Enterprise Guide for New and Experienced SAS Users
SAS Enterprise Guide (EG) has revolutionized the way SAS is used to process, model, and visualize
data. This presentation will look at the advantages and disadvantages of EG from the perspective of
both a user new to the SAS environment and an experienced SAS programmer. We will cover tips
for using EG more efficiently, how EG leads to better project documentation, and when to not use
EG. Data used to illustrate the application of EG will be taken from actual educational research
projects. We used version 4.3 to develop this paper.

We were coworkers at an educational assessment company. One of us was new to SAS and found
the EG interface to be more intuitive for starting with SAS. The other had been using SAS
extensively for eight years but was a novice to EG. Join us as we provide tips, praise, and complaints
from our experience with this tool.

Tips for using EG

Autoexec process flow

With the traditional SAS interface, a SAS program called autoexec.sas is run each time SAS is
opened. The autoexec file might be used to automatically set up libraries, create formats, and define
macros.

Enterprise Guide offers similar functionality through the use of an autoexec process flow. Simply
create a process flow in your project and rename it “autoexec” (Figure 1). Fill the autoexec process
flow with any Task, SAS program, etc. that you would any other process flow. We like to put it at the
top of the process flows to remind us that these run first. By default Enterprise Guide will prompt
you to run the autoexec process flow each time it is opened.

Figure 1: Example of Autoexec Process Flow

& SAS Enterprise Guide - KY CCR Targets 201... [= (B[]

File Edit View Tasks Program Tools Help |5~

v X Autoexec -

I Run ~

¥ 8og
B % CPE Targets

+ Set Targets
+ gqg Report [éd
+ gqg Supporting Stats
Set

Libraries

Ready Y% No profile selected

Once you get annoyed with having to confirm to run the autoexec process flow each time, you will
want to turn on the option that automatically runs the autoexec. Simply go to the Tools menu and

select Options. From the General option on the left-hand menu select the 3rd checkbox
“Automatically run “Autoexec” process flow when project opens” (Figure 2).

Figure 2: Enterprise Guide Options

Options @

General

- X General
Project Views
Project Recovery
Results [[] Show Welcome window at start-up

Results General

Viewer [Enable project log for new rgiect
S Heport Automatically run “Autoexec" process flow when project opens
HTML

RTF [C] Enable accessibmyTe

PDF
Rranh

[]Include project name in exported filenames

Borrow code from EG

One development paradigm that we have found useful in EG is to create basic tasks in EG, borrow
the SAS code, and make expansions to extend the task to additional options not available in the
point-and-click interface. For example, the Summary Tables Wizard Task is the EG interface to
PROC TABULATE. We find the wizard approach to be a more intuitive than coding PROC TABULATE
directly, but there are some nice formats that are not available in the wizard. We applied the
Summary Tables Wizard to the SASHELP.CARS data to produce Table 1.

Table 1: Default Table produced by Summary Tables Task

MSRP |Horsepower
Average | Average

Origin
Asia [24741.32 190.70
Europe48349.80 251.89
USA 28377.44 212.82
Total |32774.86 215.89

We would like to format each average in a different way, but EG does not have an option for this.
Rather than write the code entirely from hand, we borrow from what has already been written in
EG. View the Submitted Code (Figure 3).

Next, copy the code to the clipboard. Create a New Program, and paste the code into the new
program adding the formatting statements into PROC TABULATE (Figure 4). The reformatted table
is shown as Table 2.

Clean up unneeded datasets at end of program
Because EG visually represents all of the datasets that a task creates, it is good practice to clean up

unneeded datasets at the end of SAS Programs. This issue existed in the traditional SAS interface,
but somehow it didn’t affect our mental state when it was behind the scenes in the WORK library.
We have taken to adding a simple PROC DATASETS step at the end of program code so that the

visual representation of the project only shows those datasets needed for subsequent steps (Figure

5).

Figure 3: Submitted Code for Summary Tables Task

& SAS Enterprise Guide

=] gqg Bornow Code from EG
= & CARS [
mﬁ Summary Tables e - | [E] Properties
1| [FITLE;
-~
2! TITLE1l "Summary Tables";
i v X 3, FOOTNOTE; '
@ "ii§|@ 4] FOOTNOTEl "Generated by the SAS System (&_SASSERVERNAME, &
- — = S| SH e e e e e e
&3 Refre: _ € Code generated by SAS Task
® [Sewvers ' 7
@ [y Private OLAP Servers E] Generated on: Friday, August 24, 2012 at 3:52:52 PM
9 By task: Summary Tables g
Ready Y& No profile selected Line 1, Col 1 _

Figure 4: PROC TABULATE Code with Additional Formatting Statements

13
20
21
22
23
24

[H]
=1 m

W b M B R

O W W

W W w w w
N b W B =

</ PROC TABULATE
DATA=SASHELF.CARS

;

VAR MSRP Horsepower;
CLASS Origin / ORDER=UNFORMATTED MISSING;

TABLE
/* ROW Statement */
Origin
all = "Total’ ,

/* COLUMN Statement */
(MSRP ¥ Mean={LABEL="Average"
| Horsepower * Mean={LABEL="Ave

* f=dollaré.0
age"} * £=3.0)

-~

RUN;

Table 2: Reformatted PROC TABULATE Table

MSRP |Horsepower
Average| Average
Origin
Asia [$24741 191
Europe$48350 252
USA 1$28377 213
Total $32775 216

Figure 5: PROC DATASETS Code to Clean Up Unneeded Datasets
3% proc datasets nolist lib=work ;

éCf delete estl targets ;
1 run; quit;

(153

The NOLIST option prevents the entire list of objects in the library from being printed to the log.
The LIB= option points to the library where the datasets reside. The DELETE statement allows a
listing of the datasets that should be deleted to be made.

For tasks that take a long time, Save Program as... and run in batch
One of the nice features about EG is the ability to set a program running while still working on

another one in the same session. There seems to be a limit, though, to how much activity EG can
handle. Our experience has been that processing intensive tasks can bog down EG so that no other
work can get done. In this situation we have found it better to save the program externally and run
it in batch mode so that other work within the project can continue.

First open the Program Properties, click Save As..., and provide a program name and path (Figure
6). This saves the program externally as the traditional .sas file type. The .sas file can then be run in
batch like any other.

Figure 6: Program Properties

Ed Properties for Program @

General

Results
Prompls
Summary
Label:
Program

Code will run on server:

Local v

Last Execution Time:
1 seconds

File path:
|[Embedded In Project)

Location: Project

e The external program will not have access to libraries and temporary datasets that have
been created within the EG session. You might have to redefine libraries in the program and
save any required input datasets to a permanent library.

Some tips to remember:

e EG won’t automatically display the permanent output datasets from the program. You might
have to manually open them and link the program to them to have the flow documented.

Better Documentation

Visual representation of process flow.
One useful aspect of EG is that it allows users to effectively track their work. With this idea, EG

utilizes the process flow to provide an overall picture of how everything fits together (Figure 7).
Generally, a process flow displays data sets, tasks, reports, and results, as well as the relationships
between these objects. Many process flows can exist within a project, but it is recommended to
separate them by activity for easier access and organization (e.g., autoexec, descriptive statistics,
and models). EG users often review process flows to document their progress throughout the
project.

Figure 7: Process Flow

& SAS Enterprise Guide - Erasure _Exploratory.egp g@@
Fie Edt View Tasks Program Tools Help | B~ - @G| L - 0y 74 X | 2 o 7]+ | BegDesriptive Statistics ~
Project Tree - X Descriptive Statistics «
= g?gl‘é“_“":"ec B Run ~ Export ~ Schedule ~ | Zoom v |4 Project Log | [Properties ~
= [Programs
£] Autoerec S & Lo
W, o S| B-—B—=8
= m septoct2011_sample =
[C] Overall Erasures by Form & Subject septoct20..11 Overall SAS Report
‘Wh Erasures by Form & Subject |\ Erasures .. -Overal..
[Dverall Erasure by Form & Subject I\
{5 WR Erasures by Form & Subject prs
Z Overall Erasures Summary Stats | 1| “» E] - > E-_i
T WR Erasures Summary Stats 1%
Il Average erasurese !:: | WhR SAS Report
il Average erasuresm J [| Erasures ... - Summar...

Creating manual links
As mentioned in the previous segment, a process flow presents relationships between objects

inside a project. These relationships are shown by arrows connecting one object to another (e.g.,
program to dataset, or graph to report). Sometimes, these relationships are implicit as EG
automatically identifies these relationships and display them through links in the process flow,
without control from the user. However, EG also allows users to create their own links among
objects (Figure 8). When EG does the linking on its own, the link is appears as a solid line. When it is
user-defined, the link appears as a dashed line. Whether it is automatic or manual, links help to
control program execution. To create the user-defined link below, we right clicked Car Program,
selected Link Program to, and selected Car Data.

Figure 8: Manual Link

f& SAS Enterprise Guide - SCSUG 2012.egp
File Edit View Tasks Program Tools

ep | B- 3-8 ¥ O !
Tree = % Borrow Code from EG ~
?@onow Code from EG
54 CarData
=[] Programs
= (%] Car Program
= Link to Data

Many smaller programs

Another strength of EG is its ability to divide large programming tasks into smaller, more
manageable programs. In the traditional SAS interface, we tended to write long programs consisting
of hundreds of lines of code. In EG, our development process tends to break up the code into

smaller programs with more visual representations of the links between code pieces (Figure 9). We
believe this provides better documentation and allows new analysts to more quickly pick up
maintenance on projects.

Figure 9: Smaller Code Chunks in EG

d—B-—k—a

Smuine |

I DISTRICT_ %, Scomer SAS Report
Likert Da 1 : } Plet - Scame
1
|
|
| Disvia) DISTRICT
| Ravdom Sa |
|
A\
\| \, (@F
|| |
II SAS Regpart
| Desrric
|

SCHOOL U l] Schod)\ SASRepm
\ RadamSa. | -Schod
A
| \ f i
\ @

| - A2
|I SCHOOL SA Caurt SAS Repart
1 Schodsi -CamS
|
II \
| L B , (@
| " £ B—3)
|| Query QUERY_FOR Summary SAS Repart
I|| Builder Suristic - Summar
L‘ ot [

[Fel > |om

Scamer SAS Repont

Platl Scame

Many process flows saving permanent version between.
Often times, users may want to save permanent data between multiple process flows (Figure 10).

This minimizes the effort of having to reload temporary data each time EG is run. If not specified, EG
automatically saves datasets in the WORK library where they will be held until the project is closed.
To save a permanent dataset, simply create a user-defined library and assign your dataset to that
specific library. It’s handy to save a dataset as permanent if you plan to use it throughout your
project. The permanent dataset can be transferred from one process flow to another.

Figure 10: Permanent SAS Dataset Saved as Output from One Process Flow and Used as Input in

Another
- 3@3 LoadData
+ }jj Copy of description_erasure_analysis_output.xls
+ [fr3 SEPTOCT2011
® [r] Cell statistics for tform analysis of ERASURE.SEPTOC
+ ﬁ Data Imported from Copy of description_grasure_analy
L] TestCenters
31 TESTCENTERS
* 7] SMALLSAMPLETESTCENTERS
};{3 SMALLSAMPLETESTCENTERS
=[] Programs
4] Load Data
Print Form Counts
Sample Test Centers
= -._i-; Pull Student Records for Small Test Center Sampl
= Link to SMALLSAMPLETESTCENTERS
= 8eo EDA

g i}z 1 & E]

Load Data SEPTOCT20,.. Random |} Notel
Sample 10..1
Il |\
It
|

| SEPTOCT201

/ 1-SAMPLE

5|73 SEPTOCT2011_SAMPLE | 4=
[&] Test Form Frequencies
[#4l Number of Erasures

|1 L@
' " | om

SAS Report

Determine which tasks are easier to build interactively and which tasks are best

coded manually.

As we have worked with Enterprise Guide, we have developed certain processes that we prefer to
perform through the point-and-click interface and others that we prefer to code directly.

Better built interactively in EG

Some of the activities we prefer to use the point-and-click interface for include data importing,

dataset merging, and table creation.

Data Import

For most standard Excel and delimited files, the data import in EG works well and saves us from
having to remember all of the options for the INFILE statement. From the File menu choose Import
Data and browse to the file you wish to import. A favorite screen in the import process is the Define
Field Attributes where we can define which variables to import, what to name them, informats and
formats on one screen (Figure 11). In this example, we have chosen not to import the last variable
by unchecking the box in the Inc column.

Figure 11: Define Field Attributes for Data Import

<! Import Data from Copy of description_erasure_analysis_output.xls

3 ofd Define Field Attributes gsas

Select columns and define attributes:

o SEE e Lbe T G e 04 O
@ | vaial variable | variable Shing | $CHARTI. |11 |$CHART1. | $CHARTI.
stan start Number \BEST12 |8 | BEST12 | BESTI2
= | ' width ' width Number |BEST12. |8 |BEST12. | BESTI2
_ [type [type Sting | $CHARS. |9 $CHARS. | $CHARS
e / | Geecription | desciiption Sking | $CHAR105. 105 $CHAR105. | $CHAR1OS.
wll .sublest subtest Stiing $CHAR41. |41 | $CHARA4L. I$CHAH41.

< $CHAR37. $CHAR37. | $CHAR37.

[selectal | [Clearal |

[Back v|[News || FEiish || Cancel |[Hep |

Query Builder
For merging data by PROC SQL, we have found the Query Builder Task in EG to be quite useful.

Multiple tables can be imported and only chosen fields kept in the merged dataset (Figure 12).

Figure 12: Select Data Tab in Query Builder

%3 Combine Test and Target for Local: WORK.CCRTARGETS

Query name: | Combine Test and Target | Outputname: |WORK TestTarget || Change... |

i Computed Columns | &) Prompt Manager | 5] Preview | &8} Tools ~ | [Options ~

53 Add Tables X Delete ect Data | Fier Data | Sort Datal
= Ez}[EES:;HGETS] mn Name Identi » Summary |
| (@ Target t2.T arget :
% ?':;eel /A subject t.subject
= EE} H [SHTEST] @ gladet_'l'l l'|.gradet_'|1 ! 7
- @ subject @ ssc_11 tl.ssc_11 , =
|
@ gradet_1 | | X
@ ssc_M I |
| |
|
| i

Table joins can be managed visually in the Query Builder Task (Figure 13).

Figure 13: Table Joins in Query Builder Task

=: Tables and Joins E @@
% add Tables X Delete [Properties mq - [options ~ /

subject subject
grade gradet_11

Target ssc_11

T T__cr—

Join Order

INNER JOIN: t2.subject = t1.subject
INNER JOIN: t2.grade = t1.gradet_11

[Close H HelpJ.

Proc Tabulate

Since the goal of PROC TABULATE is to produce a visually informative table, building the table
graphically is more convenient. The EG task for this is Summary Tables. Some of the options
available include the Select analysis variables and statistics screen where you can choose the
analysis variables, what statistics to build off of them and where to place them in the table (Figure
14). These options add the analysis variables to the VAR statement and place the requested
statistics in the appropriate places in the TABLE statement. The Preview portion of the dialog
allows you to visualize what the completed table will look like.

You may also choose and arrange classification variables (Figure 15). These options build the
CLASS statement and place the classes in the appropriate places in the TABLE statement. Once
again the Preview is invaluable in setting up the table as you wish.

Better coded manually
We have found some tasks that are still easier to code manually.

Figure 14: Select Analysis Variables and Statistics in Summary Tables Task

I Summary Tables for Local:SASHELP.CARS

2 ofb Select analysis variables and statistics SSaS

[[] Analysis variables: | Add | Preview:

Variable Statistic

MSRP Horsepower

Average Average

Horsepower Average
? =R
Origin |
939 999
Total 939 999
Analysis variable labels: | i columns v
Slalisice labsts ,r“i“ columns v Select table format
in pages
hidden

Figure 15: Select Classification Variables in Summary Tables Task

I8 Summary Tables for Local: SASHELP.CARS

3 of6 Select classification variables Ssas
] Columns: Add Preview:
MSRP Horsepower
Average Average
% 999 999
Origin i o

] fowe |
/A Drigin | Todl i =

X

Graphics

Although EG documentation touts the inclusion of an interface to graphics, we have found those
graphics tasks provided to be too simple for most of our work. As an example take the Scatter Plot
task (Figure 16). You are limited to a single Horizontal variable and a single Vertical variable. We

10

happen to know that the PLOT statement in PROC GPLOT can handle multiple variables and
produce multiple scatter plots so this limitation in the EG task seems puzzling. Another limitation of
the EG interface to graphics is the lack of support for the new SG Procedures for making statistical
graphics.

Figure 16: Example of Limitation in EG Interface to SAS/Graph

Scatter Plot for Local:SASHELP.CARS X

Scatter Plot Data
Data
Appearance
Plots Data sowrce: LocaltSASHELP.CARS
Interpolations Task filter. None
Anes /
General
Horizontal Asxis Columns to assign: Task roles:
Auis : =]
- Name ‘@ Horizontal (Limit: 1)
Major Ticks
Minor Ticks B Make o L SO
Reference Lines @ Model 3 Yecical L 1)
. X AT b
V'"::s‘“‘“s g O’r'i'; @) Vertical Right) (Limit 1)
Major Ticks @ DriveTrain R Group chate by
Minor Ticks 54 MSRP
Reference Lines 3 Invoice
Ueltice! Right Awxis @ EngineSize
Ams) @ Cylinders
Major Ticks @ Horsepower
Minor Ticks @ MPG_City
Reference Lines @ MPGWHi s
Legend @ Wei _righway
Chart Area eight
Tiles @ ‘Wheebase
Propeities @ Length

Complex data step manipulations

For all but the simplest data manipulations, we still prefer to code directly rather than using the EG
interface. EG provides Tasks for various processes like sorting and transposing data which call
PROC SORT and TRANSPOSE, respectively. However, the rich and efficient data manipulations
available in the DATA Step are still the domain of the experienced SAS coder.

EG Issues

Dataset info not updated in interface

You can use and display permanent SAS datasets as part of your project. We often need to check
that datasets have been updated in the correct sequence. We expected that you could request the
last modified time for the permanent data set by viewing the dataset properties in EG (Figure 17).
However, the time displayed there is the last time that the dataset was modified within the EG
session. If you have not modified the dataset within the current EG session, the time the EG session
started is displayed. You still need to use Windows Explorer to view the actual modification time for
the dataset.

11

Figure 17: Incorrect Last Modified Time for Permanent SAS Dataset

8% Properties for EPAS12 @

E=E | General

Columns

Advanced

Summary
File properties
File name: (CCREPAS12
Created: Tuesday, September 04, 2012 10:18

st modified: Tuesday, September 04, 2012 10:18AM—>
Data Type: SAS Data Set
Label:
ODS CVSALL

Autocomplete for the EG SAS code editor is a wonderful feature, but there may still be some missing
or misspecified options. One that we have noticed is the ODS CSVALL statement to create a .csv file.
The EG editor has this misspelled as CVSALL (Figure 18).

Figure 18: Misspelled CSVALL option in EG Autocomplete Feature

f& SAS Enterprise Guide - SCSUG 2012.egp
Fle Edt View Tasks Program Toos Hep |B-(Z- | S Iy X D ™ |-

= Beg Barow Code flom EG || & Progiam™ |] Log | @@ Resuts
= 43 CARS | | .
mﬁj Summaty Tables Hsave - PR -~ @ Selected Server: Local (Connected) ~
= [Programs 33| RUN; QUIT; 46
(#] Program 40} TITLE; FOOTNOTE;
41

42 ods c

B _ALL_CLOSE

ServerList 26| Sreeeses
= GES & DOCUMENT
(2] ESCAPECHAR=
sk : [EXCLUDE
! _E[quels [GRAPHICS v
@ [ly Private OLAP Servers o B HTML =
Ready Y% No profile selected Line 42, Col6 .-

12

Lack of Total run time in log

Within EG, we miss the reporting of total run time in the Log files that was automatic in the
traditional SAS interface. This is often useful information for planning when and how to run a
process. This information can be viewed in the Task properties as Last Execution Time (Figure 19),
but it seems like a simple feature to add back to the SAS Log at least for the old-time SAS
programmers.

Figure 19: Last Execution Time for EG Task

Ed Properties for Load Test Data E]

m General

Results

Prompls

Summary
Label:
\Load Test Data
Code will run on server:
_ Local
Last Execution Time:
'_ 24 seconds

Conclusion

We hope you have found useful tips on approaching SAS Enterprise Guide. For the most part, we
have found this tool to be a great addition for productivity and documentation. We look forward to
discovering even more powerful features of EG.

Suggested Reading

First, Jennifer and Steven First. 2012. Productivity Tips for SAS Enterprise Guide Users. SAS Global
Forum paper 301-2012.

Ravenna, Andy. 2011. Becoming a Better Programmer with SAS Enterprise Guide 4.3. SAS Global
Forum paper 307-2011.

Schacherer, Chris. 2012. Take a Fresh Look at SAS Enterprise Guide: From point-and-click ad hocs
to robust enterprise solutions. SAS Global Forum paper 294-2012.

Slaughter, Susan J. and Lora D. Delwiche. 2010. The Little SAS Book for Enterprise Guide 4.2. Cary,
NC: SAS Institute Inc.

Author Contact Information

Phuong Pham Steve Fleming
Clarity Services, Inc. Clarity Services, Inc.
ppham@clarityservices.com sfleming@clarityservices.com

13

