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INTRODUCTION 

 

Since 1982, a common source of digital music information has been the MIDI 

(Musical Instrumentation Digital Interface) music that is readily available from the Web.  

Sometime ago, myself and a graduate student (Cannon and Hallum (2004)) developed a 

SAS program that converts a MIDI music file from its raw “object code form” into a 

multivariate data set (i.e., vector-valued data set) comprised of instrument-specific sound 

frequencies (in hertz) for further manipulation by SAS or similar software; in doing so, a 

number of sound-related research questions could be pursued by taking advantage of the 

resulting linear algebraic framework.  Interesting questions which surfaced beginning 

back in 2004 included the following:  

 

1. “Is it possible to ‘map’ one MIDI tune ‘effectively’ to another; e.g., can a Bach 

tune be ‘mapped’ to a Beethoven tune, can a Hank Williams tune be ‘mapped’ to 

the National Anthem, etc.?  Obviously such files possess a considerable amount 

of “interesting and worthwhile” sound information, and as a result, what are 

some key characteristics, if any, that might be retrievable based on a choice for a 

transform (e.g., simple matrix multiplication comes to mind immediately) to 

operate on such a file; plus, what can be learned and benefits gained, if any, from 

such questioning that could lend insight to a worthwhile spin-off or two”? 

 

2. “Is it possible to identify ‘equivalence classes’ of tunes that could then be 

connected (algebraically at least), in some recognizable manner, back to a certain 

cadre of artists, to a certain music genre, to the Billboard top 20 over some 

window of time, etc.?”  

 

3. Plus several others to be discussed at conference time. 

 

Considerable discussion was given to address these questions in the Cannon and 

Hallum (2004) SCSUG (South Central SAS Users Group) paper with emphasis on using 

frequencies (in hertz) of play of the various instruments as the key initial MIDI data 

source.   Further discussion is provided herein to re-visit these questions, to provide 

further insight and some further generalization to the transformation approach (at the 

expense of a little redundancy here and there); even more, a primary emphasis is given to 

identifying and demonstrating spin-offs from these efforts resulting largely from the 

insight gained from thinking from the perspective of multivariate MIDI algebraic mindset 

attained from these initial endeavors; specifically, such insight has lent itself to:  
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1. structuring a capability that will, eventually, provide the means to effectively 

assist a seeing-impaired individual “listen” to digital photography, “listen to the 

landscape”, “listen” to the petals of a flower, “listen” to a sunrise, etc., and 

 

2.  identifying and demonstrating other usages of SAS to “control and/or manipulate 

sound” while resorting to its GUI (Graphical User Interface) capabilities to permit 

an ease of use for a general user.   

 

As an example of the latter, a SAS GUI capability is discussed and demonstrated herein 

for the handling of interfaces between synthesizers, digital audio workstation software, 

and the storage and retrieval of music files from data bases containing hundreds of songs 

which the author uses as backup rhythm (and lead as well) in music practice sessions. All 

sound results will be amped at conference time to permit ease of listening. SAS/Basics, 

SAS/Statistics, SAS/IML, and SAS/Applications Development are utilized as the key 

SAS tools in the developments herein and in this presentation itself as well. 

 

The key layout of a MIDI file after getting “unpackaged” from its initial “object 

code” form by SAS is simply that of a matrix whereby each row represents instrument-

specific frequencies (in hertz) played by no more than a maximum of 16 instruments – so 

each matrix will have no more than 16 columns; its rows, however, will typically number 

in the thousands (one for each clock beat in time).  So the first entry in a particular row 

might be the frequency (in hertz) of play of an acoustic guitar; the second entry might be 

the frequency of play of a piano, etc.  Consequently, all of an artist’s instrumental work 

(i.e., after being put into matrix form from the initial raw MIDI form) can be written as a 

collection of matrices Ω .  The same can be said about any musician’s instrumental work, 

any genre of instrumental music, etc., whereby the MIDI music is in digital (i.e., 

frequency) form after the aforementioned conversion.  So Figure 1 represents the makeup 

of a given row (written here in column form) of the MIDI matrix after conversion to 

frequencies; of course, the instruments utilized will differ across differing tunes and 

across different rows as well.                                                                                                                                                                                      

 

 
 

        Figure 1:  The Vector Layout of the MIDI Instrument Frequency Data 
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OBJECTIVES 
 

 A first objective is to re-visit the Cannon and Hallum (2004) results regarding the 

transformation derivation to clarify, generalize (a little) and re-visit some of the  

developmental details and how SAS came to the rescue here.  A second objective is to 

discuss details of several additional “sound-based” spin-off applications that have 

resulted from what has been learned from the MIDI endeavors.  Since the developed SAS 

AF frame modules provide a GUI approach to convert raw MIDI files to a format 

readable by SAS, its underlying structure will be reviewed herein in a bit more detail for 

clarification.  Specifics of the SAS code that convert the frequencies (after 

transformations, manipulations, etc.) back into a raw MIDI file to hear the auditory 

information played back through a music synthesizer will be clarified for better 

understanding of the “reversal” logistics.   Finally, based on insights gained from the 

MIDI experience, this second objective will include details regarding spin-off 

applications including:  

 

• an approach, and a demonstration of its usage, to assist a seeing-impaired person 

“hear” digital information (e.g., from digital photography), and  

 

•  a SAS GUI approach for improving practice music sessions and handling large 

data bases of music files (including MIDI, MP3, WAVE, WMA, and other file 

types) and to include a choice, via the GUI, for the software module to “play” a 

selected file.   

 

These items will be demonstrated in real-time at conference time.  Of course, the 

following objectives are always at the forefront as well: 

 

• identification of additional questions for future research by undergraduate and/or 

graduate students as part of their research papers, practicums, and theses;  

 

• the opportunity to discuss such specifics with faculty colleagues (e.g., John, 

Marty, Clay, etc…..they know who they are!!) having an interest in music and 

related topics is an additional “music to my ears” objective! 

 

SOME RELATED RESULTS FROM THE LITERATURE 

 

The reader is advised to re-visit the references in the Cannon and Hallum (2004) 

paper once again since they remain pertinent to this discussion as well.  The next several 

paragraphs comprise a literature look into the contributions to-date in the area of 

primarily multivariate type investigations of MIDI data related to the type of research 

interests discussed herein. 

 

The Das, Howard, and Smith paper (1999) postulated that the analysis of 

multivariate MIDI data allows for the statistical analysis of motion in music. Their paper 

dealt with analysing the kinematic motion components within music, specifically music 

velocity (i.e. tempo) and music acceleration/deceleration (i.e. tempo change). They 
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utilized differing multivariate variables (i.e., not the multivariate sound frequencies) than 

those investigated herein.   

 

J. H. Jensen, Christensen, and S. H. Jensen (2004) tested the sensitivity of 

similarity measures to transpositions and concluded that it would also be relevant to 

measure the dependency on tempo, combinations of instruments, bandwidth and audio 

compression to get insightful supplement to genre classification.  Continued research will 

be done to see ways and means of bringing such information in with the frequencies data 

retrieved and utilized herein. 

 

Much work has already been done on music similarity and on the related task of genre 

classification, along with many other such concerns (check the additional references 

included herein).   In particular, genre classification is often used to evaluate music 

similarity measures since it simplifies evaluation compared to the numerous user 

evaluations that are otherwise needed. 

 

It should be noted that considerable additional data can be accessed after completion of 

the SAS MIDI “decoupling” process (i.e., more than just instrument frequencies can be 

retrieved) and which can be made available to support other research efforts. For 

example, the tempo, the volume with which each string, piano key, etc. is stroked 

(sometimes called the “attack”), the degree of vibrato, and other such information is also 

retrievable from the MIDI data as well.  These can obviously support research efforts as 

well and several have been addressed already in various ways in a number of the papers 

listed in the reference section herein. 

 

SAS GUI TO CONVERT A MIDI TO A MATRIX OF FREQUENCIES 
 

The developed SAS GUI module that converts MIDI files into SAS readable form 

has its initial screen given in Figure 2.   This AF screen for selecting a MIDI tune has 

been considerably enhanced since the 2004 SCSUG; the explanation of its usage is 

included here for completeness.  To select a MIDI tune, the user must first select a 

category.  Here “BLUES” has been selected, which automatically populated the entries in 

the “MIDI FILES” list box to only those tunes that are “blues” tunes.  As one can see, the 

tune “MISSISSIPPIBLUES” is the MIDI selected from this menu.  Indexing the 

“APPLY” pushbutton transforms the MIDI file into a text file.  At this point the user may 

choose to view the MIDI text file in the newly transformed text form by clicking on 

“VIEW MIDI”, which brings up the AF frame screen shown in Figure 3.  The file that is 

executed by the SAS GUI at this point is the one that converts the MIDI from its object 

code form into a text file, plus it then separates out all text parts from all numerical 

information. To see SAS code, click on the following address:  

 

 http://www.shsu.edu/~mth_crh/SCSUG/experiment_try.sas. 
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               Figure 2: Initial GUI Screen for Converting MIDI Data to SAS Format. 

The user may also choose to listen to the MIDI file by selecting “PLAY WMP,” which 

automatically pulls up the Windows Media Player, or a music synthesizer 

“SEQUENCER” which pulls up the PowerTracks Pro (a product of ©PGMusic Inc.) 

synthesizer. In order to complete the key second step for conversion to a matrix, click on 

the “PREPROCESS” icon.  This will strip off a key part of the text from the MIDI text 

file and prepare it for entry into the SAS “PROC IML” module which permits the matrix-

level manipulations that is the fundamental level of preparation prior to putting into 

matrix form.  Once the “PREPROCESS” icon is indexed then the “GOBACK” 

pushbutton is indexed to return to the SAS editor.  Once back in the SAS editor, a 

particular SAS program can be run to strip the text information from the MIDI files and 

reorganize it into a matrix format such that the information for each instrument is 

restricted to an assigned column with all of the clock beats aligned to match the timing of 

all other instruments present in a tune.  This program (named “MAT_TRANSFORM”) 

goes through each element of the MIDI file organizing the information carefully into 

columns of instruments and rows corresponding to clock beats, creating a matrix that can 

be manipulated by PROC IML in SAS.  This PROC IML program is a basic program that 

creates the actual MIDI matrix by converting the organized data from MIDI pitch code (0 

to 127, i.e., 7 bit data) into standard sound frequencies and then inputs the information 
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into a matrix which can easily be manipulated.  The SAS code underlying this part of the 

SAS GUI is available at http://www.shsu.edu/~mth_crh/SCSUG/mat_transform.sas. 

 

  

 
 

Figure 3:  MIDI File in Text Form for Viewing (Results from Indexing “View MIDI.”) 

 

Once the matrix transformation program is run, another SAS program (named 

“GO_BACK.SAS”) can be executed to transform back to the MIDI format for playback 

purposes.  After execution of the SAS program that transforms the matrix of frequencies 

back to MIDI object code form, the Windows Media player automatically opens, 

allowing the user to listen to the results.  Again after the matrix of frequencies are 

manipulated in whatever way one wishes, additional SAS Screen Control Language 

(SCL) code allows playback of “transformed MIDI” so the user can discern to what 

degree the manipulations altered (if at all) the auditory properties of the original tune.  

The SAS code that is the basis for this part of the SAS GUI is retrievable at the following 

address: 

 

http://www.shsu.edu/~mth_crh/SCSUG/go_back.sas 
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More detailed specifics of the “MIDI to text” SAS GUI capability is described 

below: 

 

1. The process starts with a selected MIDI file; initially, this file is in “object code” 

form (e.g., in hexadecimal, packed binary, or some other unreadable (by a 

standard text editor) form); this file is called the “Raw MIDI File”, i.e., the RMF.  

From Figure 2, the names of all the available MIDI files populate the listbox on 

the right after selection of the CATEGORY in the listbox on the left. So 

categorical (or genre) selections can first (e.g., COUNTRY, BLUES, etc.) be 

accomplished prior to selection of a specific MIDI tune from that category. 

 

2. A free downloadable program (along with “readme” directions to see exactly how 

it operates) referred to by the file name MF2T.EXE out on the Web (just Google 

it) is run on the selected RMF to do the following: 

a. It changes the RMF file to a text MIDI file (i.e., a TMF file, which is 

readable by any standard text editor) and stores it in the same folder with 

the “txt” filetype and with the same first part name. 

b. It results in all music notes being 7 bit data (i.e., ranging from 0 to 127). 

c. Notes for a particular instrument, say instrument i, are referenced by the 

terminology “channel i data”. 

d. A corresponding file, named T2MF.EXE, will transform a text MIDI file 

back to a RMF for play back through a sequencer (T2MF.EXE is available 

at the same Web site). 

 

3.  The SAS SCL (Screen Control Language) software that is key to the AF Frame 

part of the SAS GUI capability has the following characteristics: 

a. Upfront, it numbers every line of the original TMF so that the “original 

sequence” of everything is retained. 

b. It converts the 7 bit note data (i.e., that ranging from 0 to 127) to standard 

hertz frequencies (f): using the conversion formula (here 0 ≤ n ≤ 127): 

 

                                                        f = 440 × 2(n − 69) / 12 

                                
 

                        Note that the key of A in the fourth octave (denoted by A4) is equal to        

                        440 hertz, which occurs when n = 69 in the above.  Obviously, solving the  

                        same equation for n results in the backward conversion formula in going 

                        from frequencies back to standard MIDI instrument codes (done after all 

                        experimental/other manipulations are finished and, at which time, the user  

                        is ready to hear the “impact” (e.g., after a transformation) in playback  

                        mode, i.e., back in standard MIDI “object code” mode). 

c. The text controlling part of the MIDI file is stored separately from the 

frequencies for later use when one wishes to transform back to an RMF 

for playback through a sequencer. 

d. Finally, the numerical frequencies, after separation from the text part of 

the MIDI, are output to an m by p matrix M where m is the number of 

clockbeats and p is the number of instruments.  Thus, the mij component of 
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M is the frequency (in hertz) of the j
th

 instrument at the i
th
 clockbeat in 

time. 

e. In this form, M is now readily available for algebraic manipulations inside 

SAS (e.g., using IML --- or for passing to any other similar software). 

 

 

GENERAL ALGEBRAIC MODEL UTILIZED 
 

Throughout this section, the assumption is that one has two MIDI matrices 

created using the IML program discussed above (i.e., both are comprised of the 

frequencies in hertz), i.e., 0M  is an rm ×  matrix comprised of m  clock beats and r  

instrument frequencies throughout, and 1M  is a pk ×  matrix comprised of k  clock beats 

and p  instrument frequencies throughout. The assumed matrix model relationship 

between MIDI tunes 0M  and 1M  is expressed by  

 

ERLMM += 10 , 

 

where L  is a km ×  matrix, R  is a rp ×  matrix, and E is the error matrix (this model is a 

slightly more generalized model than that in the Cannon and Hallum (2004) paper as a 

result of a default approach for selecting R and the manner of incorporating it into the 

derivation for obtaining the matrix L (e.g., default values for R may be resorted to that 

eliminate the problem of a possible discrepancy between dimensions on either side of the 

above transformation equation)).  Based on the manner in which matrices 0M  and 1M  

are formed (i.e., with rows representing the clock beats in time and the columns 

representing the instruments), the transformation L  might appropriately be referred to as 

the “within instruments” transformation while the transformation R  might be referred to 

as the “between instruments” transformation.  Such labels appear appropriate when one 

considers the way matrix multiplication is carried out on the rows and columns of the 

matrix 1M .  To lessen the break in continuity here, the derivations are confined to 

Appendix 1 along with the logistics for the default selection of the matrix R (as a choice 

for, again, solving the discrepancy of matrix dimensions in the defining equation).  So 

from the Appendix 1 results, one obtains: 

 

Result 1:  Assuming the linear relationship between two MIDI tunes is given by 

ERLMM += 10 , where R  is a given fixed matrix, then the transformation L  that 

minimizes ( )EETr ′  is given by  

( )++ ′′−+′′= )()(
'

11

'

11

'

11

'

10 MRRMMRRMIZMRRMMRML  

where Z is an arbitrary matrix conformable for multiplication and the estimator of E is Ê  

where )]()([ˆ
11010 RMRMIMRLMME +−=−=  and RMRMMRLM 1101 )(

+= . 

Consequently, one can see that if the column space of the MIDI tune 0M  is contained in 

the column space of RM 1  then 0ˆ =E . 
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Some Key Observations/Conclusions   
 

The principal components of a MIDI matrix permit ranking the sources of variation 

attributable to the instruments that comprise the matrix columns. Running a principal 

component analysis on the covariance matrix of the MIDI tune frequencies yields all the 

eigenvalues and associated eigenvectors for the tune. SAS ranks the eigenvalues and, 

thus, ranks the influential components in regard to how much of the variability in the tune 

is explained by each particular component. The eigenvectors can be used further to 

determine how influential each instrument is by investigating the eigenvector 

components. The instrument corresponding to the eigenvector component having the 

largest absolute value (associated with the largest eigenvalue) is the most influential.  In 

all cases investigated to-date, an interesting (but not all that surprising) observation is that 

the first principal component or two typically result in pinpointing which instrument(s) is 

(are) the melody instrument(s).   

 

A number of conclusions worthy of note are listed as follows: 

  

1. Further evidence now exists to support the conclusion (initially reported by Cannon 

and Hallum (2004)) that the first principal component (of the covariance matrix 

computed from the rows of 0M  (which, again, are the across instrument frequencies 

in hertz)) typically identifies the most influential instrument(s) (at times, it may be 

more than one principal component that does so).  Interpreting the information based 

on the relative magnitude of the coordinates of the orthonormalized eigenvectors 

utilized in creating the principal components is, at times, an effective way to do this 

(this is, in fact, done and discussed in item 3 below). 

 

2.  Since a number of MIDI tunes are not necessarily completely identifiable by a single 

instrument melody, additional instruments’ contributions to the MIDI (typically 

identifiable from investigating one or more additional principal components, in the 

order of decreasing eigenvalue magnitudes) are interesting to investigate in regard to 

insights into the characteristics and unique features of the piece of music.  Again, 

these results were initially highlighted by Cannon and Hallum (2004) and have now 

been further re-enforced. 

 

3. Moreover, as an add-on to Conclusion 2, investigating those principal components 

that explain at least 90% to 95% of a tune’s variability (as measured by the 

cumulative proportion of eigenvalues) often suffice to identify which instruments 

most uniquely characterize a MIDI tune.  The following are the principal component 

analysis results for a National Anthem MIDI that utilizes 9 instruments (so it’s a 9 

column matrix in raw vector-value form): 
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             PRINCIPAL COMPONENTS OF THE NATIONAL ANTHEM MIDI 

 
      PC 1              PC 2             PC 3             PC 4                 PC 5             PC 6               PC 7              PC 8           PC 9 
0.046353  0.029518  0.052600  0.651548  0.753598  -.038773  0.000336  -.013192 0.010531, 

0.362822  0.857738  0.357391  -.065598  -.024029  0.004087  0.000634  -.002518 0.003643, 

0.006507  -.003629  0.011974  0.052495  0.006123  0.730550  0.063865  0.468737  .489399, 

0.428838  -.498772  0.751078  -.053457  -.013731  -.012309  -.001704  -.001643 0.001699, 

-.001084  -.001167  0.001001  0.001679  -.000234  -.000556  0.525589  0.579421 0.622913, 

0.061422  0.008761  0.011051  0.749229  -.655655  -.066505  -.003158  0.014273 -.012832, 

0.008627  -.007909  0.001697  0.053374  -.027577  0.677627  -.108431  -.482550 0.540796, 

0.823659   .120356  -.552368  -.036770  0.024441  -.001040   0.004254 0.002607 -.003810, 

-.002061  -.001042  0.002750  0.004524  -.006767  0.031966   0.841361 -.459683 -.282315 

 

 

 

           PC    EIGVAL                        % EACH        % CUMULATIVE 

 

           1    457331.360     84651.910        0.4803        0.4803 

           2    372679.450    298240.229        0.3914        0.8717 

           3     74439.221     37729.504        0.0782        0.9499  �1st 3 Principal 

           4     36709.717     27734.064        0.0386        0.9885         Components  

           5      8975.653      7770.862        0.0094        0.9979         explain 95% 

           6      1204.791       796.726        0.0013        0.9992         of the  

           7       408.065       208.876        0.0004        0.9996         variation. 

           8       199.188         6.658        0.0002        0.9998 

           9       192.530                      0.0002        1.0000 

 

                  Table 1:  Principal Component Results on a National Anthem MIDI 

 

Based on the principal components of a National Anthem MIDI in Table 1, the first three 

account for 95% of the variation across the instruments; based on the position of the 

highlighted weights, the 2
nd

, 4
th
, and 8

th
 instruments comprise the majority of information 

in this particular rendition of the national anthem.  Consideration for transformation of 

this MIDI file based on various principal components amounts to particular choices made 

for the “across instruments” transformation R as the only transformation.  To illustrate 

interesting choices here for this rendition of the National Anthem, the following results 

were generated, using the specifics discussed herein, “for you listening pleasure”: 

 

1.  The original National Anthem MIDI can be listened to at: 

 

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2.mid 

 

2. From the above, since the first three principal components accounted for about 

95% of the total variation, upon checking the coordinates of the first 3 principal 

components, instruments 2, 4, and 8 were the most important; to listen to just 

those three instruments (i.e., excluding the other 6 instruments), click on the 

following: 

 

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_3_pca_selected_instruments.

mid 

 

3. Another interesting MIDI is the transformation of the National Anthem MIDI 

using the full 9 by 9 principal component matrix (specifically, this is the matrix 

listed at the top of Table 1); consequently, the original MIDI file was converted to 
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its frequencies in hertz using the SAS approach discussed previously, then matrix 

multiplication was performed using the principal component matrix as the value 

of the matrix R, and, finally, the MIDI was converted back for playback.  There 

were no particular expectations regarding the audio on playback; at this time, 

playback was done for curiosity purposes.  To listen to the “principal component 

matrix transformed results”, click on the following address: 

 

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2_trans_by_9_by_9_pcm.mid 

 

4. The MIDI resulting from multiplying by the weights of the top three principal 

components (i.e., those three having the largest 3 eigenvalues), with the other 

columns of R being zeroed out, can be heard by clicking on this address: 

 

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2_by_top_3_pcs.mid 

 

Other results concerning other specific choices for R will be presented at conference 

time. 

Note that if R  is an orthogonal matrix, then 
1' −= RR . Then RLM1  in Result 1 

reduces to ( ) ( ) RMMRRMMRMRLM 1

'

1

'1'

1

'

1

1

01

−+−=  after distributing the 

pseudoinverse (see Schott (1997)) across the parentheses, which becomes 

( ) RMMMMRMRLM 1

'

11

'

1

1

01

+−= .  For this to reduce further, consider that 

( ) ( ) 1

1

'

11

'

1

−+
= MMMM , which is possible only if 1M  is of full column rank, in which 

case ( )
0

1

01

'

1

1

1

'

1

1

01 MRRMRMMMMRMRLM ===
−−− . This implies that if 1M  is of full 

column rank and R  is orthogonal, then the transformation of RM 1  (i.e., by 

multiplying by L on the left) into the MIDI matrix 0M  results in no error.  Note that 

in order to satisfy the condition that 
1' −= RR , it suffices for R  to be a permutation 

matrix.  Also note that the transformation of 1M  into 0M  will result with no error if 

the MIDI matrix 1M  is of full column rank.  This yields Conclusion 4, which is a 

special case of Result 1.   

 

4. The transformation whereby matrix 1M  is multiplied by a matrix R  on the right, i.e., 

ERLMM += 10 , does not affect the relationship between 0M  and 1M  provided R  

is an orthogonal matrix.  (Note: In the special case whereby R  is a permutation 

matrix, the above multiplication by R  amounts to a switching of instruments in 

regard to the frequencies played).  This observation was made in the Cannon and 

Hallum (2004) paper. 

 

5. Since increasing the frequency of a note by a semitone, or half-step, is accomplished 

by multiplication by the factor   , which is approximately 1.059, this can be 

accomplished by simply multiplying the frequency matrix by a diagonal matrix with 

the constant on the diagonal (which, of course, is equivalent to multiplying by this 

constant as simply a scalar). 
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Some additional “listening” examples regarding the general transformation results 

obtained from the use of the conclusions of Result 1 are listed as follows: 

 

• The results of transforming the tune Ashogan’s Farewell (a Civil War tune) to the 

National Anthem: 

 

o First, below is the address of the Ashogan’s Farewell MIDI tune itself: 

 

http://www.shsu.edu/~mth_crh/SCSUG/Ashogans_Farewell.mid 

 

NOTE:  Here, upon checking, the Ashogan’s Farewell MIDI matrix is of 

rank 2 while the National Anthem MIDI matrix is of rank 9; obviously, 

this type of relationship between two MIDI tunes impacts the auditory 

playback sound of the National Anthem in the range and null spaces of 

Ashogan’s Farewell. Speaking algebraically, the more of the National 

Anthem matrix that lies in the range space of the Ashogan’s Farewell 

matrix, the more distinguishable the playback expectedly would be.  A 

similar conclusion can be made regarding the part of the National Anthem 

that lies in the null space of Ashogan’s Farewell.  Similar conclusions 

should hold for the other mapping attempts discussed below as well.  At 

this point, these observations are made for “aesthetic pleasure” only; 

specific utilities (or the lack thereof) for such information will be 

forthcoming with future research. 

 

o To playback the part of the National Anthem that lies in the range space of 

Ashogan’s Farewell, click on the following: 

 

http://www.shsu.edu/~mth_crh/SCSUG/Ash_NatAnth_Range.mid 

 

Here M1 is the Ashogan’s Farewell MIDI matrix of frequencies and M0 is 

the National Anthem MIDI matrix (and RMRMM 110 )(
+

 is the mapping of 

the National Anthem to the range space of Ashogan’s Farewell; it is the 

MIDI file at the above Web address). 

 

 

o To playback the part of the National Anthem that lies in the null space of 

Ashogan’s Farewell (i.e., this is Ê  in Result 1), click on the following: 

 

http://www.shsu.edu/~mth_crh/SCSUG/Ash_NatAnth_Null.mid 

  

• The results of transforming Eidelweiss (an integral part of the movie The Sound of 

Music) to the Wild Side of Life (WSL, a Hank Williams tune) are discussed 

below: 
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o First, below are the addresses of Eidelweiss and the Wild Side of Life 

MIDI files utilized herein (just to have a “feel” for their sound): 

 

Eidelweiss:  http://www.shsu.edu/~mth_crh/SCSUG/Eidelweiss.mid 

 

WSL:   http://www.shsu.edu/~mth_crh/SCSUG/WSL.mid 

 

NOTE:  Both matrices have 8 columns, but the Eidelweiss MIDI matrix is 

of rank 2, while the Wild Side of Life MIDI matrix is of rank 8.  The 

reason the Eidelweiss matrix is of rank 2 is because it is played with 2 

instruments, but both instruments were duplicated three times each, for a 

total of 8 columns (again, with 6 being duplicates of the original two). 

 

o To playback the part of the Wild Side of Life that lies in the range space of 

Eidelweiss (i.e., RMRMM 110 )(
+

; see Result 1), click on the following: 

 

http://www.shsu.edu/~mth_crh/SCSUG/Eid_WSL_Range.mid 

 

Note here that 1M  is the Eidelweiss MIDI matrix of frequencies and 0M  is 

the Wild Side of Life MIDI matrix of frequencies. 

 

o To playback the part of the Wild Side of Life that lies in the null space of 

Eidelweiss (i.e., again this is Ê  in Result 1), click on the following: 

 

http://www.shsu.edu/~mth_crh/SCSUG/Eid_WSL_Null.mid 

 

Note that the file played back here is the file: )]()([ˆ
110 RMRMIME +−= . 

This is that part of the Wild Side of Life matrix that lies in the null space 

of the Eidelweiss matrix. 

 

• Other “mapping” results will be available for demonstration at conference time. 

 

 

“LISTENING” TO VECTOR-VALUED, DIGITAL DATA – A MIDI SPIN-OFF 

 
At the outset of this study, it was anticipated (i.e., hoped) that considerable insight 

would be gained from the study of MIDI data to assist a seeing-impaired person in regard 

to “hearing objects” via the sound sensor, i.e., the ear.  This is demonstrated with the aid 

of the ©SoftStep Version 3.2 software (at www.algoart.com ; I believe SoftStep has 

recently been updated and is probably now referred to by the name “Artwonk”) which, 

with a little programming, has the ability to simultaneously sound out the red, green and 

blue (RGB) values at the pixel-level from digitized photographs; consequently, success 

was had in getting SoftStep to playback sounds for each pixel’s color in a digitized photo, 

which is specifically the task of sounding out vectors of length 3 with coordinates R, G, 

and B based on the location of the cursor.   
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Through the use of this software, one can listen to 7 bit data (i.e., integer values 

ranging from  0 through 127) whereby the larger the numerical value, (i.e., the closer it is 

to 127),  the higher the sound pitch.  But this is precisely the type of approach utilized in 

“hearing” MIDI music which is multivariate in structure as well.  The tricky part here 

was that of “fooling” the ©SoftStep software into playing vector-valued data (it is 

designed to sound out univariate values).  Below in Figure 4 is a screen shot of the 

object-filled screen that permits listening to the red, green, and blue (RGB) values at the 

pixel-level of a Landsat satellite image of Lake Livingston.  The effort of getting 

SoftStep to sound out the red, green, and blue pixel values simultaneously required 

dropping a triple of each scene on the screen and having three identical screen control 

language modules running simultaneously. This effort was totally successful and will be 

demonstrated at conference time; note in Figure 4 that there are three identical scenes of 

Lake Livingston on the screen, one is used for sounding out the redness in the pixel, one 

for sounding out the greenness in the pixel, and the third for sounding out the blueness in 

the pixel.  After some preliminary screen control language programming in SoftStep 

software, upon moving the cursor over the Lake Livingston image, the user hears the 

results of a sounding out of the RGB values for each pixel the cursor moves across.  This 

leads to a number of possibilities for assisting a seeing-impaired person to “hear” digital 

information.  At conference time, this capability will be demonstrated on a digital photo 

of a sunset, a digital photo of the petals of a flower, and on an additional “very 

memorable photo” as well (to be revealed at conference time). 

 

 
Figure 4:  GUI Screen for “Listening” to a Satellite Image of Lake Livingston 
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A number of thoughts come to mind in regard to further worthwhile research 

along these lines: one is that of investigating patterns of multiple cursors that a seeing-

impaired person might have access to in regard to “choices for listening configurations”.  

As an example, consider the lap board in Figure 6 for possible usage by a seeing-

impaired person.  Assuming that the indexing of each button on this board results in a 

predetermined choice for the number of cursors (i.e., not necessarily just a single cursor) 

along with a chosen pattern with which these are dispersed over the digital scene based 

possibly on a selected beginning point (e.g., a dispersing of 6 cursors outward in a 

semicircular array form from the sun’s center in Figure 5); such considerations could be a 

big benefit for the seeing-impaired and they could easily be taught to use this setup for 

enhancing listening options.  Other possibilities will be discussed at conference time. 

 

 
 

Figure 5:  GUI Screen for the Capability to “Listen” to a Digital Photo of a Sunset 
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         Figure 6: Lap Board for a Seeing-Impaired Person’s Configuration Choices 

 

 

A PRACTICE BACKUP RHYTHM BAND PLUS GUI INTERFACE TO MUSIC 

 

As a wrap-up to this discussion regarding a GUI capability for handling music entities, 

last, but far from least, is my favorite: a SAS GUI capability to expeditiously select from 

a large library of music existing in numerous formats with each requiring differing 

software modules for playback.  The author extensively uses this capability in SAS for 

practice sessions in preparation for gigs, for fun in relaxed music sessions with music 

friends, and for just general listening.  The screen below (see Figure 7) is essentially self-

explanatory, but this capability will be further demonstrated and explained at conference 

time.  This SAS GUI is set up to interface with several other music software modules 

including Band-in-a-Box, PowerTracks, RealBand, Sonar 8.5, ©Karafun (a karaoke 

player) and Windows Media Player; the first three are products of ©PGMusic, Sonar 8.5 

is a product of ©Creative, and, of course, Windows Media Player is a product of 

©MicroSoft.  You may wish to Google each for further information. 
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Figure 7: A GUI Interface to Band-in-a-Box, to Sonar 8.5, to RealBand, to Windows   

               Media Player, to PowerTracks PRO, and to Karafun Karaoke Player  

 

Incidentally, all GUI screens herein are contained in the file “transmusic.dat” available at  

http://www.shsu.edu/~mth_crh/SCSUG/transmusic.dat.  This file was produced using 

PROC CPORT.  To bring these screens along with their SCL (screen control language) 

and put them in place on another computer (on which SAS is implemented), the 

assumption is that a SAS library exists with the name “MUSIC” and, by running the 

PROC CIMPORT with the catalog name MUSIC.MIDI as the output catalog, all screens 

should load without a problem.  Feel free to contact the author if assistance is needed in 

doing this. 

 

ADDITIONAL RESEARCH QUESTIONS 

 

Future research will include, as time permits, comparisons of numerous additional 

known pieces of music (some similar, some quite different; e.g., it would be particularly 

interesting to discover ways and means for effectively determining similarities and 

dissimilarities within and across waltzes, rock tunes, blues tunes, various artists, key top 

Billboard tunes, etc.). 

 

1. How might one extensively compare (where such requires a mathematical and/or 

statistical assessment and/or modeling effort to permit doing so) the “similarities” 

and “dissimilarities” of a given tune with: 
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a. A given collection of tunes that one has specific interest in? 

b. A given genre of tunes? 

c. The current Billboard top 20? 

d. Those of a particular artist? 

e.  A specific category (e.g., waltzes)? 

f. Etc. 

 

2. In number 1, what “similarities” and/or “dissimilarities” are sufficient for 

distinguishing across a collection of tunes; in what manner might these be arrived 

at mathematically and/or statistically?  

 

3. Again, in number 1 and 2, how might one arrive at a minimal set of discriminant 

features that are quantifiable. 

 

4. Given a collection of tunes (possibly quite large), it appears worthwhile to 

determine ways and means of identifying subgroups that “make sense” in a 

mathematical and/or statistical manner. For example, one way might be to find a 

way to have the resulting subgroups have “maximum similarity” within each 

subgroup and, at the same time, “maximal dissimilarity” between groups (such as 

optimal clustering approaches might permit).   

 

5. To what extent might the positive features of one tune be effectively transformed 

to another via mathematical/statistical transformations (e.g., what transformations 

might be worthy of consideration and to what extent might it be (or not be) 

successful).  What transformations might improve a tune’s “listening aesthetics”, 

e.g., improve vibrato, improve the balance of volumes across instruments, ways 

and means to achieve optimal mixing, etc.? 

 

6. Given that MP3 and WMA files are sampled WAVE files, how might this 

sampling be done differently to permit other advantages? 

 

7. All the above can be considered separately for: 

 

a. MIDI tunes (probably the easiest). 

b. MP3 and WMA files. 

c. WAVE and other CD audio files. 

 

8. What can be learned from any of the above to help in other areas?  For example, 

how might digital pictures (which can be digitized into RGB values) be 

transformed and converted to sound in such a way to permit a seeing-impaired 

person to “listen” to digital photography in a meaningful way that might be even 

more enlightening (i.e., beyond the “somewhat simple” ways discussed herein). 

 

9. How about a design for bar coding so that aesthetically pleasing sounds are heard 

(maybe even discernible music) when an item is scanned in the super market or 

wherever? 
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APPENDIX 1:  DERIVATION OF RESULT 1 

 
The key derivation question is: “What are the desired characteristics of the 

transformations L  and R  that result from ‘mapping’ one MIDI tune to another?”  The 

distance utilized herein between two matrices (i.e., 0M  and  RLM1  in this particular 

case) is the Frobenius norm (see Schott (1997)) defined (using the trace operator “Tr”) as 

),( 10 RLMMd where  

 

( ))()(),( 101010 RLMMRLMMTrRLMMd −′−= . 

 

In this expression, the prime in the exponent position is notation for the matrix transpose 

operator. Notice that RLMM 10 −  is simply the error associated with the above 

transformation of 1M  into 0M .  Emphasis is now given to finding the transformation L .  

The matrix R  is a known matrix (with a default value to be discussed shortly) carefully 

preselected to ensure that the matrix dimensions are conformal between the right and left 
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sides of the equation ERLMM += 10 .  In order to find an appropriate transformation, L  

of 1M , the transformation obtained is the one that minimizes the square of the Frobenius 

norm, ( ) ( )]()[ 00 RLMMRLMMTrEETr
ii

−′−=′ , i.e., this is the “error minimization 

criterion” utilized herein (See Schott (1997)).   Two identities of matrix differentiation 

utilized herein to minimize the Frobenius norm are (here CBA ,,  and X  are matrices and 

differentiation is the usual (see the Matrix Cookbook (2008)): in particular, if )(Xf  is a 

scalar function of the matrix X  then the derivative of )(Xf  with respect to the matrix X 

is defined by 

( )
)(

)(

, jix

Xf

X

Xf

∂

∂
=

∂

∂
 

which is the standard component-wise differentiation.  From this, we have 

BCXBBXBCCXBXBTr
X

′+′′=′′
∂

∂
][    and   BAAXBTr

X
′′=

∂

∂
][ . 

where, of course, “Tr” is the trace operator.  

Consequently, upon taking the derivative of ( )EETr ′  with respect to the matrix 

L , i.e., 

 

][)( 00100111 MMRLMMMLMRRLMLMRTr
L

EETr
L

′
+

′
−′′′−′′′

∂

∂
=′

∂

∂
 

 

and equating the result to zero, the equation 
′′=

′′
1011 MRMMRRLM  results; solving this 

for L  yields  

                         




 ′′′′−+

′′′′= ++ )()( 11111110 MRRMMRRMIZMRRMMRML  

where the superscript “+” denotes the matrix pseudoinverse (see Schott(1997)).  

Multiplying by RM 1  on the right in the above expression results in  

 

( ) RMRMMRMRMZRMRMRMMRLM i

++ =−+′′= )(]))([()( 101111101 . 

 

Note that if RM i  is of full column rank, then  

( ) )()()()( 1

1

111
′′=

−+ RMRMRMRM , 

in which case 01 MRLM = , or 0ˆ =E .  Consequently, one obtains Result 1. 

 
 

A Default Choice for R: The “Between Instruments” Transformation                
                                                                                                                                                                                                                      

 Since MIDI tune 0M  is rm×  and 1M  is pk × , for the matrix RLM1  to be 

conformable for addition, the matrix R  will be selected to be of dimension rp × .  In 

particular, if 0M  has fewer columns than 1M  , i.e., pr < , then the MIDI tune 1M  

utilizes rp −  more instruments than 0M .  In this situation, the default value for R  is that 
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of an rr ×  identity matrix concatenated below (i.e., vertically) by a rrp ×− )( matrix of 

zeros.  If pr > , then the default value for R  is the pp × identity matrix concatenated on 

the right by a )( prp −× matrix of zeros.  To complete the default assignment, if pr = , 

then R is selected to be the pp × identity matrix.  Finally, for investigative and/or 

experimental purposes, many other choices (e.g., a few columns of the principal 

components matrix computed from the row vectors of 1M ) can be made for R .  Choices 

and properties of the matrix R are given in the following discussion.  It should be noted 

that this default choice for R is done, typically, only for the purpose of attaining 
conformability for multiplication, i.e., there is nothing “magic” about this choice.  In fact, 

note that in the case where 1M  utilizes more instruments (i.e., this is the case pr < ) than 

0M , then the default choice for R actually results in simply muting the instruments that 

play the last  rp −  columns of 1M . 

 


