At Random – Sampling with PROC SURVEYSELECT

Patricia Hettinger, Oakbrook Terrace, IL

ABSTRACT

PROC SURVEYSELECT can be a very useful tool in sampling data. This paper covers some basic features including comparisons with the ranuni function so often seen by the author.

INTRODUCTION

This paper is not an exhaustive study of sampling or statistical methods. The audience is those of us who have ever had to take samples from a SAS® data set or randomly partition one. This paper explains how PROC SURVEYSELECT can aid in these tasks and compare favorably to the more usual (and much older) ranuni method. Brief explanations of T-Tests and the corresponding SAS procedure, PROC TTEST are also included.

There are three demonstrations. In the first, PROC SURVEYSELECT will randomly divide a data set into 10% control and 90% test. The results will be compared to the familiar ranuni function. The second section will demonstrate PROC SURVEYSELECT's approach to control/test assignment by strata (group). A variation on this will control for two additional variables across strata. The final section will feature splitting a data set into three different segments per strata, one for control and two for test. The control will be 10% of the initial population and the test will be split 80-20% to give a general 10-72-18 office.

We will use the same set of data in all three sections. This is a SAS data set containing single-premium whole-life insurance policies data with three variables of interest - death benefit (death_benefit), cash value (cash_value) and annual percentage yield (APY). These were sold by nine regional offices, here referred to as office. The values for the office variable are E1, E2, N1, N1, S1, S2, W1, W2 and W3. We are interested in selling some riders to this population so we want to try a number of methods to determine a control population and ensure that we are getting samples from every regional office, no matter how few policies one might have.

T-TESTS

T-tests are a method of determining how statistically similar two populations are to each other. They are often used to confirm that the sample is reasonable representative of the source. The t value is computed

The top part of the ratio is just the difference between the two means or averages. The bottom part is a measure of the variability or dispersion of the scores. The bottom part is called the standard error of the difference. To compute it, we take the variance for each group and divide it by the number of people in that group. We add these two values and then take their square root.

PROC TTEST is a newer SAS procedure that does these calculations automatically for numeric variables. We will limit the test to the three variables, death_benefit, cash_value and APY and run with 95% confidence level, the default. The figures will show the pooled method of calculating the t value, the degrees of freedom (DF) and the t value. All three was used in statistical tables to find the significance of the t-value. For the sake of simplicity and also because of the author's experience, we will consider a t value better as it gets closer to zero, either positive or negative.

10% CONTROL ACROSS THE ENTIRE POPULATION

Our first try has us assigning control and test groups to our insurance population in a data set called single_prem_life. We will set up PROC SURVEYSELECT to assign 10% control and 90% across the entire data set. To obtain a reproducible sample, we will use the seed 828756043 instead of the default date and time to give a starting point for the selection:

PROC SURVEYSELECT data=insur.single_prem_life outall seed=828756043 out=SFILE samprate=0.1;

The insur.single_prem_life is the source data set, outall tells SURVEYSELECT to keep all of the observations in the output work data set SFILE and samprate=0.1 says to take 10% as the control.

Our initial data set's observation count was 104,722. All the original records are still in the output data set SFILE, so SFILE has the same number of observations. However SFILE will have three new variables added, **samplingweight**, **selectionprob** and most important from our point of view, **selected**. **Selected** is a Boolean variable, only available if you used the outall option. If 1, the observation was selected for the 10%, if 0, it wasn't. When we do a frequency on **selected**, we will see the 90-10 split as shown in Figure 1.

Selected	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
0	94249	90.00	94249	90.00	
1	10473	10.00	104722	100.00	

Figure 1

To check whether our sample is representative, we can use PROC T-TEST with selected as the class variable. Note that any variable you use as the CLASS must have exactly two different values.

PROC TTEST data=SFILE; Class selected;

The Pooled method t values for our three variables of interest, death_benefit, cash_value and APY are in Figure 2:

variable Name	Method	Variances	DF	t value
death_benefit	Pooled	Equal	104720	1.26
cash_value	Pooled	Equal	104720	-0.70
APY	Pooled	Equal	104720	0.49
		Figure 2		

The ranuni method might use the code below to get the equivalent output. Our parameter to ranuni will be the same seed as the previous PROC SURVEYSELECT used:

DATA SFILE; Rand=ranuni(828756043); Set insur.single_prem_life; If rand le .1 then selected=1; Else selected = 0;

The frequencies in Figure 3 show a slightly different split:

Selected Frequency		Percent	Cumulative Frequency	Cumulative Percent			
0	94107	89.86	94107	89.86			
1	10615	10.14	104722	100.00			

Our t values seem to be a little worse for the death_benefit and cash_value and a little worse for the APY:

Variable Name	Method	Variances	DF	t value
death_benefit	Pooled	Equal	104720	-1.52
cash_value	Pooled	Equal	104720	-1.79
APY	Pooled	Equal	104720	-0.74
		Fig	ure 4	

SAMPLING BY STRATA

Where PROC SURVEYSELECT can really excel is when samples by group (strata) are needed. This works best if the source data is actually sorted by your strata variable(s). You can use the NOTSORTED option which might work if the data set is actually grouped by that variable, whether in order or not. Otherwise PROC SURVEYSELECT might take the entire group. It might even hang your session, depending upon the data structure. In Figure 5, the insur.single_prem_lifedata set, the data is not grouped by office, variable office. A 10% sample would probably take every observation. If grouped together like Figure 5B, we would get just 1 of each (Figure 6):

Office	death_benefit	cash_value	APY
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15
N1	50000	5000	3.99
S1	70000	7000	4.15

Office	death_benefit	cash_value	APY
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
N1	50000	5000	3.99
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	5000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15
S1	70000	7000	4.15

Figure 5B

End sample:				
N1	50000	5000	3.99	
S1	70000	7000	4.15	

Figure 6

It would definitely be a good idea to sort first.

PROC SORT data= insur.single_prem_life out=policy_sorted; By office;

And then use PROC SURVEYSELECT to take samples by office:

PROC SURVEYSELECT data =policy sorted outall seed=828756043 out=SFILE samprate=.1; strata office;

The strata statement tells SURVEYSELECT to take samples by office which must be sorted (default). The overall T-Test in figure 7 is a little different again from our first example

variable Name	Method	Variances	DF	t value
death_benefit	Pooled	Equal	104720	1.36
cash_value	Pooled	Equal	104720	0.88
APY	Pooled	Equal	104720	1.14

					Office t
Office	variable Name	Method	Variances	Office DF	value
E1	death_benefit	Pooled	Equal	33772	-0.30
	cash_value	Pooled	Equal	33772	0.22
	APY	Pooled	Equal	33772	0.25
E2	death_benefit	Pooled	Equal	118	-0.64
	cash_value	Pooled	Equal	118	0.33
	APY	Pooled	Equal	118	0.90
N1	death_benefit	Pooled	Equal	20	0.94
	cash_value	Pooled	Equal	20	1.43
	APY	Pooled	Equal	20	0.39
N2	death_benefit	Pooled	Equal	22699	2.39
	cash_value	Pooled	Equal	22699	1.34
	APY	Pooled	Equal	22699	1.15
S1	death_benefit	Pooled	Equal	9077	0.59
	cash_value	Pooled	Equal	9077	0.40
	APY	Pooled	Equal	9077	0.74
S2	death_benefit	Pooled	Equal	1005	0.92
	cash_value	Pooled	Equal	1005	0.36
	APY	Pooled	Equal	1005	0.33
W1	death_benefit	Pooled	Equal	16	
	cash_value	Pooled	Equal	16	0.41
	APY	Pooled	Equal	16	
W2	death_benefit	Pooled	Equal	49	-2.94
	cash_value	Pooled	Equal	49	-0.31
	APY	Pooled	Equal	49	-0.92
W3	death_benefit	Pooled	Equal	37948	1.46
	cash_value	Pooled	Equal	37948	-0.05
	APY	Pooled	Equal	37948	0.73

But this might be considerably different for each office as the T-Test in figure 8 demonstrates:

We still have our 10% overall as shown by Figure 9. However, the number of policies per offices is considerably different. We might not be able to get a good test for those from the N1, W1 and W2 samples due to their low volumes (figure 9B):

Selected	0 1	Frequenc 94240 10470	y Percent 6 90.00 6 10.00	Cumulative Frequency 94246 104722 Figure 9	Cumulative Percent 90.00 100.00		
			_	_	Cumulat	ive	Cumulative
OFFICE	SE	LECTED	Frequency	Percent	Frequen	су	Percent
E1		0	30396	90.	00 ;	30396	90.00
E1		1	3378	10.	00 ;	33774	100.00
E2		0	108	90.	00	108	90.00
E2		1	12	10.	00	120	100.00
N1		0	19	86.3	36	19	86.36
N1		1	3	13.	64	22	100.00
N2		0	20430	90.	00 2	20430	90.00
N2		1	2271	10.	00 2	22701	100.00
S1		0	8171	90.	00	8171	90.00
S1		1	908	10.	00	9079	100.00
S2		0	906	89.9	97	906	89.97
S2		1	101	10.	03	1007	100.00
W1		0	16	88.	89	16	88.89
W1		1	2	11.	11	18	100.00
W2		0	45	88.	24	45	88.24
W2		1	6	11.	76	51	100.00
W3		0	34155	90.	00 ;	34155	90.00
W3		1	3795	10.	00 ;	37950	100.00
				Figure 9B			

A comparison of the final distribution between PROC SURVEYSELECT without strata, ranuni and PROC SURVEYSELECT with strata (office) is in figure 10. Note that we didn't get any at all for W1, using ranuni:

		FREQ	PCT				DOT
						FREQ 10%	PCT 10%
		SELECT	SELECT	FREQ	PCT	SURVEY	SURVEY
		w/o	w/o	10%	Ranuni	SELECT	SELECT
OFFICE	SELECTED	Strata	Strata	Ranuni	Overall	w/ Strata	w/ Strata
E1	0	30388	89.97	30338	89.83	30396	90.00
E1	1	3386	10.03	3436	10.17	3378	10.00
E2	0	105	87.50	107	89.17	108	90.00
E2	1	15	12.50	13	10.83	12	10.00
N1	0	21	95.45	20	90.91	19	86.36
N1	1	1	4.55	2	9.09	3	13.64
N2	0	20445	90.06	20438	90.03	20430	90.00
N2	1	2256	9.94	2263	9.97	2271	10.00
S1	0	8197	90.29	8143	89.69	8171	90.00
S1	1	882	9.71	936	10.31	908	10.00
S2	0	911	90.47	897	89.08	906	89.97
S2	1	96	9.53	110	10.92	101	10.03
W1	0	17	94.44	18	100.00	16	88.89
W1	1	1	5.56	0	0.00	2	11.11
W2	0	46	90.20	45	88.24	45	88.24
W2	1	5	9.80	6	11.76	6	11.76
W3	0	34119	89.91	34101	89.86	34155	90.00
W3	1	3831	10.09	3849	10.14	3795	10.00
			I	Figure 10			

					10% SURVEY SELECT w/o	10%	10% SURVEY SELECT
Office	variable Name	Method	Variances	DF	Strata	Ranuni	w/ Strata
E1	death_benefit	Pooled	Equal	33772	1.91	-2.21	-0.30
	cash_value	Pooled	Equal	33772	-0.68	-0.86	0.22
	APY	Pooled	Equal	33772	-0.20	-0.36	0.25
E2	death_benefit	Pooled	Equal	118	-3.79	1.13	-0.64
	cash_value	Pooled	Equal	118	0.18	0.77	0.33
	APY	Pooled	Equal	118	1.02	0.94	0.90
N1	death_benefit	Pooled	Equal	20	0.19	-0.09	0.94
	cash_value	Pooled	Equal	20	0.75	0.55	1.43
	APY	Pooled	Equal	20	0.21	1.00	0.39
N2	death_benefit	Pooled	Equal	22699	-2.17	0.37	2.39
	cash_value	Pooled	Equal	22699	0.06	-1.56	1.34
	APY	Pooled	Equal	22699	0.18	-0.63	1.15
S1	death_benefit	Pooled	Equal	9077	1.84	-0.27	0.59
	cash_value	Pooled	Equal	9077	0.72	0.19	0.40
	APY	Pooled	Equal	9077	0.98	-1.24	0.74
S2	death_benefit	Pooled	Equal	1005	0.50	0.23	0.92
	cash_value	Pooled	Equal	1005	0.71	-0.37	0.36
	APY	Pooled	Equal	1005	0.32	0.35	0.33
W1	death_benefit	Pooled	Equal	16			
	cash_value	Pooled	Equal	16	-0.02		0.41
	APY	Pooled	Equal	16			
W2	death_benefit	Pooled	Equal	49	0.33	0.36	-2.94
	cash_value	Pooled	Equal	49	-2.31	0.12	-0.31
	APY	Pooled	Equal	49	0.68	0.75	-0.92
W3	death_benefit	Pooled	Equal	37948	0.56	-0.23	1.46
	cash_value	Pooled	Equal	37948	-1.06	-1.29	-0.05
	APY	Pooled	Equal	37948	0.99	-0.19	0.73

The T-test comparison is shown in Figure 11. We can't run a t-test for ranuni's W1 observations because there is only value for selected: 0.

Figure 11

If the company wanted to merge offices, this distribution might aid in that decision. For the purpose of this paper though, we will leave them as is.

Suppose we wanted to adjust the sample size taken from each stratum. We might want everything from N2, S1, W1 and W2 so we could write our proc to take 100% from those strata. We know there are nine of them so we can write a statement like this:

PROC SURVEYSELECT DATA=insur.single_prem_life outall seed=828756043 out=SFILE samprate=(0.1, 0.1, 0.1, 1.0, 1.0, 0.1, 1.0, 0.1); Strata office;

Or we could specify the sample size as actual numbers and add the selectall option to take all the observations in an office in case we don't have enough to make up the count. This can be seen with the value **60** for office W2 which does not have enough observations to fulfill the request.

PROC SURVEYSELECT data=insur.single_prem_life selectall outall seed=828756043 out=SFILE sampsize= (908, 101, 3378, 20, 22, 2271, 18, **60**, 3795); Strata office;

It's easy to lose track of these strata – if you end up with too many or too few in the samprate or sampsize parameter, you will get an error. A better way might be to keep your parameters in a data set. The example below loads a SAS data set with office, _rate_ and _nsize_. Any variables besides _rate_ and _nsize_ must be present as named in the source data set or you will get unpredictable results. The _rate_ variable is required if using the samplepct data set with the samprate parameter and the _nsize_ with sampsize:

DATA samplepct: attrib office format=\$2. _rate_ format=6.3 _NSIZE_ format=6.; office='E1'; _nsize_=908; _rate_=0.1; output; office='E2'; _nsize_=101; _rate_=0.1; output; office='N1'; _nsize_=3378; _rate_=0.1; output; office='N2'; _nsize_=20; _rate_=1.0; output; office='S1'; _nsize_=22; _rate_=1.0; output; office='S2'; _nsize_=2271; _rate_=0.1; output; office=W1'; _nsize_=18; _rate_=1.0; output; office=W2'; _nsize_=60; _rate_=1.0; output; office=W3'; _nsize_=3795; _rate =0.1; output;

Now, PROC SURVEYSELECT will take a sample of every stratum that matches the list. The SAS log should warn of any that do not. Here is how you would use the list for sampling rate:

PROC SURVEYSELECT data=insur.single_prem_life outall seed=828756043 out=SFILE samprate=samplepct; strata office;

You would replace the samprate statement with sampsize for sampling by size:

PROC SURVEYSELECT data=insur.single_prem_life outall seed=828756043 out=SFILE sampsize=samplesize; Run:

The good thing about using a data set for either your sample rate or sample size is that you will get output even if one or more of your strata change or perhaps disappear altogether (W1 and W2 taken over by W3?). However for any new strata values not in your list, you will get a warning in your log that there wasn't any match. The step continues but nothing will be output for that stratum even with the OUTALL option.

CONTROLLING FOR CERTAIN VARIABLES

We might want to control for death benefit and cash value since these are of special interest. To use controls, the sampling method cannot be the default simple random method we did before. We will use another method, systemic random selection instead. The stratum is sorted by the control variables, a starting point is chosen at random from the sampling stratum, and thereafter at regular intervals. Since our control variables are death benefit and cash value, the sample will be taken from a random start in each office and then at regular intervals within death benefit and cash value. Unlike the strata, the source data set doesn't need to be sorted by the control variables first. Notice the two additions we made to the request. One is specifying the method =SYS and the other is the CONTROL statement:.

PROC SURVEYSELECT data=insur.single_prem_life outall method=sys seed=828756043 out=SFILE samprate=0.1; Strata office; control death_benefit cash_value; Run;

Overall the T-Test has better t	values for these	two variables:
---------------------------------	------------------	----------------

variable Name	Method	Variances	DF	t value	
death_benefit	Pooled	Equal	104720	0.14	
cash_value	Pooled	Equal	104720	0.93	
APY	Pooled	Equal	104720	0.23	
Ei 40					

Figure 12

It seems most of our offices t values also became closer to zero:

					Office t
Office	variable Name	Method	Variances	Office DF	value
E1	death_benefit	Pooled	Equal	33772	0.28
	cash_value	Pooled	Equal	33772	1.01
	APY	Pooled	Equal	33772	-0.07
E2	death_benefit	Pooled	Equal	118	0.19
	cash_value	Pooled	Equal	118	0.32
	APY	Pooled	Equal	118	-0.75
N1	death_benefit	Pooled	Equal	20	-0.24
	cash_value	Pooled	Equal	20	-0.11
	APY	Pooled	Equal	20	0.31
N2	death_benefit	Pooled	Equal	22699	-0.39
	cash_value	Pooled	Equal	22699	-0.02
	APY	Pooled	Equal	22699	-0.63
S1	death_benefit	Pooled	Equal	9077	-0.59
	cash_value	Pooled	Equal	9077	-0.11
	APY	Pooled	Equal	9077	1.05
S2	death_benefit	Pooled	Equal	1005	0.47
	cash_value	Pooled	Equal	1005	0.61
	APY	Pooled	Equal	1005	0.33
W1	death_benefit	Pooled	Equal	16	
	cash_value	Pooled	Equal	16	0.28
	APY	Pooled	Equal	16	
W2	death_benefit	Pooled	Equal	49	0.33
	cash_value	Pooled	Equal	49	0.68
	APY	Pooled	Equal	49	0.68
W3	death_benefit	Pooled	Equal	37948	0.26
	cash_value	Pooled	Equal	37948	0.35
	APY	Pooled	Equal	37948	1.29

DESIGNING A CONTROL AND TWO TEST POPULATIONS

We can do this with two PROC SURVEYSELECT steps. First we'll take just the 10% control. We'll then split the output into two data sets, control and test. PROC SURVEYSELECT against the test population will select an additional 20%. The last step puts the output data sets together for the final population.

10% control

Sort the data by office, then use PROC SURVEYSELECT to take a 10% sample by office. Output all records:

PROC SURVEYSELECT data =policy_sorted outall seed=828756043 out=control_test samprate=0.1; Strata office;

The T-Test looks like this overall:

variable Name	Method	Variances	DF	t value
death_benefit	Pooled	Equal	104720	1.36
cash_value	Pooled	Equal	104720	0.88
APY	Pooled	Equal	104720	1.14
	Figure 14			

By office:

Office	variable Name	Method	Variances	Office DF	Office t value
E1	death_benefit	Pooled	Equal	33772	-0.30
	cash_value	Pooled	Equal	33772	0.22
	APY	Pooled	Equal	33772	0.25
E2	death_benefit	Pooled	Equal	118	-0.64
	cash_value	Pooled	Equal	118	0.33
	APY	Pooled	Equal	118	0.96
N1	death_benefit	Pooled	Equal	20	0.94
	cash_value	Pooled	Equal	20	1.43
	APY	Pooled	Equal	20	0.39
N2	death_benefit	Pooled	Equal	22699	2.39
	cash_value	Pooled	Equal	22699	1.34
	APY	Pooled	Equal	22699	1.15
S1	death_benefit	Pooled	Equal	9077	0.59
	cash_value	Pooled	Equal	9077	0.10
	APY	Pooled	Equal	9077	0.74
S2	death_benefit	Pooled	Equal	1005	0.92
	cash_value	Pooled	Equal	1005	0.36
	APY	Pooled	Equal	1005	0.33
W1	death_benefit	Pooled	Equal	16	
	cash_value	Pooled	Equal	16	0.41
	APY	Pooled	Equal	16	
W2	death_benefit	Pooled	Equal	49	-2.94
	cash_value	Pooled	Equal	49	-0.31
	APY	Pooled	Equal	49	-0.92
W3	death_benefit	Pooled	Equal	37948	1.46
	cash_value	Pooled	Equal	37948	-0.05
	APY	Pooled	Equal	37948	0.73

But now split the output into test and control. The control group is indicated by having its selected variable reset to 2. We also created a control_ind variable:

DATA test_group control_group; set control_test; if selected eq 1 then do; selected=2; control_ind='C'; output control_group; else do; control_ind='T'; output test_group; end;

Sort the test_group by office and take 20% again. Output everything to test_group2:

PROC SURVEYSELECT data =test_group outall seed=828756043 out=test_group2 samprate=.2; Strata office;

We can run a T-Test again comparing the 20% test to the 80%. Overall, this is:

variable Name	Method	Variances	DF	t value
death_benefit	Pooled	Equal	94244	0.61
cash_value	Pooled	Equal	94244	1.73
APY	Pooled	Equal	94244	0.92

By office:

				Office	Office t
Office	variable Name	Method	Variances	DF	value
E1	death_benefit	Pooled	Equal	30394	-0.56
	cash_value	Pooled	Equal	30394	-0.06
	APY	Pooled	Equal	30394	0.38
E2	death_benefit	Pooled	Equal	106	-0.79
	cash_value	Pooled	Equal	106	-1.00
	APY	Pooled	Equal	106	-0.41
N1	death_benefit	Pooled	Equal	17	0.94
	cash_value	Pooled	Equal	17	-1.61
	APY	Pooled	Equal	17	0.51
N2	death_benefit	Pooled	Equal	20428	0.35
	cash_value	Pooled	Equal	20420	2.40
	APY	Pooled	Equal	20428	1.10
S1	death_benefit	Pooled	Equal	8189	0.66
	cash_value	Pooled	Equal	8169	1.43
	APY	Pooled	Equal	8169	1.70
S2	death_benefit	Pooled	Equal	904	-2.54
	cash_value	Pooled	Equal	904	-0.79
	APY	Pooled	Equal	904	0.50
W1	death_benefit	Pooled	Equal	14	
	cash_value	Pooled	Equal	14	-1.75
	APY	Pooled	Equal	14	
W2	death_benefit	Pooled	Equal	43	
	cash_value	Pooled	Equal	43	0.67
	APY	Pooled	Equal	43	0.88
W3	death_benefit	Pooled	Equal	34153	1.08
	cash_value	Pooled	Equal	34153	1.41
	APY	Pooled	Equal	34153	-0.66

Figure 17

Then put the control group and test groups together and assign a population code (POP_CODE):

data final_pop; set control_group(in=a) test_group2(in=b); if selected eq 2 then POP_CODE = 'CONTROL'; else if b and selected = 0 then POP_CODE='TEST1 '; else if b and selected =1 then POP_CODE='TEST2 '; A cross-tab by control indicator and population code overall gives us this:

				CUMULATIVE
CONTROL_IND	POP_CODE	FREQUENCY	PERCENT	FREQUENCY
С	CONTROL	10476	10.00	10476
Т	TEST1	75393	71.99	85869
Т	TEST2	18853	18.00	104722
		Fig	jure 18	

By office:

OFFICE			FREQUENCY	PERCENT	
F1	C		3378	10.00	3378
	T	TEST1	24316	72.00	27694
	T	TEST2	6080	18.00	33774
E2	C	CONTROL	12	10.00	12
	Т	TEST1	86	71.67	98
	т	TEST2	22	18.33	120
N1	С	CONTROL	3	13.64	3
	Т	TEST1	15	68.18	18
	Т	TEST2	4	18.18	22
N2	С	CONTROL	2271	10.00	2271
	Т	TEST1	16344	72.00	18615
	Т	TEST2	4086	18.00	22701
S1	С	CONTROL	908	10.00	908
	Т	TEST1	6536	71.99	7444
	Т	TEST2	1635	18.01	9079
S2	С	CONTROL	101	10.03	101
	Т	TEST1	724	71.90	825
	Т	TEST2	182	18.07	1007
W1	С	CONTROL	2	11.11	2
	Т	TEST1	12	66.67	14
	Т	TEST2	4	22.22	18
W2	С	CONTROL	6	11.76	6
	Т	TEST1	36	70.59	42
	Т	TEST2	9	17.65	51
W3	С	CONTROL	3795	10.00	3795
	Т	TEST1	27324	72.00	31119
	Т	TEST2	6831 Figure 19	18.00	37950

OTHER PROC SURVEYSELECT OPTIONS AND STATEMENTS

ID var1 var2, etc. - Not only can you choose whether to output all the observations but the id statement lets you direct which variables to output.

Noprint – do not print the output – output is nominal and will contain the sampling method, the seed, the number of samples selected, the strata variable (if any) and the number of strata.

Nmin and nmax. These are used with the samprate= option to give a minimum and maximum amount of observations. This is the only the selectall option can be used with the samprate option. You may want 20% but no more than 500 observations (nmax). Or still 20% but at least 500 or all of them if 500 can't be found (nmin).

CONCLUSION

PROC SURVEYSELECT is a very useful procedure for sampling that seems to give at least as accurate results as the older ranuni method. In addition, you will find the performance for taking samples from a very large data set (remove the OUTALL option) is much better because PROC SURVEYSELECT does not have to read the entire source data set.

FOOTNOTES

Footnote 1 – T-Test mathematical equation and explanation taken from Research Methods Knowledge Base web site section on T-tests.

ACKNOWLEDGEMENTS

Thanks to Joe and Paul Butkovich for your encouragement and support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. The author is often on the road but can be contacted at

Patricia Hettinger Email: patricia_hettinger@att.net Phone: 331-462-2142

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.