
 1

You Can’t Get There From Here If You Don’t Know Whe re Here Is. The
Importance of Profiling in Mapping Data

Patricia Hettinger, Oakbrook Terrace, IL

ABSTRACT

How many times have you been fooled by the name of a data element but found completely different values
than you would expect? SAS Enterprise Guide has a characterization task that could give you better
understanding but it has several drawbacks. One is that it will run frequencies on all character data
regardless of length or number of distinct values. This can result in some variables being dropped from the
output due to too many distinct values. It also results in frequencies not being run for numeric values at all.
Another is that minimum, maximum, number of missing values and number of non-missing values will be
calculated only for numeric variables when this information would be useful for any variable. A third issue is
the likelihood of your system hanging when attempting to analyze large data sets with many variables. This
paper details how you can overcome these obstacles as well as incorporating your profile results into a
useful mapping document.

INTRODUCTION

It often happens that you need to look intensively at the data you used to take for granted. Perhaps there
are changed procedures or new vendors. A critical source changes completely or worse yet, is discontinued
altogether. There may be new rules and regulations affecting your industry, Dodd-Frank in the banking area
for example. You might even find yourself taking back a process that was outsourced a few years ago. In
any case, the documentation is scattered and no one’s really sure what’s there any more.

A well-thought out profiling methodology can help in several ways. First, of course, it shows what is there
now and how far you may be from where you thought you were. Second, it gives several talking points with
your users. What do these extra values mean? Why are some of the values that are supposed to be there
missing? Why are there variables with 100% missing values? What might have changed in the 'real' world?

GENERAL DIFFERENCES BETWEEN DATABASES AND SAS DATA SETS

If you’ve ever worked on a database project, you may be familiar with the source to target mapping
document. This should include definitions, code values and most importantly, the path between the source
and the final variable. The path includes the source and target format, plus any changes that may have
occurred in the transformation. Sometimes deciding the target name is the most difficult part. Should it be
homeowner code, homeowner indicator, housing type code or…? The technical name may be even more
difficult. The database naming convention is a limitation when you have only 32 positions or even fewer.
There may be other rules too. Spell out ‘code’ or abbreviate as cd or cde? There are people whose main
job is to name objects. Sometimes deciding on a name takes longer than creating or audit the data element.
It’s amazing how many people have strong ideas about what something should be named.

The author has seen few source-to-target mapping documents for SAS data sets, even though many data
sets are used by hundreds of people and considered the system of record. Perhaps this is because anyone
with the proper system access could create them -- and did. There’s no database involved and thus no
database administrator. We will discuss how you can adapt a standard mapping document to SAS data
sets, including a baseline profile to measure other reiterations against if need be (and it probably will)

BASICS OF A MAPPING DOCUMENT

Even if you have access to a formal metadata repository, putting your mapping information into an Excel
spreadsheet first is a good idea. Most business people understand them and can follow the information
more easily. As far as naming conventions go, we will abbreviate ‘CODE’ as ‘CD’, ‘NUMBER’ as ‘NO’ and
‘DATE’ as ‘DT’.

 2

The example in figure 1 shows the variable #, business name, target variable, definition, target variable
format, source data name and source data element name for some variables relating to coupon redemption
tracking.

Variable

Business
Name Target Variable Definition

Target
Variable
Format

Source
Data
Name

Source
Data
Element
Name

1
Account
Number ACCT_NO

Number that specifically
identifies an account

Numeric
12

Daily
Pipeline
Report

ACCOUNT-
NUM

2
Coupon
Code COUPON_CD

The promotion
associated with the
coupon CHAR8

Daily
Pipeline
Report

PROMO-
CODE

3

Coupon
Redemption
Method
Code

COUPON_REDEEM_
METH_CD

Code that indicates how
a coupon was redeemed

Numeric
4

Daily
Pipeline
Report

PROMO-
REDEEM-
CODE

4

Coupon
Redemption
Date

COUPON_REDEEM_
DT

The date the coupon was
redeemed

SAS
date

Daily
Pipeline
Report

PROMO-
REDEEM-
DATE

Figure 1

Figure 2 gives the source data element format, the extract/transformation/load rules, expected values and
comments for some elements in the MarketingPromotion data set. If we have a large number of codes that
do not change that often, we might want the coupon code values in its own section. Note the comments
arose from discrepancies between what was expected and what was actually present in the baseline profile:

Target Variable

Source Data
Element
Format

Extraction/
Transformation/Load
rules

Expected
Values Comments

ACCT_NO
Packed
Decimal 7

Unpack and turn into
integer value

There should
be six to
eight
significant
digits

COUPON_CD alphanumeric direct move

Varies, see
latest
Marketing
campaign list

COUPON_REDEEM_METH_CD
Numeric
integer direct move

1-mailed in
2-redeemed
online
3-inbound
telemarketing

Mostly 2?
Are we
missing
some in the
baseline?

COUPON_REDEEM_DT alphanumeric

Source format should
be MM/DD/YYYY but
use anydtdte10.
format just in case

Valid
calendar
date

Why are
we getting
0's in the
source
when there
are
redemption
codes?

Figure 2

 3

If you are using Excel, you might want to set up a data form like the one in Figure 3:

Figure 3

Adding the baseline profile shows us the minimum value, the maximum value, the number of distinct values,
the number of missing values, the percent missing, the number of non-missing values and the percent non-
missing (figure 4):

Target Variable

Baseline
Minimum
Value

Baseline
Maximum
Value

Baseline #
of Missing
Values

Pct of
Missing
Values

Baseline
of
Distinct
Values

Baseline
of Non-
missing
Values

Pct of
Non-
missing
Values

ACCT_NO 20116789 81237890 0 0.00 4012109 4012109 100.00

COUPON_CD A150 XX70 1512093 37.69 70 2500016 62.31

COUPON_REDEEM_
METH_CD 1 3 1512093 37.69 3 2500016 62.31

COUPON_REDEEM_
DT 1/1/2007 1/28/2011 1512093 37.69 1102 2500016 62.31

Figure 4

 4

Another tab on the spreadsheet has the frequencies for those variables having 75 distinct values or less
(Figure 5):

Variable Value
Frequency
Count

Frequency
Percent

COUPON_REDEEM_METH_CD 1512093 37.69

COUPON_REDEEM_METH_CD 1 833339 20.77

COUPON_REDEEM_METH_CD 2 1250008 31.16

COUPON_REDEEM_METH_CD 3 416669 10.39

COUPON_CD 1512093 37.69

COUPON _CD A150 28000 0.7

COUPON _CD AA418 30000 0.75

COUPON _CD AA583 28500 0.71

COUPON _CD AA612 29500 0.74

COUPON _CD
and so on to
largest value

COUPON _CD XX70 280 0.7
Figure 5

This profile gives us a good idea of what is in the target data set and maybe what should always be there.
So how might we go about getting one? Do we have to code every time we do a load? No. We might not
have any data profiling tools like Trillium Discovery or SAS Dataflux but we do have base SAS and SAS
Enterprise Guide. This paper will detail how to set up a profiling application using just these two products.
In fact, you don’t even need Enterprise Guide but it is convenient for setting up prompts and stored
processes.

THE CHARACTERIZATION TASK IN SAS ENTERPRISE GUIDE

The characterization task in Enterprise Guide is a fair way to understand a data set with frequencies on
character data and statistics on numeric data. However it comes up a bit short with both types of data.
There are no minimum and maximum values for character data, which would be particularly helpful for long
variables. Frequencies are only run for character data, while we could benefit from frequencies on numeric
variables too, especially numeric codes and dates.

A major performance issue is that the characterization task will run frequencies on all character data
regardless of length or number of distinct values. This can result in some variables being dropped from the
output due to too many distinct values. As stated before, it also results in frequencies not being run for
numeric values at all. If you are attempting to use the task on large data sets with many variables, you may
find yourself hanging, especially in the frequency step.

Fortunately, one can take the code generated in Enterprise Guide as a starting point for new and more
customized routines. The author decided to address the characterization task deficiencies as well as add
the number of distinct values to control the number of frequencies run. The performance improved quite a
bit as well.

 5

To illustrate, let us look at how the built-in characterization process works for our promotion and coupon
redemption tracking data set. Figure 6 below shows the three numeric fields:

Dataset Variable Format N NMiss
INDATA.PROMOTR
ACK ACCT_NO 4012109 0
INDATA.PROMOTR
ACK

COUPON_REDEEM_
DT

MMDD
YY10. 2500016 1512093

INDATA.PROMOTR
ACK

COUPON_REDEEM_
METH_CD 2500016 1512093

Variable Total Min Mean Median Max StdMean

ACCT_NO 3.52E+16 20116789 4062198
337921

09 81237890 3000.235

COUPON_REDEEM_
DT 1.40E+09 17167 18346.75 18635.2 18655

0.7292449
8

COUPON_REDEEM_
METH_CD 4583362 1 1.83333307 2 3

3.8777E-
07

Figure 6

Some of these statistics don’t make all that much sense. Do we really need a summation or a standard
error of the mean for ACCT_NO or COUPON_REDEEM_DT? ACCT_NO might be a key but you certainly
can’t tell it from here. The minimum value is 1 for COUPON_REDEEM_METH_CD, the maximum value is 3
and the median is 2. Does that mean we only have three values? If so, what is their distribution? Where is
this data set we’re looking at anyway?

We did get one frequency for COUPON_CD. There were actually thirty distinct values reported (the default).
Figure 7 shows the top five plus a general category, ‘All other values’ because that is the number of top
values we wanted to see.

Dataset Variable Label Format Value Count Percent

INDATA.PROMOTRACK COUPON_CD COUPON_CD ***Missing*** 1512093 37.69

INDATA.PROMOTRACK COUPON_CD COUPON_CD AA418 30000 0.75

INDATA.PROMOTRACK COUPON_CD COUPON_CD AA612 29500 0.74

INDATA.PROMOTRACK COUPON_CD COUPON_CD AA583 28500 0.71

INDATA.PROMOTRACK COUPON_CD COUPON_CD A150 28000 0.70

 and so on….

INDATA.PROMOTRACK COUPON_CD COUPON_CD ***All other values*** 940000 23.43

Figure 7

We could definitely get better information here. Seeing the range of values for any variable, whether
character or numeric, would be useful. How about the acct_no? How many distinct vales are there?
Should this be used as a key and indexed? We should find the number of distinct values and decide a cut-
off point for frequencies, regardless of variable type. Even better, can we write the code once and reuse
any number of times with variable substitution? We met all of these objects with output seen in figures 8
and 9:

 6

New Summary

Dataset Libpath Variable Format

INDATA.PROMOTRACK /DATA/MKT/PROMOS ACCT_NO NUM8

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM
_DT DATE

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM
_METH_CD NUM4

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD CHAR8

Variable
Minimum
Value

Maximum
Value

of
Missing
Values

of
Distinct
Values

of
Non-
missing
Values

ACCT_NO 20116789 81237890 0 4012109 4012109

COUPON_REDEEM_DT 1/1/2007 1/28/2011 1512093 1102 2500016

COUPON_REDEEM_METH_CD 1 3 1512093 3 2500016

COUPON_CD A150 XX70 1512093 70 2500016
Figure 8

New Frequency:

Dataset Libpath Variable Value
Frequency
Count

Frequency
Percent

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM_METH
_CD 1512093 37.69

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM_METH
_CD 1 833339 20.77

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM_METH
_CD 2 1250008 31.16

INDATA.PROMOTRACK /DATA/MKT/PROMOS
COUPON_REDEEM_METH
_CD 3 416669 10.39

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD 1512093 37.69

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD A150 28000 0.70

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD AA418 30000 0.75

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD AA583 28500 0.71

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD AA612 29500 0.74

 and so on…

INDATA.PROMOTRACK /DATA/MKT/PROMOS COUPON_CD XX70 280 0.70
Figure 9

ARCHITECTURE

The programs in this paper were originally set up in an Enterprise Guide 4.1 project stored on the local
server. They were moved to SAS Enterprise Guide 4.2 and 4.3 with no code changes. Only new prompts
had to be set up. They have profiled SAS data sets and relational database tables on UNIX and local
servers. With a few simple modifications, they have run in batch jobs as well, even on Z/OS mainframes.

Our first point of departure from the standard characterization task is querying the dictionary column table
instead of using PROC CONTENTS to determine the variable types. This gives us more information and
flexibility with variable names containing special characters or embedded spaces. We will query the
dictionary column tables for the number of variables to be profiled, their names and attributes and then sort
by name.

Our second point of departure is to use PROC SQL to find the minimum, maximum, number of missing
values and number of distinct values for each variable. Unlike procs univariate or means, this works for any
type of variable. Once we know the number of distinct values, we can run a frequency on that variable if that
number is greater than one (no point in running a frequency if the distribution is 100%) and at or under the

 7

maximum we previously specified. We will put then the numeric and character results together in one table
by storing all the values in character columns. We will create a similar table for the results from PROC
FREQ so that those values can be stored together as well.

Perhaps the most important addition is that of limiting or safety macro variables. One is the maximum
number of variables we will profile in one step. If you have one thousand variables in a data set, you might
want to profile just a few hundred at time to avoid a session hang-up. We will call this the &profmax
variable. If we do want to profile in more than one pass, we will want to start the profiling at a different
location for each step. We will call this variable &profstart. The final limiting variable will be on the number
of distinct values for which we want to see the distribution. This variable is called &freqmax.

Therefore if we wanted to profile the first 500 variables and do a frequency on those having 2 to 75 different
values, we would set &profmax to 500, &profstart to 1 and &freqmax to 75. If we wanted to do the rest or
another 500, depending on how many variables are left, we would set &profmax to 500 again and ‘start’ to
501.

We will also use some location macro variables. They are the library name (&libname), the member name
(&memname) and the external location where our results will be stored (&path).

In this process, we are storing our results in an XML document with two tabs, one for the summary and one
for the frequency. The frequency tab shows the maximum number of values for which we ran them. In our
example, that would be ‘2 to 75’.

 WORK TABLES SETUP

We will store our results in four work tables, two for the summary and two for the frequencies. The
TEMPRANGE table will be overwritten for each variable’s summary information. The ALL_STATS table will
hold the results for all of the variables. The structure for both is shown in Figure 10:

Column
Name dataset libpath variable label format db_format

Population
Rule &libname..&memname

physical
path of
library

variable
being
analyzed

label, if
present

format in
source if
present.
Otherwise 20.
if numeric,
$100. if
character

Native format.
Either DATE,
NUMw or
CHARw

Column
Name min_value max_value miss_value distinct_values nmiss_value

Population
Rule

Minimum value of
variable

Maximum
value of
variable

number of
missing
values

number of
distinct values

number of
non-missing
variables

Figure 10

We only need to build ALL_STATS once. We will have TEMPRANGE built as part of a loop in the getvar
macro.

DATA ALL_STATS (LABEL="Ranges for All Variables");
 ATTRIB dataset FORMAT=$41. Variable FORMAT=$32. La bel FORMAT=$256. Format
 FORMAT=$31. Min_value FORMAT=$100. Max_value FORMA T=$100.
 Miss_value FORMAT=comma12.
 distinct_values FORMAT=comma12. Nmiss_value FORMAT =comma12. ;
 LABEL Min_value = 'Minimum Value' Max_value = 'Max imum Value'

Miss_value = '# of Missing Values' Distinct_values = '# of Distinct
Values' Nmiss_value = '# of Non-missing Values' ;

STOP;
RUN;

 8

TEMPFREQ and STOREFREQS will have the structure in Figure 11. TEMPFREQ will be overwritten for
each variable and STOREFREQS will contain the results for all the variables:

Column
Name dataset libpath Variable Value count percent

Population
Rule &libname..&memname

physical
path of
library

variable
being
analyzed

Distinct
Value

Count
for
this
value

Percent
of total
values

Figure 11

This code will create STOREFREQS. The TEMPFREQ build will be part of a loop in the dofreq macro.
DATA STOREFREQS(LABEL="Frequency Counts for Selecte d Variables");

ATTRIB dataset FORMAT=$41. Variable FORMAT=$31. Val ue FORMAT=$100. Count
FORMAT=8. Percent FORMAT= 6.2;

 LABEL Count='Frequency Count' Percent='Percent of Total Frequency';
 STOP;
RUN;

The ‘STOP’ statements let us create empty data sets instead of those with just one observation each. The
‘ATTRIB’ sets up the length and format for the variables. Notice our minimum and maximum values in the
summary table as well as the frequency values are formatted as character. This will let us store information
for both numeric and character variables.

SAS’S DICTIONARY LIBRARY

Using SAS’s dictionary library has a few advantages over PROC CONTENTS DATA=_all_; One is the
PROC CONTENTS procedure will stop dead if it hits a member name in the library that has embedded
spaces or special characters, quite likely if libnaming external data like SAP or Excel spreadsheets. The
dictionary has no such restrictions. Here we are retrieving variable names from the COLUMN dictionary by
using PROC SQL, getting the number of variable names returned by examining the automatic SAS variable
SQLOBS. We were prompted for the library name (&libname) and member name (&memname) when we
ran the program;

PROC SQL;
CREATE TABLE outlist as
SELECT * FROM
(SELECT * from dictionary.columns
WHERE memtype = 'DATA' and UPCASE(LIBNAME) = UPCASE ("&libname")
and UPCASE(memname) = UPCASE("&memname"))
ORDER BY name; QUIT;

If you have RDBMS databases allocated to your session using the libname option, querying the dictionary
tables will result in a dynamic call to the RDBMS for metadata. This can take some time.

If you aren’t running this for a RDBMS table, clearing the libname will make the dictionary run a lot faster
with a statement like this: Libname clear rdbms_name ;

 9

POPULATING THE SUMMARY

Once we have our list of variable names, we will call the macro %GETVAR, using the automatic variable
SQLOBS as the actual number of variables, profstart as the variable position at which to start the profiling
and profmax as the maximum number of variables to profile this time around:
%getvar(&sqlobs,&profstart,&profmax);

The %getvar macro does several things. It reads the work data set named ‘outlist’ to get each variable to
process. It will start at the point specified in the &profstart variable and end after processing &profmax
number of variables. It then creates SQL statements and executes them in a PROC SQL. Finally it formats
the results and appends them to the summary ALL_STATS table. Here is the macro in its entirety:

%macro getvar(numobs,startlim,endlim);
%if %eval(&endlim+&startlim- 1) lt %eval(&numobs)
%then %LET endctr = %eval(&startlim+&endlim);
%else %LET endctr = &numobs;
%do i = &startlim %to &endctr;

DATA _null_;
ATTRIB min_var FORMAT=$200. max_var FORMAT=$200. mi ss_var FORMAT=$200.
distinct_var FORMAT=$200. nomiss_var FORMAT=$200. s earch_name
FORMAT=$35. dataset FORMAT=$42. vlength FORMAT=$10. orig_format
FORMAT=$10.
path_name FORMAT=$100.;
;

pointer=&i.;
SET outlist point=pointer;
vlength=length;
search_name="'"||TRIM(name)||"'N";
path_name = pathname(libname);
dataset = TRIM(libname)||".'"||TRIM(memname)||"'N";
if FORMAT=:'DATE' or FORMAT=:'JUL' or FORMAT=:'MM' or
FORMAT=:'DD' or FORMAT=:'DAY' or FORMAT=:'MON' or F ORMAT=:'YEAR'
or FORMAT=:'WORDD' or FORMAT=:'EURD' or FORMAT=:'WE EK'
then do;

FORMAT='MMDDYY10.';
orig_FORMAT='DATE';

end;
else if type = 'num' then do;

orig_FORMAT=TRIM(UPCASE(type))||compress(vlength);
FORMAT='20.';

end;
else if type = 'char' then do;

FORMAT='$100.';
orig_FORMAT=TRIM(UPCASE(type))||compress(vlength);

end;
MIN_VAR = 'create table temprange as select
MIN('||TRIM(search_name)||') as min_value1';
max_var = ',MAX('||TRIM(search_name)||') as max_val ue1';
miss_var = ',NMISS('||TRIM(search_name)||') as miss _value';
distinct_var = ',COUNT(DISTINCT('||TRIM(search_name)||')) as
distinct_values';
nomiss_var = ',COUNT('||TRIM(search_name)||') as nm iss_value from
'||TRIM(dataset)||';';

 10

CALL SYMPUT('SQL1',TRIM(MIN_VAR));
CALL SYMPUT('SQL2',TRIM(MAX_VAR));
CALL SYMPUT('SQL3',TRIM(MISS_VAR));
CALL SYMPUT('SQL4',TRIM(DISTINCT_VAR));
CALL SYMPUT('SQL5',TRIM(NOMISS_VAR));

CALL SYMPUT('var',TRIM(name));
CALL SYMPUT('dataset',TRIM(dataset));
CALL SYMPUT('var_n', quote(name)||"n");
CALL SYMPUT('type',TRIM(type));
CALL SYMPUT('label',label);
CALL SYMPUT('format',format);
CALL SYMPUT('orig_format',orig_format);
CALL SYMPUT('path_name',path_name);

STOP;
RUN;

/*Note: all above built the PROC SQL statement*/
PROC SQL;
&sql1
&sql2
&sql3
&sql4
&sql5
QUIT;

/*reformat the results*/
DATA temprange;
ATTRIB dataset FORMAT=$41. libpath FORMAT=$100. var iable FORMAT=$32.
label FORMAT=$256. format FORMAT=$31.
db_format FORMAT=$31.
min_value FORMAT=$100. max_value FORMAT=$100.
;
SET temprange;

dataset=TRIM("&libname..&memname");
variable = TRIM("&var");
format=TRIM("&format");
db_format=TRIM("&orig_format");
type = TRIM("&type");
label=TRIM("&label");
libpath=TRIM("&path_name");
if type = 'num' then do;

min_value=compress(put(min_value1,&format));
max_value=compress(put(max_value1,&format));

end;
else do;

min_value=min_value1;
max_value=max_value1;

end;
DROP min_value1 max_value1 type;

RUN;

PROC APPEND base=work.ALL_STATS DATA=work.temprange force;
RUN;
%end;
%mend getvar;

 11

Concepts

%if %eval(&endlim+&startlim- 1) lt %eval(&numobs)
%then %LET endctr = %eval(&startlim+&endlim);
%else %LET endctr = &numobs;
%do i = &startlim %to &endctr;

If the maximum number of variables we want to process plus the starting position minus one is less than the
total number of variables, we will process only the maximum number requested. If it is greater, we will just
process all of the variables. This loop will be executed until we run out of variables to analyze. One thing
that’s nice about using the %DO … %TO kind of loop is that the counter increments automatically

In the DATA step:
POINTER=&i.;
SET outlist point=pointer;

Using point processing lets us read a data set using random access instead of sequential reads. This can
save processing time with even a moderately sized data set. This works by setting a DATA step variable to
the macro counter variable and using the POINT option on the set statement. Perhaps the most important
statement in this DATA step is STOP; If omitted, the step will be trapped in an endless loop.

search_name="'"||TRIM(name)||"'N";

We’re going to prefix the variable name with a single quote and add a suffix of single quote N. This will
allow us to deal with variable names containing special characters or spaces, very common with Excel or
SAP.

FORMAT =: "YYQ" or FORMAT =:"MMYY" etc…

The =: operator means ‘begin with’. Here we are looking for all of the known SAS date formats.
Considering the difficulty of reading SAS’s internal date values, we want the output in a legible date format if
the variable is indeed supposed to be a date. If the variable is any other numeric kind, we’ll put it in a
numeric format with a length of twenty. A character variable’s length will be one hundred.

min_var = 'create table temprange as select MIN('||TRIM(searc h_name)||')
as min_value1';

Our min_var assignment will have a create table task as well as finding the minimum value of the variable.
The max_var assignment will find the maximum value, miss_var the number of missing values, distinct_var
the number of non-missing distinct values and nomiss_var the number of non-missing values. The
nomiss_var variable assignment will also have the name of the data set or table we are querying.

CALL SYMPUT('SQL1',TRIM(MIN_VAR));

We use CALL SYMPUT to put the first statement into a macro variable for later use and continue until we
have all five.

SQL constructed
When we ran this for our PROMOTRACK data set, the first SQL statement evaluated to:

CREATE TABLE TEMPRANGE AS SELECT MIN('ACCT_NO'N) as min_value1
,MAX('ACCT_NO'N) as max_value1 ,NMISS('ACCT_NO'N) a s miss_value
,COUNT(DISTINCT('ACCT_NO'N)) as distinct_values ,CO UNT('ACCT_NO'N) as
nmiss_value FROM WORK.'CUSTOMER'N;

DATA TEMPRANGE; ATTRIB dataset….SET TEMPRANGE;

We recreate the temporary data set to have the proper formats and to populate the data set, actual file path,
and make sure the min_value and max_value variables are in character format.

 12

if type = 'num' then do;
min_value="'"||compress(put(min_value1,&format));
max_value="'"||compress(put(max_value1,&format));

Put the minimum and maximum numeric results in either a date format or a numeric 20. Resist the
temptation to put all fields seeming to be dates into date format. They may be dates but unless there is a
date format formally attached with them, they are probably not SAS dates and will not be understandable if
interpreted as such.

PROC APPEND BASE=WORK.ALL_STATS DATA=WORK.TEMPRANGE FORCE;

PROC APPEND will drop any variables not defined in the base (ALL_STATS). The FORCE option makes
SAS append the data even if the lengths are different. Truncation will occur if needed. Once this is done, we
are ready to summarize the next variable and so on until we’re done.

After we’re done collecting the statistics, we’ll want to calculate percent missing and percent non-missing.

data all_stats;
 attrib percent_miss format=6.2 percent_nmiss forma t=6.2;
 set all_stats;
 percent_miss=100*(miss_value/(miss_value+nmiss_val ue));
 percent_nmiss=100*(nmiss_value/(miss_value+nmiss_v alue));

THE FREQUENCIES

Now that our summary table has been created, the next step is to run frequencies on all variables having
from 2 to the number of specified distinct values by means of this code:

DATA set_freqs;
SET ALL_STATS;
WHERE distinct_values between 2 and &freqmax;
CALL SYMPUT('numobs',PUT(_n_, 12.));
RUN;

A value for &freqmax may be obtained at run time with either a SAS Enterprise Guide prompt or actually
setting it in the code. We won’t run a frequency on a variable having just one distinct non-missing value
because we already know the distribution is 100%.

Much as we set up the summary table, we’ll set up a table to hold the frequencies. Here it’s limited to the
count and the percent although other values obtained from the PROC FREQ procedure could be added too.
The %dofreq macro is considerably simpler than %getvar because the work table structure is simpler:

%MACRO DOFREQ;
ATTRIB freqname FORMAT=$40.;
%DO i=1 %to &numobs.;
 DATA _NULL_;
 POINTER=&i.;
 SET SET_FREQS point=pointer;
 if format = '' OR FORMAT='$' then FORMAT='$32.';
 else FORMAT=TRIM(format);
 freqname="&libname.. ' &memname.' n";
 CALL SYMPUT('var', variable);
 CALL SYMPUT('var_n', QUOTE(variable) || "n");
 CALL SYMPUT('format', format);
 CALL SYMPUT('datast', dataset);
 STOP;
 RUN;

PROC FREQ DATA=&freqname. NOPRINT;
 TABLES &var_n./MISSING OUT=TEMPFREQ;
 RUN;
 DATA TEMPFREQ ;
 SET TEMPFREQ ;

 13

 ATTRIB value FORMAT=$32.;
 dataset = "&datast";
 Variable = "&var";
 value=TRIM(PUT(& var. ,& format.));
 RUN;

PROC APPEND BASE=WORK.STOREFREQS DATA=WORK.TEMPFREQ FORCE;
RUN;
%END;

%MEND DOFREQ;

Concepts

SET_FREQS point=pointer;

Use point processing here too.

PROC FREQ DATA=&datast. NOPRINT;

Do not print out the results of PROC FREQ.

TABLES &var_n./MISSING OUT=TEMPFREQ;

Our output will be a work data set named TEMPFREQ. The MISSING option will put in the number of
missing values. Here we are running just one at a time. Note that if you wanted to run several variables in
one PROC FREQ and store the results, you would need separate out data sets for each variable.

ATTRIB value FORMAT=$32.;

You may want to make this larger but thirty-two positions should be ample to hold most codes and dates.

PROC APPEND BASE=WORK.STOREFREQS DATA=WORK.TEMPFREQ FORCE;
PROC APPEND inserts the results to the STOREFREQS temporary data set and we loop through again.

EXCEL XML OUTPUT

Now that we have our tables built, it’s time to move them to a more permanent location. Here we’ll export
them in Excel XML format in order to build separate workbooks for the summary and the frequency.. The
frequency tab in the workbook will be labeled to show the values between 2 and &freqmax:

%let freqend = %unquote(%str(%'Freqs Value # 2 to & freqmax%'));
%let file = profile results_&libname..&memname..xml ;
ods listing close;
ods tagsets.ExcelXP path = "&path"
 file="&file" style=analysis;
ods tagsets.ExcelXP options(sheet_name='Summary'
 Autofilter = 'yes'
 Frozen_Headers = '1'
 Frozen_rowheaders='2,3,4'

Absolute_Column_Width="20,20 ,20, 20, 7.5, 20, 20, 7.5, 7.5, 7.5,
7.5, 7.5"

Autofit_Height = 'YES');

proc report data=all_stats;
 column dataSet libpath Variable label db_format m in_value
max_value distinct_values miss_value percent_miss nmiss_value
percent_nmiss
 ;
 define label/display width=100;
 define percent_miss/display "Pct Missing";
 define percent_nmiss/display "Pct Not Missing";

 14

 define libpath/display "Physical Location";
 define min_value / style (column)={tagattr="form at:Text"};
 define max_value / style (column)={tagattr="format :Text"};
run;

ods tagsets.ExcelXP options(sheet_name=&freqend
 Autofilter = 'yes'
 Frozen_Headers = '1'
 Frozen_rowheaders='2,3,4'
 Absolute_Column_Width="20,20 ,20, 20,7.5,7.5 "
 skip_space='1,1,0,0,1' sheet_interval='none'
 suppress_bylines='no'
 Autofit_Height = 'YES');

proc print data=storefreqs label noobs;
 var dataSet libpath variable;
 var value / style (data)={tagattr="format:Text"};
 var count percent;
 by variable;
run;

ods tagsets.ExcelXP close;

Concepts

%LET file = profile results_&libname..&memname..xls ;

For this example, the path and file name will /mktg/group1/u108/profile results_indata-promotrack.xls.

%LET freqend = %unquote(%str(%'Freqs Value # 2 to & freqmax%'));

This was the only form that named the frequency tab correctly. Other forms such as using the %str function
by itself or %superq either resulted in message ERROR 22-322: Expecting a quoted string or
having the tab literally named Freqs Value # 2 to &freqmax (%quote, %unquote by itself, %bquote).

ODS LISTING CLOSE;

Close ODS.

ODS TAGSETS.EXCELXP path = "&path"

Use the ExcelXP tagset without overrides.

file="&file" style=analysis ;

The path was a variable entered in at runtime.

ODS TAGSETS.EXCELXP options(sheet_name='Summary’….A utofit_hight=’YES’);

Built-in options in this tagset let us name separate sheet names, and set some properties of the XML
spreadsheet.

PROC REPORT DATA=ALL_;….

Use PROC REPORT to print out the summary table, ALL_STATS.

 15

(column)={tagattr="format:Text"};

For the minimum and maximum values,
Format as if text. This keeps really large values from being displayed in scientific notation.

ODS TAGSETS.EXCELXP options(sheet_name=&freqend

Second tab in workbook.

PROC PRINT DATA=storefreqs noobs label;~~.

Print out frequencies

ODS TAGSETS.EXCELXP close;

Close tagset and finish writing to the XML file.

SETTING UP THE PROCESS

In Enterprise Guide, these were set up three programs linked together . Prompts were set up to obtain the
different macro variables. Figure 12 shows the default values for &profstart, &profmax and &freqmax. If you
are using Enterprise Guide and are allowed to do so, creating a stored process is very helpful. Anyone who
has access to the process can use it without any prompt setup.

Enterprise Guide Setup:

 16

Another way is to set the macro variables in a driver program. This may be used in a batch job even on
z/os:

%LET profstart=1;
Let profmax=500;
%LET libname = indata;
%LET mename = promotrack;
%LET freqmax=75;
%LET path=/mktg/group1/u108;
%include ‘/mktg/group1/u108/Profile Summary.sas’;
%include ‘/mktg/group1/u108/Profile Frequency.sas’;
%include ‘/mktg/group1/u108/Profile Results.sas’;

CONCLUSION

A good mapping document with profile included may well be the most valuable thing that comes out of a
SAS project. As with any other document, it’s important to keep updated regularly. Even if there are no
changes, putting a review date in the log will demonstrate that this is a living, breathing record.

The profile should encourage dialogue with your user community. It most probably will result in data quality
improvement as well. The coupon redemption date is a good case in point. Once you know that you are
getting a substantial number of unexpected values, you might want to petition change right at the source. If
that proves difficult, you may want to transform the incoming data yourself, noting that transformation in the
mapping document of course. Or in the case of missing data, It may be more practical to have a default,
again reflected in the mapping document.

ACKNOWLEDGEMENTS:

Thanks to Joe and Paul Butkovich for your encouragement and support.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. The author is often on the road but can be
contacted at

Patricia Hettinger
Email: patricia_hettinger@att.net
Phone: 331-462-2142

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

