile

 avg_mw eridnum);

 length qsename resource_name site_name esiid unique_meter_id

 contract_period $ 64 time_period $12 offer_mw min_mw mw_1st_pctile

 mw_95th_pctile avg_mw min_esiid_ct eridnum 8 ;

 label qsename = "QSE Name" resource_name = "Resource Name" esiid = "ESI ID"

 unique_meter_id = "Unique_Meter_Id" site_name = "Site Name"

 contract_period = "Analysis Months" time_period = "Time Period"

 offer_mw = "Offer MW" min_mw = "Minimum Base Load MW"

 min_esiid_ct = "Number of Loads Analyzed"

 min_mw = "Minimum MW"

 mw_1st_pctile = "1st Percentile Load MW"

 mw_95th_pctile = "95th Percentile Load MW" avg_mw = "Average Load MW";

 set erid_avail_results;

 by qsename resource_name eridnum esiid unique_meter_id contract_period

 time_period;

 output;

 /* make a blank row between each contract period */

 if last.contract_period then do;

 qsename = '' ; resource_name = ' '; esiid= ' '; unique_meter_id = '';

 site_name = ' '; contract_period = ' '; time_period = ' '; offer_mw = .;

 min_esiid_ct = .; mw_95th_pctile = .; avg_mw = .; min_mw = .; mw_1st_pctile = .;

 eridnum = .; load_resource = ''; lr_in_as = '';

 output;

 end;

 /* make a blank row between each contract period */

 if last.resource_name then do;

 qsename = '' ; resource_name = ' '; esiid= ' '; unique_meter_id = '';

 site_name = ' '; contract_period = ' '; time_period = ' '; offer_mw = .;

 min_esiid_ct = .; mw_95th_pctile = .; avg_mw = .; min_mw = .; mw_1st_pctile = .;

 eridnum = .; load_resource = ''; lr_in_as = '';

 output;

 end;

 run;

 proc export data = erid_avail_results

 outfile = "&local_drive.\&templatepath.\&ID_Template._copy.xlsx" replace;

 Sheet = "Availabilty_Results";

 run;

 /* writes out baseline results to workbooks */

 data compare_ranking_report;

 length resource_name site_name $ 64;

 set perm.compare_ranking_report;

 where qseduns = "&qseduns." ;

 run;

 proc sort data = compare_ranking_report;

 by qsename resource_name eridnum esiid unique_meter_id contract_period;

 run;

 data export_baseline_info

 (keep = qsename resource_name contract_period esiid unique_meter_id

 site_name RSquare MAPE P90_kW_Confidence P95_kW_Confidence

 P99_kW_Confidence Baseline eridnum);

 length qsename resource_name site_name esiid unique_meter_id contract_period

 Baseline $ 64 RSquare MAPE P90_kW_Confidence P95_kW_Confidence

 P99_kW_Confidence eridnum 8. ;

 set compare_ranking_report;

 by qsename resource_name eridnum esiid unique_meter_id site_name contract_period;

 where qseduns = "&qseduns." ;

 /* inserts blank row after load level messages*/

 output;

 if last.contract_period then do;

 RSquare = .;

 MAPE = .;

 P90_kW_Confidence = .;

 P95_kW_Confidence = .;

 P99_kW_Confidence = .;

 Baseline = ' ';

 resource_name = ' ';

 qsename = '';

 contract_period = ' ';

 esiid = ' ';

 unique_meter_id = ' ';

 site_name = ' ';

 eridnum = .;

 qsenum = .;

 output;

 end;

 run;

 proc export data = export_baseline_info

 outfile = "&local_drive.\&templatepath.\&ID_Template._copy.xlsx" replace;

 Sheet = "Baseline_Info";

 run;

 x "'C:\Program Files\Microsoft Office\OFFICE12\excel.exe'";

 data _null_;

 rc = sleep(2);

 stop;

 run;

 filename ddecmds dde 'excel|system';

 /* open the input data.xlsx workbook */

 data _null_;

 rc = sleep(1);

 file ddecmds;

 put %unquote(%str(%'[open("&local_drive.\&templatepath.\input data.xlsx")]%'));

 stop;

 run;

 data _null_;

 rc = SLEEP(1);

 file ddecmds;

 put %unquote(%str(%'[open("&local_drive.\&templatepath.\Rtab_Template.xlsx")]%'));

 run;

 data _null_;

 rc = SLEEP(1);

 file ddecmds;

 put

%unquote(%str(%'[open("&local_drive.\&templatepath.\&ID_Template._copy.xlsx")]%'));

 run;

 /* identification information for the QSE being processed */

 /* pull the input data needed from the permanent sas dataset */

 /* and output to the 'input data.xlsx' workbook in the 'id_inputs' range */

 /* the 'ID_Alt_Template_copy.xlsx' workbook which ends up being the saved qse

workbook */

 /* has links to the 'input data.xlsx' workbook */

 libname mylib "&local_drive.\&templatepath.\input data.xlsx";

 proc datasets lib = mylib noprint;

 delete id_inputs;

 quit;

 data mylib.id_inputs;

 keep qsename qseduns id_info1 - id_info23 sub_type1 sub_type2;

 set okay_ers_inputs_1 (where = (qseduns = "&qseduns."));

 id_info2 = '';

 sub_type1 = '10m Procurement Offer';

 sub_type2 = '30m Procurement Offer';

 output;

 stop;

 run;

 data _null_;

 file ddecmds;

 put '[workbook.activate("Identification")]';

 put '[run("PERSONAL.XLS!copy_paste_values_id_tab")]';

 put '[workbook.activate("Exceptions")]';

 put '[run("PERSONAL.XLS!expand_cols")]';

 put '[run("PERSONAL.XLS!clear_lines")]';

 put '[workbook.activate("Availabilty_Results")]';

 put '[run("PERSONAL.XLS!expand_cols")]';

 put '[run("PERSONAL.XLS!clear_lines")]';

 put '[workbook.activate("Baseline_Info")]';

 put '[run("PERSONAL.XLS!expand_cols")]';

 put '[run("PERSONAL.XLS!clear_lines")]';

 stop;

 run;

 %if &ID_Template. = ID_Alt_Template %then %do;

 proc datasets lib = mylib noprint;

 delete load_inputs;

 quit;

 data mylib.load_inputs;

 keep eridnum renewal_opt_in resource_type resource_name baseline

 analyze_offer1 - analyze_offer4 blout1 - blout4 load ss_gen non_ss_gen;

 set okay_ers_alt_inputs (where = (qseduns = "&qseduns."));

 output;

 stop;

 run;

 proc datasets lib = mylib noprint;

 delete site_inputs;

 quit;

 data mylib.site_inputs;

 keep esiid sub_metering unique_meter_id load_resource lr_in_as site_ownr

site_name

 street city zipcode tspdsp_ia tspdsp_ia_year tspdsp_name tspdsp_duns noie_area

 wsale_meter priv_net onsite_gen gen_type load_desc;

 set okay_ers_alt_inputs (where = (qseduns = "&qseduns."));

 output;

 nobs + 1;

 call symputx("nobs", nobs);

 run;

 data _null_;

 file ddecmds;

 put '[workbook.activate("Alt")]';

 put '[run("PERSONAL.XLS!copy_paste_values_alt_tab")]';

 if &nobs. < 40 then put '[run("PERSONAL.XLS!delete_51")]';

 else if &nobs. < 75 then put '[run("PERSONAL.XLS!delete_101")]';

 else if &nobs. < 250 then put '[run("PERSONAL.XLS!delete_301")]';

 else if &nobs. < 400 then put '[run("PERSONAL.XLS!delete_501")]';

 put '[run("PERSONAL.XLS!expand_cols")]';

 stop;

 run;

 proc datasets lib = mylib noprint;

 delete site_inputs;

 quit;

 %end;

 %if &numerids. > 0 %then %do j = 1 %to &numerids;

 data _null_;

 obsnum = input("&j",4.);

 set qse_erid_list_1 point = obsnum;

 call symputx("eridnum",put(eridnum,20.));

 call symputx("tab_name", tab_name);

 stop;

 run;

 /* delete contents of cells in the load_inputs range ... excel engine cannot */

 proc datasets lib = mylib noprint;

 delete load_inputs;

 quit;

 data mylib.load_inputs;

 keep eridnum renewal_opt_in resource_type resource_name baseline

 analyze_offer1 - analyze_offer4 blout1 - blout4 load ss_gen non_ss_gen;

 set qse_erid_list_1 (where = (eridnum = &eridnum.));

 output;

 stop;

 run;

 /* delete contents of cells in the load_inputs range ... excel engine cannot

replace values */

 proc datasets lib = mylib noprint;

 delete site_inputs;

 quit;

 data mylib.site_inputs;

 keep esiid sub_metering unique_meter_id load_resource lr_in_as site_ownr

site_name

 street city zipcode tspdsp_ia tspdsp_ia_year tspdsp_name tspdsp_duns noie_area

 wsale_meter priv_net onsite_gen gen_type load_desc;

 set okay_ers_rtab_inputs (where = (eridnum = &eridnum.));

 nobs + 1;

 call symputx("nobs", nobs);

 run;

 data _null_;

 file ddecmds;

 put '[workbook.activate("'"&tab_name."'")]';

 if "ID_Alt_Template" = "&ID_Template."

 then put '[run("PERSONAL.XLS!copy_paste_rtab_template_to_id_alt_template")]';

 else put '[run("PERSONAL.XLS!copy_paste_rtab_template_to_id_template")]';

 put '[run("PERSONAL.XLS!copy_paste_values_alt_tab")]';

 put '[run("PERSONAL.XLS!delete_stuff")]';

 if &nobs. < 40 then put '[run("PERSONAL.XLS!delete_51")]';

 else if &nobs. < 75 then put '[run("PERSONAL.XLS!delete_101")]';

 else if &nobs. < 250 then put '[run("PERSONAL.XLS!delete_301")]';

 else if &nobs. < 400 then put '[run("PERSONAL.XLS!delete_501")]';

 put '[run("PERSONAL.XLS!expand_cols")]';

 stop;

 run;

 %end;

 libname mylib clear;

 /* save and close the template copy workbook with an MIS compatible file name */

 /* and save and close the two dummy files for the other two open workbooks */

 /* (this avoids having to respond in excel to okay losing the changes) */

 data _null_;

 file ddecmds;

 put

%unquote(%str(%'[SAVE.AS("&local_drive.\&eridpath.\RPT.00013012.&qseduns_fname..erids_oka

y.xlsx")]%'));

 rc = sleep(2);

 put '[close]';

 rc = sleep(2);

 put %unquote(%str(%'[SAVE.AS("&local_drive.\&templatepath.\dummy1.xlsx")]%'));

 rc = sleep(2);

 put '[close]';

 rc = sleep(2);

 put %unquote(%str(%'[SAVE.AS("&local_drive.\&templatepath.\dummy2.xlsx")]%'));

 rc = sleep(2);

 put '[close]';

 rc = sleep(2);

 put '[quit()]';

 stop;

 run;

 /* delete template copy and two dummy files between qses */

 data _null_;

 length command $ 200;

 command="&local_drive.";

 call system(command);

 command="cd\&templatepath.\";

 call system(command);

 command="del &ID_Template._copy.xlsx";

 call system(command);

 command="del dummy1.xlsx";

 call system(command);

 command="del dummy2.xlsx";

 call system(command);

 run;

 %end;

%mend;

%run_qse;

