SCSUG 2012

SAS® HASH Programming basics
Daniel Sakya, PPD Inc., Austin, TX

Abstract

HASH programming is a hot topic in the industry that started with SAS 9. This paper is intended to
provide more exposure to novice or experienced SAS programmers that are looking for alternatives to
data step programming. The concept of HASH programming is similar to the definition of an array in SAS.
Several SAS users have benefitted from HASH programming by considerably reducing the processing
time for compound data merging tasks. This paper will entail the introduction to HASH programming, its
syntax, a few examples, and last but not least, the benefits on using HASH programming versus regular
data step. The examples and syntax illustrated are in SAS 9.2.

Introduction

Data step programming is the cornerstone of SAS programming. However, when dealing with large
volumes of data, it data step programming can be cumbersome and slow. This is where hash
programming can become advantageous to provide safe, efficient, and straightforward tool for data
manipulations including creating and accessing datasets.

Just like the concept of array, hash programming accesses the memory index tables for faster access to
data. However, unlike arrays, using hash programming does not need sequential integers to access the
data — it can be done via characters or numbers. Also, the data does not need to be sorted — one of the
best-selling points.

Hash programming has increasingly become a hot topic that has piqued the interest of many SAS
programmers, including yours truly, and continues to become a growing trend in the industry that can
be a very useful alternative to data step programming. We will explore the syntax for hash programming
in this paper with some examples to pique users’ interests into using this object oriented approach in
SAS.

Syntax

To declare a hash object, you use the DECLARE statement. The statement will let SAS know that the
referenced object is a hash object.

declare hash x;

After a hash object has been declared, it needs to be initialized. This can be done via the _NEW_
operator:

x=_NEW_ hash();

The above line of code creates and initializes the hash object x after it has been declared.

The above two statements can be condensed into one line with the following statement:

Declare hash X();

SAS dataset options can also be used while declaring and defining hash objects but it is limited to the
following operations:

e Rename

e Where

e Drop or Keep

e Qutput statement can be used in to specify an output dataset
e Subset observations based on observation number

The rename operation is used in the following example:

declare hash X(dataset: ‘table (rename = (CPEVENT = VISIT)));

Examples

The following example declares and initializes the hash object. After the declaration, the key and data

objects are defined, after which, values are added to the key and data objects.

data _null :
length patient $5 trcgrp $30:
if N =1 then do;

end:

/* Adding wvalues to the key and data below */

¥ =

X
X =
X

/* Define and initialize the hash object "eg" */
declare hash eg:

ey = new

/*

hash():

The above two sStatements can also be condensed into one line:
declare hash eg():

*f

/* Define key and data variables */
X = eg.DefineKey('patient');
X = eg.DefineData({'trtgrp'):
x = eg.DefineDone():

/* Variables may be uninitialized but the following statement can get rid of the warning */
call missing(patient,trtgrp):;

x/

eg.add(key: '¥X1l', data: 'Placebo group'):
eg.add(key: 'Yl', data: 'Treatment conc. A'):
eg.add(key: 'X2', data: 'Treatment conc. B'):
eg.add(key: 'Y2', data: 'Control');

/* Finding data associated with a key */

x =

eg.find(key: 'X2'):

if (x = 0) then put trtgrp=;
else put 'Key not found':

run;

The above example defines has the hash object “eg” and associates the key object as “patient” and data

object as “trtgrp”. The DefineDone statement lets SAS know that all definitions for the hash objects are

now complete. The add statements add data to the key and data variables within the hash objects.

Once the key and data variables have been defined, they can be accessed via the find statement.

The above code will output the following:

trtrgrp=Treatment conc. B

SAS log results:

300 data _null_;

301 length patient $5 trtgrp $30;

302 if _N_ =1 then do;

303 /% Define and initialize the hash object "eg" */
304 declare hash eg;

305 eg = _new_ hash();

306 Sk

307 The above two statements can also be condensed into one line:
308 declare hash eg();

309 x/

310

311 /% Define key and data variables */

312 x = eg.DefineKey('patient’);

313 x = eg.DefineData('trtgrp’);

314 x = eqg.DefineDone();

315

316 /¥ Variables may be uninitialized but the following statement can get rid of the
316! warning */

317 call missing(patient,trtgrp);

318 end;

319

320 /* Adding values to the key and data below */

321 x = eg.add(key: 'X1', data: 'Placebo group’);

322 x = eg.add(key: 'Y1', data: ’'Treatment conc. A');
323 x = eg.add(key: 'X2', data: ’'Treatment conc. B');
324 x = eg.add(key: 'Y2', data: ’'Control’);

325

326 /% Finding data associated with a key */

327 x = eg.find(key: 'X2');

328 if (x = 0) then put trtgrp=;

329 else put 'Key not found’;

330 run;

trtgrp=Treatment conc. B

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Multiple data or key objects can be added to the hash objects by separating the variables by a comma.
For example, in the above illustration, multiple data variables can be defined with the following
statement:

x = eg.DefineData(‘trtgrp’, trtstdt’, trtendt’);
The above statement adds “trtgrp”, “trtstdt”, and “trtendt” to the “eg” hash object.
To add data to the data objects, the following statement can be used:

x = eg.add(key: ‘X1’, data: ‘Control’, data: "13FEB2012’, data: "’21MAR2012’);

So why use hash programming?

The above syntax and examples may look a bit complex and scary enough to make you wonder why you
should even bother with hash programming. However, there are various benefits of hash programming:

e Efficient and fast use of the virtual memory which can prove very useful when merging multiple
datasets with large number of records.

e When merging multiple datasets, they don’t need to be sorted as long as keys are properly
defined.

e Hash objects can return multiple items unlike array objects that can only return one value.

e Typically, hash objects do the programming tasks faster than traditional data step or SQL
programming (depending on the data, the available memory, your environment, etc.)

e Hash objects are also very good for data summarization and can typically execute the job up to
twice as fast while utilizing a third of the memory when compared with data step programming.

Conclusion

SAS hash programming is a powerful and efficient object oriented approach for table lookups, merges,
data summarization, and sorting purposes. | encourage users to perform and compare data step merges
versus hash merges in terms of compilation and execution time. Users will notice that even though it
may seem a bit complicated at first, they will write less lines of code and perform faster executions of
their programs. There are numerous resources and papers out there that talk about efficiency in
execution and provide more details to this wonderful memory based object oriented approach that
every SAS user should be familiar with.

References

Hash objects — Why bother?
Barb Crowther
http://www.sas.com/offices/NA/canada/downloads/presentations/HUG09/Hash.pdf

An Introduction to SAS Hash Programming Techniques

Kirk Paul Lafler
http://www.scsug.org/SCSUGProceedings/2011/laflerl/An%20Introduction%20t0%20SAS%20Hash%20P
rogramming%20Techniques.pdf

| cut my processing time by 90% using hash tables - You can do it too!
Jennifer K. Warner-Freeman
http://www.nesug.info/Proceedings/nesug07/bb/bb16.pdf

Acknowledgements

| would like to thank SCSUG 2012 for accepting my abstract and giving me the opportunity to present
this paper to the audience as well as Jeanina Worden and PPD for the encouragement to proceed with
my first paper.

Contact information
Any comments or suggestions are greatly appreciated and can be sent to:

Daniel Sakya

Senior Programmer Analyst

PPD Inc.

7551 Metro Center Dr. Suite 300
Austin, TX 78744

(512) 747-5205
Daniel.sakya@ppdi.com

