
1

Finding Oracle® Table Metadata: When PROC CONTENTS Is Not Enough
Jeremy W. Poling, B&W Y-12 L.L.C., Oak Ridge, TN

ABSTRACT

Complex Oracle® databases often contain hundreds of linked tables. For SAS/ACCESS® Interface to
Oracle software users who are unfamiliar with a database, finding the data they need and extracting it
efficiently can be a daunting task. For this reason, a tool that extracts and summarizes database metadata
can be invaluable. This paper describes how Oracle table metadata can be extracted from the Oracle data
dictionary using the SAS/ACCESS LIBNAME statement in conjunction with traditional SAS® DATA step
programming techniques. For a given Oracle table, we discuss how to identify the number of observations
and variables in the table, variable names and attributes, constraints, indexes, and linked tables. A macro is
presented which can be used to extract all the aforementioned metadata for an Oracle table and produce an
HTML report. Once stored as an autocall macro, the macro can be used to quickly identify helpful
information about an Oracle table that cannot be seen from the output of PROC CONTENTS.

This paper assumes that the reader has a basic understanding of DATA step programming, the macro
language, and the SAS/ACCESS LIBNAME statement. A basic understanding of relational database
management system concepts is also helpful, but not required.

INTRODUCTION

Metadata is typically defined simply as “data about data.” For any SAS data set, a programmer can view
useful metadata simply by using PROC CONTENTS. But, what if the table of interest resides in an Oracle
database? Unfortunately, finding Oracle table metadata is not quite as straightforward as finding SAS data
set metadata.

This paper will explain how to extract metadata from the Oracle data dictionary using the SAS/ACCESS
LIBNAME statement. The Oracle data dictionary consists of a set of tables that store Oracle metadata.
This paper will describe only a small fraction of the metadata contained in the data dictionary. Once we
have identified the Oracle table metadata that we find useful, we can write a SAS autocall macro that can
be called upon to quickly extract the metadata and generate a report.

An Oracle database is composed of multiple schemas. A schema is simply a set of database objects, such
as tables, views and indexes, which are associated with a particular owner. For example purposes, the SAS
codes presented in this paper reference a table named purchases that resides in the sch schema of a
fictional Oracle database.

To avoid confusion associated with differing terminology, this paper will refer to the records of both Oracle
tables and SAS data sets as “observations.” Furthermore, we will refer to the fields of both Oracle tables
and SAS data sets as “variables.”

FINDING ORACLE TABLE METADATA WITH PROC CONTENTS
You can, of course, specify a SAS/ACCESS view of an Oracle table in the DATA= option of a PROC
CONTENTS step. An example of a typical SAS/ACCESS LIBNAME statement and a PROC CONTENTS
step follows. The output generated by the CONTENTS procedure is shown in Figure 1.

 libname oralib oracle user="userID" password="xxxxxx" path="dbname" schema="sch";

 proc contents data=oralib.purchases;
 run;

2

 The CONTENTS Procedure

 Data Set Name ORALIB.PURCHASES Observations .
 Member Type DATA Variables 7
 Engine ORACLE Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation Default
 Encoding Default

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 4 CUSTOMER_ID Char 12 $12. $12. CUSTOMER_ID
 5 DATE_PURCHASE Num 12 DATETIME20. DATETIME20. DATE_PURCHASE
 3 EMPLOYEE_ID Char 12 $12. $12. EMPLOYEE_ID
 2 PURCHASE_CODE Char 1 $1. $1. PURCHASE_CODE
 7 PURCHASE_COMMENTS Char 12 $12. $12. PURCHASE_COMMENTS
 1 PURCHASE_ORDER_ID Char 12 $12. $12. PURCHASE_ORDER_ID
 6 TOT_PAYMENT_DUE_AMOUNT Num 8 12.2 12.2 TOT_PAYMENT_DUE_AMOUNT

Figure 1: PROC CONTENTS output produced on a SAS/ACCESS view of an Oracle table

The PROC CONTENTS output will tell you the number of variables in the Oracle table with their names,
types, lengths, and formats. However, there is no additional information in the PROC CONTENTS output
that is useful. For example, PROC CONTENTS does not identify the number of observations in the Oracle
table, Oracle indexes, or Oracle integrity constraints. Even though the output indicates that there are zero
SAS indexes defined, one or more Oracle indexes could be defined for the table. Other traditional methods
for obtaining SAS data set metadata, such as querying the SAS dictionary tables with PROC SQL, produce
similar results. All of this missing information can be crucial for the SAS programmer when developing
applications that access the Oracle data. Fortunately, all of the missing pieces can be obtained if we know
the right places to look.

USING ORACLE DATA DICTIONARY VIEWS

The Oracle data dictionary is a set of read-only tables that contain Oracle database metadata. Views of the
Oracle data dictionary tables are stored in the SYS schema. Provided that your Oracle database
administrator has given you the appropriate permissions, you can use SAS/ACCESS Interface to Oracle
software to connect to the database and access the data dictionary views via a LIBNAME statement. For
example, the LIBNAME statement below creates a SAS library named orasys that contains views of an
Oracle database’s data dictionary.

 libname orasys oracle user="userID" password="xxxxxx" path="dbname" schema="sys";

After the LIBNAME statement has executed, the user can access data stored in hundreds of data dictionary
views using SAS. The data dictionary views with a prefix of “ALL” contain information pertaining to the
user’s perspective of the database. These views often contain metadata of interest to a SAS programmer.
The author has found the following five data dictionary views to be especially useful: ALL_TABLES,
ALL_TAB_COLUMNS, ALL_CONSTRAINTS, ALL_CONS_COLUMNS, and ALL_IND_COLUMNS.
Each of these views includes a variable named TABLE_NAME that denotes the Oracle table name and a
variable named OWNER that denotes the schema, except for the ALL_IND_COLUMNS view where the
schema is identified by the variable named TABLE_OWNER. We will briefly discuss each of these data
dictionary views in this paper. The reader is encouraged to consult the Oracle Database Reference for
details pertaining to other Oracle data dictionary views.

3

As an alternative to the SAS/ACCESS LIBNAME statement, the Pass-Through Facility could be utilized to
extract information from the Oracle data dictionary. The Pass-Through Facility enables a programmer to
use PROC SQL to write queries which contain native Oracle SQL syntax and pass the queries directly to
Oracle for processing. Both methods have distinct advantages and disadvantages. See Jesse (2011) for
examples of using the Pass-Through Facility to extract information from the Oracle data dictionary.

FINDING METADATA IN THE DATA DICTIONARY VIEWS
Identifying General Information about a Table
The ALL_TABLES data dictionary view can be used to obtain information about all tables accessible to
the user, such as the number of observations in each Oracle table and the average observation size. Some
of the variables in this view that are of interest include NUM_ROWS, and AVG_ROW_LENGTH. The
NUM_ROWS variable contains the number of observations in each table and the AVG_ROW_LENGTH
variable contains the average length, in bytes, of an observation in each table. A SAS programmer may
find this information to be helpful when setting the value of the READBUFF= data set option, for example.

Identifying Variable Names and Attributes
Metadata pertaining to specific variables in an Oracle table can be found in the ALL_TAB_COLUMNS
data dictionary view. Some of the useful variables in this view include COLUMN_NAME, COLUMN_ID,
DATA_TYPE, and CHAR_COL_DECL_LENGTH. The COLUMN_NAME variable contains the names
of the Oracle variables. The COLUMN_ID variable contains the sequence number of each variable, which
is the order in which the variables appear in the program data vector when the SAS/ACCESS views are
referenced in a DATA step. The DATA_TYPE variable contains the Oracle data type of the variable, such
as NUMBER, DATE, or VARCHAR2, for example. For character variables, the
CHAR_COL_DECL_LENGTH variable contains the length of the variable.

One useful application of the ALL_TAB_COLUMNS data dictionary view involves finding all the Oracle
tables that contain a variable with a particular name. For example, the following DATA step can be used to
create a data set named emp_tables that contains the names of all tables in the sch schema which have a
variable named employee_id.

 data emp_tables(keep=table_name);
 set orasys.all_tab_columns(keep=table_name owner column_name);
 by table_name;
 where column_name = 'EMPLOYEE_ID' and owner='SCH';
 run;

Identifying Integrity Constraints
Integrity constraints are rules that the database enforces to ensure the validity of the data contained in the
tables. There are several different types of integrity constraints. We will specifically examine primary key
constraints and referential constraints. A primary key constraint guarantees that a set of one or more non-
missing key variables can be used to uniquely identify each observation in the table. There can be at most
one primary key constraint defined on a table. A referential constraint links observations in one table to
observations in another table through the use of key variables. For example, a variable included in one
table might be linked to a primary key variable in another table. This type of variable is called a foreign
key variable. Any values of a foreign key variable must match a value of the primary key variable in the
referenced table. Other types of constraints can also be used to ensure a particular set of variables are non-
missing, unique, or comply with a certain condition.

The ALL_CONSTRAINTS data dictionary view can be used to obtain information about integrity
constraints, such as the constraint names, constraint types, and the names of the associated constraints in
referenced tables (for referential constraints). Some of the important variables in this view include
CONSTRAINT_NAME, CONSTRAINT_TYPE, SEARCH_CONDITION, R_CONSTRAINT_NAME,
and INDEX_NAME. CONSTRAINT_NAME identifies the names of the integrity constraints and
CONSTRAINT_TYPE identifies the types of integrity constraints. The CONSTRAINT_TYPE variable
has a value of “P” on primary key constraints and a value of “R” on referential constraints. For primary

4

key constraints, the INDEX_NAME variable contains the name of the index associated with the primary
key variables. We will discuss indexes as a subsequent topic in this paper. For referential constraints, the
R_CONSTRAINT_NAME variable contains the name of the constraint in the referenced table. For other
constraints, the variable SEARCH_CONDITION contains the condition enforced by the constraint.

Due to the structure of Oracle databases, understanding the referential constraints can be especially
important. Oracle databases are often structured such that the tables are normalized. Normalization means
that, in order to reduce data redundancy, large tables are divided into smaller, less redundant tables and the
tables are linked together using referential constraints. This structure enables a change in one table to be
propagated throughout the rest of the database. While the benefits of normalization are significant, a
normalized database model often means that the variables of interest to the SAS programmer might be
scattered throughout many different Oracle tables. Therefore, SAS programmers must understand how the
Oracle tables are linked together in order to “de-normalize” the database and find the information they
need.

To properly understand and interpret the primary key and referential constraints, we need to know which
variables are included in the constraints. To obtain this information, the constraint names must be cross-
referenced with the ALL_CONS_COLUMNS data dictionary view, which contains information about all
variables available to the user that are specified in integrity constraints. The variables in this view that we
will utilize include CONSTRAINT_NAME, COLUMN_NAME, and POSITION. For any value of
CONSTRAINT_NAME, the COLUMN_NAME variable can be used to identify the names of the key
variables included in the constraints. When there is more than one key variable included in a constraint, the
POSITION variable contains the position of the COLUMN_NAME value in the constraint.

Identifying Indexes
An index is a data structure that points to specific observations in a table based on the values of one or
more key variables. In Oracle, an index is automatically created for each primary key constraint. When a
table is large and a query extracts a relatively small percentage of the observations in the table, the use of
an index will substantially improve the performance of the query. An index can be either simple, meaning
that the index is based on the values of only a single variable, or composite, meaning that the index is based
on the values of multiple variables. If a SAS programmer knows which indexes have been defined on a
particular table, the programmer can use this information to improve efficiency. For example, knowing
which Oracle table variables are indexed can help the programmer determine whether or not the DBKEY=
data set option should be used. This option can improve performance when a small SAS data set is merged
with an indexed Oracle table. Additionally, if the index name is known, the programmer can create an
Oracle hint to direct Oracle to use a specific index using the ORHINTS= data set option. For example,
suppose an Oracle index named idx_purch3 has been defined on the purchases table based on the key
variable employee_id. The following SAS code directs Oracle to use the index and creates a data set
containing a subset of the table.

 data employee_subset;
 set oralib.purchases(orhints='/*+ INDEX(PURCHASES, IDX_PURCH3) */');
 by employee_id;
 where employee_id in ('E00312' 'E00401' 'E00423');
 run;

The reader is encouraged to see Chapman and Sridharma (2005) for more information about using the
DBKEY= and ORHINTS= data set options.

The ALL_IND_COLUMNS data dictionary view can be used to obtain information about Oracle indexes,
such as the index names and the indexed variables. Some of the important variables in this view include
INDEX_NAME, COLUMN_NAME, and COLUMN_POSITION. The INDEX_NAME variable contains
the names of the Oracle indexes. The COLUMN_NAME variable contains the names of key variables
which are used by the index. When an index is composite, multiple values of COLUMN_NAME will exist
for a single value of INDEX_NAME. For composite indexes, the value of COLUMN_POSITION is
important. COLUMN_POSITION contains the position of the COLUMN_NAME value within the index.

5

THE %ORACLE_METADATA MACRO
Now that we know where to look for useful pieces of metadata in the Oracle data dictionary views, we can
write a single macro program to extract all the metadata and produce a report. The
%ORACLE_METADATA macro, whose complete code can be viewed in Appendix A, can be used to
extract the Oracle table metadata and produce an HTML report. Values for the table name and Oracle
connection options are passed as macro parameters. The Oracle connection options are optional keyword
parameters which can be set to default values. An example of the HTML report produced by the macro is
shown in Appendix B. Once stored as an autocall macro, the macro can be used to quickly find the useful
Oracle table metadata that PROC CONTENTS won’t show you.

CONCLUSION
SAS programmers need to understand the structure of their data. As a result, when the data they are
analyzing resides in Oracle database tables, the programmers need to be equipped with tools to help them
obtain table metadata. The Oracle data dictionary views can be queried to extract this metadata. An
autocall macro that queries the data dictionary views and produces a report is a good way for SAS
programmers to quickly identify helpful metadata that cannot be seen from the output of PROC
CONTENTS.

REFERENCES
Chapman, David D. and Sridharma, Selvaratnam. 2005. “Using the ORACLE LIBNAME Engine to
Reduce the Time it Takes to Extract Data from an ORACLE Database.” Proceedings of the Northeast SAS
Users Group Inc. 18th Annual Conference. Available at
http://www.nesug.org/proceedings/nesug05/io/io8.pdf

Jesse, Carole. 2011. “Romancing Your Data: The Getting-to-Know-You Phase.” Proceedings of the SAS
Global Forum 2011 Conference. Available at http://support.sas.com/resources/papers/proceedings11/133-
2011.pdf

Oracle. “The Oracle Database Reference, 10g Release 2 (10.2).” Available at
http://download.oracle.com/docs/cd/B19306_01/server.102/b14237/toc.htm

ACKNOWLEDGMENTS
The author would like to thank his coworkers for taking the time to review the content of this paper as well
as his management for their support, especially Leah Cox, Steve McGuire, Rachel Hayes, and Amy
Wilson.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
 Jeremy W. Poling
 B&W Y-12 L.L.C.
 Phone: 865-574-4610
 E-mail: jpoling@vt.edu

DISCLAIMER AND COPYRIGHT NOTICE
This work of authorship and those incorporated herein were prepared by B&W Y-12 L.L.C. as accounts of
work sponsored by an agency of the United States Government. Neither the United States Government nor
any agency thereof, nor B&W Y-12 L.L.C., nor any of their employees makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, use made, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency or B&W Y-12
L.L.C. thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those
of the United Stated Government or any agency or B&W Y-12 L.L.C. thereof.

This document has been authored by a contractor/subcontractor of the U.S. Government under contract DE-
AC05-00OR-22800. Accordingly, the U.S. Government retains a paid-up, nonexclusive, irrevocable,

6

worldwide license to publish or reproduce the published form of this contribution, prepare derivative
works, distribute copies to the public, and perform publicly and display publicly, or allow others to do so,
for U.S. Government purposes.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A: SAS CODE FOR THE %ORACLE_METADATA MACRO
/**
This macro can be used to find metadata
related to an Oracle table. The macro
accepts five parameters. The first
parameter, TABLE, denotes the name of the
Oracle table of interest. There are four
additional keyword parameters that may be
used to denote the Oracle connection
options. The macro queries the Oracle
data dictionary views that reside in the
SYS schema to obtain information such as
the number of observations in the table,
the size of the table, indexes,
constraints, and linked tables. An HTML
report of the results is generated.
**/

%macro oracle_metadata(table,
user=userID, password=xxxxxx,
path=dbname, owner=sch);

/* Use the %superq function to mask
special characters in the connection
options. */

%let user=%superq(user);
%let password=%superq(password);
%let path=%superq(path);

/* Initialize local macro variables that
are used in the macro. */

%local table_exist num_rows
 avg_row_length num_vars num_constraints
 exist_primary_key_constraints
 exist_referential_constraints
 primary_key_constraint
 primary_key_index constraint_names
 r_constraint_names names_of_constraints
 num_indexes indexed
 foreign_key_constraints
 exist_foreign_key_tables;

/* Use a LIBNAME statement to connect to
the Oracle data dictionary views. */

libname orasys oracle user="&user"
 password="&password" path="&path"
 schema='sys' defer=no readbuff=1000;

/* If the ORASYS library still does not
exist, issue an error message and
terminate execution of the macro. */

%if %sysfunc (libref(orasys)) ne 0 %then
%do;
 %put ERROR: Unable to connect to the
Oracle data dictionary.;
 %return;
%end;

/* Convert the Oracle table name and
owner to upper case. */

%let table=%qupcase(%superq(table));
%let owner=%qupcase(%superq(owner));

/* Find the number of observations and
the observation length. This information
is stored in macro variables. If no
records are found in the ALL_TABLES view,
then create a macro variable to indicate
that the specified table does not exist.
*/

data _null_;
 if _n_=1 and eof then call symputx
 ("table_exist", "No");
 set orasys.all_tables(keep=table_name
 owner num_rows avg_row_len) end=eof;
 where table_name="&table" and
 owner="&owner";
 call symputx("num_rows", num_rows);
 call symputx("avg_row_length",
 avg_row_len);
run;

/* If the specified table does not exist
then issue an error message to the log
and terminate macro execution. */

%if &table_exist=No %then %do;
 %put ERROR: Oracle table "&table" does
not exist.;

7

 %return;
%end;

/* Create a data set containing variable
information for the table of interest.
Also, create a macro variable to denote
the total number of variables in the
Oracle table. */

data table_vars(drop=table_name owner
 num_vars);
 if _n_=1 and eof then do;
 call symputx("num_vars", "0");
 stop;
 end;
 set orasys.all_tab_columns
 (keep=table_name owner column_id
 column_name data_type
 char_col_decl_length) end=eof;
 by column_name;
 where table_name="&table" and
 owner="&owner";
 num_vars+1;
 if eof then call symputx("num_vars",
 num_vars);
run;

/* Two data sets are created which
contain constraint data, one for
referential constraints and one for other
constraints. Macro variables are created
to indicate the total number of
constraints and the existence of primary
key and referential constraints. If the
table has a primary key constraint, then
two more macro variables are created
which will resolve to the constraint name
and the index name of the primary key.
Additionally, when referential
constraints exist, two macro variables
are created which will resolve to the
names of all referential constraints and
the names of the associated constraints
in the referenced tables.*/

data other_constraints
 (keep=constraint_name condition)
 referential_constraints
 (keep=constraint_name
 r_constraint_name);
 if _n_=1 and eof then do;
 call symputx("num_constraints", "0");
 call symputx
 ("exist_primary_key_constraints",
 "No");

 call symputx
 ("exist_referential_constraints",
 "No");
 stop;
 end;
 set orasys.all_constraints
 (keep=table_name owner
 constraint_name constraint_type
 search_condition r_constraint_name
 index_name
 rename=(constraint_type=type
 search_condition=condition))
 end=eof;
 where table_name="&table" and
 owner="&owner";
 length constraint_names
 r_constraint_names $ 2000
 exist_primary_key_constraints
 exist_referential_constraints $ 3;
 retain constraint_names
 r_constraint_names
 exist_primary_key_constraints 'No'
 exist_referential_constraints 'No';
 condition=left(condition);
 if type='P' then do;
 exist_primary_key_constraints='Yes';
 call symputx
 ("primary_key_constraint",
 constraint_name);
 call symputx("primary_key_index",
 index_name);
 end;
 else if type='R' then do;
 exist_referential_constraints='Yes';
 output referential_constraints;
 constraint_names=catx(' ',
 constraint_names,
 strip(constraint_name));
 r_constraint_names=catx(' ',
 r_constraint_names,
 strip(r_constraint_name));
 end;
 else output other_constraints;
 num_constraints+1;
 if eof then do;
 call symputx("num_constraints",
 num_constraints);
 call symputx
 ("exist_primary_key_constraints",
 exist_primary_key_constraints);
 call symputx
 ("exist_referential_constraints",
 exist_referential_constraints);
 call symputx("constraint_names",
 constraint_names);
 call symputx("r_constraint_names",
 r_constraint_names);

8

 end;
run;

/* Create a view that will contain any
table names and variable names involved
in a set of constraints. The set of
constraints used is based on the value of
a macro variable named
NAMES_OF_CONSTRAINTS. This macro
variable is resolved at execution time
using the SYMGET function. Instead of
having a separate observation for each
variable involved in each constraint, the
view contains one observation for each
constraint and the variable names are
concatenated according to their position
within the constraint. */

data constraint_variable_names
 (keep=constraint_name table_name
 variables)
 /view=constraint_variable_names;
 set orasys.all_cons_columns
 (keep=table_name owner
 constraint_name column_name
 position);
 by constraint_name position;
 where owner="&owner" and
 findw(symget('names_of_constraints'),
 strip(constraint_name));
 length variables $ 2000;
 retain variables;
 if first.constraint_name then call
 missing(variables);
 variables=catx(', ', variables,
 strip(column_name));
 if last.constraint_name then output;
run;

/* If referential constraints exist on
the Oracle table, then additional
information is extracted from the data
dictionary, including the names of the
referenced tables and the constrained
variable names. */

%if &exist_referential_constraints=Yes
%then %do;

/* Use the CONSTRAINT_VARIABLE_NAMES view
to add a variable containing the
constrained variable names to the
REFERENTIAL_CONSTRAINTS data set. */

 proc sort data=referential_constraints;
 by constraint_name;
 run;

 %let names_of_constraints=
 &constraint_names;

 data referential_constraints
 (drop=table_name);
 merge referential_constraints
 constraint_variable_names;
 by constraint_name;
 run;

/* Use the CONSTRAINT_VARIABLE_NAMES view
again to add variables to the
REFERENTIAL_CONSTRAINTS data set which
denote the referenced tables and the
names of the constrained variables in the
referenced tables. */

 proc sort data=referential_constraints;
 by r_constraint_name;
 run;

 %let names_of_constraints=
 &r_constraint_names;

 data referential_constraints;
 merge referential_constraints
 constraint_variable_names
 (rename=(constraint_name=
 r_constraint_name
 table_name=r_table_name
 variables=r_variables));
 by r_constraint_name;
 run;

/* Sort the data set for subsequent
printing. */

 proc sort data=referential_constraints;
 by constraint_name;
 run;

%end;

/* Determine the number of Oracle indexes
that exist on the given table and store
this information in a macro variable. A
data set is created that contains the
name of each index and the variables that
comprise the index. For composite indexes
that involve multiple variables, the
variable names are concatenated into a
single variable so that the output data
set contains only one observation per
index name. */

9

data indexes(keep=index_name variables
 primary_key);
 if _n_=1 and eof then do;
 call symputx("num_indexes", "0");
 stop;
 end;
 set orasys.all_ind_columns
 (keep=table_name table_owner
 index_name column_name
 column_position)
 end=eof;
 by index_name column_position;
 where table_name="&table" and
 table_owner="&owner";
 length variables $ 2000
 primary_key $ 3;
 retain variables primary_key;
 if first.index_name then do;
 call missing(variables, primary_key);
 num_indexes+1;
 end;
 if index_name="&primary_key_index" then
 primary_key='Yes';
 variables = catx(', ', variables,
 strip(column_name));
 if last.index_name then output;
 if eof then call symputx("num_indexes",
 num_indexes);
run;

/* Create a Yes/No macro variable to
indicate whether or not the Oracle
table is indexed. */

%let indexed=%sysfunc(ifc(&num_indexes>
 0, Yes, No));

/* If the table has a primary key
constraint, then create a data set
containing the names of all other Oracle
tables with a foreign key which is the
primary key in the selected table. A
macro variable is created to indicate
whether there exist any such tables. If
there are tables with a foreign key which
is the primary key in the selected table,
then another macro variable is created
which will resolve to the constraint
names in the referenced tables. */

%if &exist_primary_key_constraints=Yes
%then %do;

 data foreign_key_tables(keep=table_name
 constraint_name);

 set orasys.all_constraints
 (keep=table_name owner
 constraint_name r_constraint_name)
 end=eof;
 by constraint_name;
 where owner="&owner" and
 r_constraint_name=
 "&primary_key_constraint";
 length foreign_key_constraints $
 2000;
 retain foreign_key_constraints;
 foreign_key_constraints=catx(' ',
 foreign_key_constraints,
 strip(constraint_name));
 if eof then do;
 call symputx
 ("foreign_key_constraints",
 foreign_key_constraints);
 call symputx
 ("exist_foreign_key_tables",
 "Yes");
 end;
 run;

/* If there are tables with a foreign key
which references the primary key
constraint in the selected table, then
use the CONSTRAINT_VARIABLE_NAMES view to
find the names of the constrained
variables in the these tables. */

 %if &exist_foreign_key_tables=Yes
 %then %do;

 %let names_of_constraints=
 &foreign_key_constraints;

 data foreign_key_tables;
 merge foreign_key_tables
 constraint_variable_names;
 by constraint_name;
 run;

/* Sort the data set for subsequent
printing. */

 proc sort data=foreign_key_tables;
 by table_name;
 run;

 %end;
%end;

/* Use the macro variables previously
created to construct a data set with
table attributes which will be printed in
the report */

10

data table_attributes;
 length attribute $ 26 value $12;
 attribute='Number of Observations';
 value="&num_rows"; output;
 attribute='Number of Variables';
 value="&num_vars"; output;
 attribute='Average Observation Length';
 value="&avg_row_length"; output;
 attribute='Indexed'; value="&indexed";
 output; attribute='Number of Indexes';
 value="&num_indexes"; output;
 attribute='Number of Constraints';
 value="&num_constraints"; output;
run;

/* Produce the Oracle table metadata HTML
report using a sequence of PROC PRINT
steps. */

ods listing close;
ods html
 file="Oracle_table_metadata.html"
 style=minimal;

title "Summary of Metadata for the &table
Table";
title3 "Table Attributes";
footnote;
proc print data=table_attributes noobs
 label;
 label attribute="Attribute"
 value="Value";
run;

title "Alphabetic Listing of Table
Variables";
proc print data=table_vars label;
 label column_id='#'
 Column_Name="Variable Name"
 data_type="Type"
 char_col_decl_length="Char Length";
 var column_id column_name data_type
 char_col_decl_length;
run;

title "General Table Constraints";
proc print data=other_constraints
 label;
 label
 constraint_name='Constraint Name'
 condition='Condition';
 var constraint_name condition;
run;

%if &exist_referential_constraints=Yes
%then %do;

 title "Referential Table Constraints";
 proc print data=referential_constraints
 label;
 label
 constraint_name='Constraint Name'
 variables="Constrained Variables in
the &table Table"
 r_constraint_name="Referential
Constraint Name"
 r_table_name="Referenced Table"
 r_variables='Referenced Table
Variables';
 var constraint_name variables
 r_constraint_name r_table_name
 r_variables;
 run;

%end;

title "Indexes";
proc print data=indexes label;
 label index_name='Index Name'
 primary_key='Primary Key'
 variables='Variables';
 var index_name primary_key variables;
run;

%if &exist_foreign_key_tables=Yes %then
 %do;

 title "Tables Where a Foreign Key
References the Primary Key Constraint,
%qsysfunc(strip(&primary_key_constraint))
";
 proc print data=foreign_key_tables
 label;
 label table_name='Table Name'
 constraint_name='Constraint Name'
 variables='Variables';
 var table_name constraint_name
 variables;
 run;

%end;

ods html close;
ods listing;

%mend;

11

APPENDIX B: SAMPLE OF HTML OUTPUT PRODUCED BY THE
 %ORACLE_METADATA MACRO

Summary of Metadata for the PURCHASES Table

Table Attributes

Attribute Value

Number of Observations 184279

Number of Variables 7

Average Observation Length 50

Indexed Yes

Number of Indexes 4

Number of Constraints 5

Alphabetic Listing of Table Variables

Obs # Variable Name Type Char Length

1 4 CUSTOMER_ID VARCHAR2 12

2 5 DATE_PURCHASE DATE .

3 3 EMPLOYEE_ID VARCHAR2 12

4 2 PURCHASE_CODE VARCHAR2 1

5 7 PURCHASE_COMMENTS VARCHAR2 1000

6 1 PURCHASE_ORDER_ID VARCHAR2 12

7 6 TOT_PAYMENT_DUE_AMOUNT NUMBER .

General Table Constraints

Obs Constraint Name Condition

1 SYS_C000122 "PURCHASE_ORDER_ID" IS NOT NULL

2 CONS_PURCH4 PURCHASE_CODE IN ('O', 'P', 'S')

12

Referential Table Constraints

Obs Constraint
Name

Constrained
Variables

in the
PURCHASES

Table

Referential
Constraint

Name

Referenced
Table

Referenced
Table

Variables

1 CONS_PURCH2 CUSTOMER_ID CONS_CUST1 CUSTOMER CUSTOMER_ID

2 CONS_PURCH3 EMPLOYEE_ID CONS_EMP1 EMPLOYEE EMPLOYEE_ID

Indexes

Obs Index Name Primary
Key

Variables

1 IDX_PURCH1 Yes PURCHASE_ORDER_ID

2 IDX_PURCH2 DATE_PURCHASE

3 IDX_PURCH3 EMPLOYEE_ID, CUSTOMER_ID

4 IDX_PURCH4 CUSTOMER_ID

Tables Where a Foreign Key References the Primary Key Constraint, CONS_PURCH1

Obs Table Name Constraint Name Variables

1 PAYMENTS CONS_PAY2 PURCHASE_ORDER_ID

2 PURCHASE_PRODUCTS CONS_PURCHPROD2 PURCHASE_ORDER_ID

