

1

1

Multivariate Sound Info Retrievable from MIDI Music, Digital Photography, and

Satellite Imagery: SAS to the Rescue

Cecil Hallum

Department of Mathematics and Statistics

Sam Houston State University

Huntsville, Texas

INTRODUCTION

Since 1982, a common source of digital music information has been the MIDI

(Musical Instrumentation Digital Interface) music that is readily available from the Web.

Sometime ago, myself and a graduate student (Cannon and Hallum (2004)) developed a

SAS program that converts a MIDI music file from its raw “object code form” into a

multivariate data set (i.e., vector-valued data set) comprised of instrument-specific sound

frequencies (in hertz) for further manipulation by SAS or similar software; in doing so, a

number of sound-related research questions could be pursued by taking advantage of the

resulting linear algebraic framework. Interesting questions which surfaced beginning

back in 2004 included the following:

1. “Is it possible to ‘map’ one MIDI tune ‘effectively’ to another; e.g., can a Bach

tune be ‘mapped’ to a Beethoven tune, can a Hank Williams tune be ‘mapped’ to

the National Anthem, etc.? Obviously such files possess a considerable amount

of “interesting and worthwhile” sound information, and as a result, what are

some key characteristics, if any, that might be retrievable based on a choice for a

transform (e.g., simple matrix multiplication comes to mind immediately) to

operate on such a file; plus, what can be learned and benefits gained, if any, from

such questioning that could lend insight to a worthwhile spin-off or two”?

2. “Is it possible to identify ‘equivalence classes’ of tunes that could then be

connected (algebraically at least), in some recognizable manner, back to a certain

cadre of artists, to a certain music genre, to the Billboard top 20 over some

window of time, etc.?”

3. Plus several others to be discussed at conference time.

Considerable discussion was given to address these questions in the Cannon and

Hallum (2004) SCSUG (South Central SAS Users Group) paper with emphasis on using

frequencies (in hertz) of play of the various instruments as the key initial MIDI data

source. Further discussion is provided herein to re-visit these questions, to provide

further insight and some further generalization to the transformation approach (at the

expense of a little redundancy here and there); even more, a primary emphasis is given to

identifying and demonstrating spin-offs from these efforts resulting largely from the

insight gained from thinking from the perspective of multivariate MIDI algebraic mindset

attained from these initial endeavors; specifically, such insight has lent itself to:

2

2

1. structuring a capability that will, eventually, provide the means to effectively

assist a seeing-impaired individual “listen” to digital photography, “listen to the

landscape”, “listen” to the petals of a flower, “listen” to a sunrise, etc., and

2. identifying and demonstrating other usages of SAS to “control and/or manipulate

sound” while resorting to its GUI (Graphical User Interface) capabilities to permit

an ease of use for a general user.

As an example of the latter, a SAS GUI capability is discussed and demonstrated herein

for the handling of interfaces between synthesizers, digital audio workstation software,

and the storage and retrieval of music files from data bases containing hundreds of songs

which the author uses as backup rhythm (and lead as well) in music practice sessions. All

sound results will be amped at conference time to permit ease of listening. SAS/Basics,

SAS/Statistics, SAS/IML, and SAS/Applications Development are utilized as the key

SAS tools in the developments herein and in this presentation itself as well.

The key layout of a MIDI file after getting “unpackaged” from its initial “object

code” form by SAS is simply that of a matrix whereby each row represents instrument-

specific frequencies (in hertz) played by no more than a maximum of 16 instruments – so

each matrix will have no more than 16 columns; its rows, however, will typically number

in the thousands (one for each clock beat in time). So the first entry in a particular row

might be the frequency (in hertz) of play of an acoustic guitar; the second entry might be

the frequency of play of a piano, etc. Consequently, all of an artist’s instrumental work

(i.e., after being put into matrix form from the initial raw MIDI form) can be written as a

collection of matrices Ω . The same can be said about any musician’s instrumental work,

any genre of instrumental music, etc., whereby the MIDI music is in digital (i.e.,

frequency) form after the aforementioned conversion. So Figure 1 represents the makeup

of a given row (written here in column form) of the MIDI matrix after conversion to

frequencies; of course, the instruments utilized will differ across differing tunes and

across different rows as well.

 Figure 1: The Vector Layout of the MIDI Instrument Frequency Data

3

3

OBJECTIVES

 A first objective is to re-visit the Cannon and Hallum (2004) results regarding the

transformation derivation to clarify, generalize (a little) and re-visit some of the

developmental details and how SAS came to the rescue here. A second objective is to

discuss details of several additional “sound-based” spin-off applications that have

resulted from what has been learned from the MIDI endeavors. Since the developed SAS

AF frame modules provide a GUI approach to convert raw MIDI files to a format

readable by SAS, its underlying structure will be reviewed herein in a bit more detail for

clarification. Specifics of the SAS code that convert the frequencies (after

transformations, manipulations, etc.) back into a raw MIDI file to hear the auditory

information played back through a music synthesizer will be clarified for better

understanding of the “reversal” logistics. Finally, based on insights gained from the

MIDI experience, this second objective will include details regarding spin-off

applications including:

• an approach, and a demonstration of its usage, to assist a seeing-impaired person

“hear” digital information (e.g., from digital photography), and

• a SAS GUI approach for improving practice music sessions and handling large

data bases of music files (including MIDI, MP3, WAVE, WMA, and other file

types) and to include a choice, via the GUI, for the software module to “play” a

selected file.

These items will be demonstrated in real-time at conference time. Of course, the

following objectives are always at the forefront as well:

• identification of additional questions for future research by undergraduate and/or

graduate students as part of their research papers, practicums, and theses;

• the opportunity to discuss such specifics with faculty colleagues (e.g., John,

Marty, Clay, etc…..they know who they are!!) having an interest in music and

related topics is an additional “music to my ears” objective!

SOME RELATED RESULTS FROM THE LITERATURE

The reader is advised to re-visit the references in the Cannon and Hallum (2004)

paper once again since they remain pertinent to this discussion as well. The next several

paragraphs comprise a literature look into the contributions to-date in the area of

primarily multivariate type investigations of MIDI data related to the type of research

interests discussed herein.

The Das, Howard, and Smith paper (1999) postulated that the analysis of

multivariate MIDI data allows for the statistical analysis of motion in music. Their paper

dealt with analysing the kinematic motion components within music, specifically music

velocity (i.e. tempo) and music acceleration/deceleration (i.e. tempo change). They

4

4

utilized differing multivariate variables (i.e., not the multivariate sound frequencies) than

those investigated herein.

J. H. Jensen, Christensen, and S. H. Jensen (2004) tested the sensitivity of

similarity measures to transpositions and concluded that it would also be relevant to

measure the dependency on tempo, combinations of instruments, bandwidth and audio

compression to get insightful supplement to genre classification. Continued research will

be done to see ways and means of bringing such information in with the frequencies data

retrieved and utilized herein.

Much work has already been done on music similarity and on the related task of genre

classification, along with many other such concerns (check the additional references

included herein). In particular, genre classification is often used to evaluate music

similarity measures since it simplifies evaluation compared to the numerous user

evaluations that are otherwise needed.

It should be noted that considerable additional data can be accessed after completion of

the SAS MIDI “decoupling” process (i.e., more than just instrument frequencies can be

retrieved) and which can be made available to support other research efforts. For

example, the tempo, the volume with which each string, piano key, etc. is stroked

(sometimes called the “attack”), the degree of vibrato, and other such information is also

retrievable from the MIDI data as well. These can obviously support research efforts as

well and several have been addressed already in various ways in a number of the papers

listed in the reference section herein.

SAS GUI TO CONVERT A MIDI TO A MATRIX OF FREQUENCIES

The developed SAS GUI module that converts MIDI files into SAS readable form

has its initial screen given in Figure 2. This AF screen for selecting a MIDI tune has

been considerably enhanced since the 2004 SCSUG; the explanation of its usage is

included here for completeness. To select a MIDI tune, the user must first select a

category. Here “BLUES” has been selected, which automatically populated the entries in

the “MIDI FILES” list box to only those tunes that are “blues” tunes. As one can see, the

tune “MISSISSIPPIBLUES” is the MIDI selected from this menu. Indexing the

“APPLY” pushbutton transforms the MIDI file into a text file. At this point the user may

choose to view the MIDI text file in the newly transformed text form by clicking on

“VIEW MIDI”, which brings up the AF frame screen shown in Figure 3. The file that is

executed by the SAS GUI at this point is the one that converts the MIDI from its object

code form into a text file, plus it then separates out all text parts from all numerical

information. To see SAS code, click on the following address:

 http://www.shsu.edu/~mth_crh/SCSUG/experiment_try.sas.

5

5

 Figure 2: Initial GUI Screen for Converting MIDI Data to SAS Format.

The user may also choose to listen to the MIDI file by selecting “PLAY WMP,” which

automatically pulls up the Windows Media Player, or a music synthesizer

“SEQUENCER” which pulls up the PowerTracks Pro (a product of ©PGMusic Inc.)

synthesizer. In order to complete the key second step for conversion to a matrix, click on

the “PREPROCESS” icon. This will strip off a key part of the text from the MIDI text

file and prepare it for entry into the SAS “PROC IML” module which permits the matrix-

level manipulations that is the fundamental level of preparation prior to putting into

matrix form. Once the “PREPROCESS” icon is indexed then the “GOBACK”

pushbutton is indexed to return to the SAS editor. Once back in the SAS editor, a

particular SAS program can be run to strip the text information from the MIDI files and

reorganize it into a matrix format such that the information for each instrument is

restricted to an assigned column with all of the clock beats aligned to match the timing of

all other instruments present in a tune. This program (named “MAT_TRANSFORM”)

goes through each element of the MIDI file organizing the information carefully into

columns of instruments and rows corresponding to clock beats, creating a matrix that can

be manipulated by PROC IML in SAS. This PROC IML program is a basic program that

creates the actual MIDI matrix by converting the organized data from MIDI pitch code (0

to 127, i.e., 7 bit data) into standard sound frequencies and then inputs the information

6

6

into a matrix which can easily be manipulated. The SAS code underlying this part of the

SAS GUI is available at http://www.shsu.edu/~mth_crh/SCSUG/mat_transform.sas.

Figure 3: MIDI File in Text Form for Viewing (Results from Indexing “View MIDI.”)

Once the matrix transformation program is run, another SAS program (named

“GO_BACK.SAS”) can be executed to transform back to the MIDI format for playback

purposes. After execution of the SAS program that transforms the matrix of frequencies

back to MIDI object code form, the Windows Media player automatically opens,

allowing the user to listen to the results. Again after the matrix of frequencies are

manipulated in whatever way one wishes, additional SAS Screen Control Language

(SCL) code allows playback of “transformed MIDI” so the user can discern to what

degree the manipulations altered (if at all) the auditory properties of the original tune.

The SAS code that is the basis for this part of the SAS GUI is retrievable at the following

address:

http://www.shsu.edu/~mth_crh/SCSUG/go_back.sas

7

7

More detailed specifics of the “MIDI to text” SAS GUI capability is described

below:

1. The process starts with a selected MIDI file; initially, this file is in “object code”

form (e.g., in hexadecimal, packed binary, or some other unreadable (by a

standard text editor) form); this file is called the “Raw MIDI File”, i.e., the RMF.

From Figure 2, the names of all the available MIDI files populate the listbox on

the right after selection of the CATEGORY in the listbox on the left. So

categorical (or genre) selections can first (e.g., COUNTRY, BLUES, etc.) be

accomplished prior to selection of a specific MIDI tune from that category.

2. A free downloadable program (along with “readme” directions to see exactly how

it operates) referred to by the file name MF2T.EXE out on the Web (just Google

it) is run on the selected RMF to do the following:

a. It changes the RMF file to a text MIDI file (i.e., a TMF file, which is

readable by any standard text editor) and stores it in the same folder with

the “txt” filetype and with the same first part name.

b. It results in all music notes being 7 bit data (i.e., ranging from 0 to 127).

c. Notes for a particular instrument, say instrument i, are referenced by the

terminology “channel i data”.

d. A corresponding file, named T2MF.EXE, will transform a text MIDI file

back to a RMF for play back through a sequencer (T2MF.EXE is available

at the same Web site).

3. The SAS SCL (Screen Control Language) software that is key to the AF Frame

part of the SAS GUI capability has the following characteristics:

a. Upfront, it numbers every line of the original TMF so that the “original

sequence” of everything is retained.

b. It converts the 7 bit note data (i.e., that ranging from 0 to 127) to standard

hertz frequencies (f): using the conversion formula (here 0 ≤ n ≤ 127):

 f = 440 × 2(n − 69) / 12

 Note that the key of A in the fourth octave (denoted by A4) is equal to

 440 hertz, which occurs when n = 69 in the above. Obviously, solving the

 same equation for n results in the backward conversion formula in going

 from frequencies back to standard MIDI instrument codes (done after all

 experimental/other manipulations are finished and, at which time, the user

 is ready to hear the “impact” (e.g., after a transformation) in playback

 mode, i.e., back in standard MIDI “object code” mode).

c. The text controlling part of the MIDI file is stored separately from the

frequencies for later use when one wishes to transform back to an RMF

for playback through a sequencer.

d. Finally, the numerical frequencies, after separation from the text part of

the MIDI, are output to an m by p matrix M where m is the number of

clockbeats and p is the number of instruments. Thus, the mij component of

8

8

M is the frequency (in hertz) of the j
th

 instrument at the i
th
 clockbeat in

time.

e. In this form, M is now readily available for algebraic manipulations inside

SAS (e.g., using IML --- or for passing to any other similar software).

GENERAL ALGEBRAIC MODEL UTILIZED

Throughout this section, the assumption is that one has two MIDI matrices

created using the IML program discussed above (i.e., both are comprised of the

frequencies in hertz), i.e., 0M is an rm × matrix comprised of m clock beats and r

instrument frequencies throughout, and 1M is a pk × matrix comprised of k clock beats

and p instrument frequencies throughout. The assumed matrix model relationship

between MIDI tunes 0M and 1M is expressed by

ERLMM += 10 ,

where L is a km × matrix, R is a rp × matrix, and E is the error matrix (this model is a

slightly more generalized model than that in the Cannon and Hallum (2004) paper as a

result of a default approach for selecting R and the manner of incorporating it into the

derivation for obtaining the matrix L (e.g., default values for R may be resorted to that

eliminate the problem of a possible discrepancy between dimensions on either side of the

above transformation equation)). Based on the manner in which matrices 0M and 1M

are formed (i.e., with rows representing the clock beats in time and the columns

representing the instruments), the transformation L might appropriately be referred to as

the “within instruments” transformation while the transformation R might be referred to

as the “between instruments” transformation. Such labels appear appropriate when one

considers the way matrix multiplication is carried out on the rows and columns of the

matrix 1M . To lessen the break in continuity here, the derivations are confined to

Appendix 1 along with the logistics for the default selection of the matrix R (as a choice

for, again, solving the discrepancy of matrix dimensions in the defining equation). So

from the Appendix 1 results, one obtains:

Result 1: Assuming the linear relationship between two MIDI tunes is given by

ERLMM += 10 , where R is a given fixed matrix, then the transformation L that

minimizes ()EETr ′ is given by

()++ ′′−+′′=)()(
'

11

'

11

'

11

'

10 MRRMMRRMIZMRRMMRML

where Z is an arbitrary matrix conformable for multiplication and the estimator of E is Ê

where)]()([ˆ
11010 RMRMIMRLMME +−=−= and RMRMMRLM 1101)(

+= .

Consequently, one can see that if the column space of the MIDI tune 0M is contained in

the column space of RM 1 then 0ˆ =E .

9

9

Some Key Observations/Conclusions

The principal components of a MIDI matrix permit ranking the sources of variation

attributable to the instruments that comprise the matrix columns. Running a principal

component analysis on the covariance matrix of the MIDI tune frequencies yields all the

eigenvalues and associated eigenvectors for the tune. SAS ranks the eigenvalues and,

thus, ranks the influential components in regard to how much of the variability in the tune

is explained by each particular component. The eigenvectors can be used further to

determine how influential each instrument is by investigating the eigenvector

components. The instrument corresponding to the eigenvector component having the

largest absolute value (associated with the largest eigenvalue) is the most influential. In

all cases investigated to-date, an interesting (but not all that surprising) observation is that

the first principal component or two typically result in pinpointing which instrument(s) is

(are) the melody instrument(s).

A number of conclusions worthy of note are listed as follows:

1. Further evidence now exists to support the conclusion (initially reported by Cannon

and Hallum (2004)) that the first principal component (of the covariance matrix

computed from the rows of 0M (which, again, are the across instrument frequencies

in hertz)) typically identifies the most influential instrument(s) (at times, it may be

more than one principal component that does so). Interpreting the information based

on the relative magnitude of the coordinates of the orthonormalized eigenvectors

utilized in creating the principal components is, at times, an effective way to do this

(this is, in fact, done and discussed in item 3 below).

2. Since a number of MIDI tunes are not necessarily completely identifiable by a single

instrument melody, additional instruments’ contributions to the MIDI (typically

identifiable from investigating one or more additional principal components, in the

order of decreasing eigenvalue magnitudes) are interesting to investigate in regard to

insights into the characteristics and unique features of the piece of music. Again,

these results were initially highlighted by Cannon and Hallum (2004) and have now

been further re-enforced.

3. Moreover, as an add-on to Conclusion 2, investigating those principal components

that explain at least 90% to 95% of a tune’s variability (as measured by the

cumulative proportion of eigenvalues) often suffice to identify which instruments

most uniquely characterize a MIDI tune. The following are the principal component

analysis results for a National Anthem MIDI that utilizes 9 instruments (so it’s a 9

column matrix in raw vector-value form):

10

10

 PRINCIPAL COMPONENTS OF THE NATIONAL ANTHEM MIDI

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9
0.046353 0.029518 0.052600 0.651548 0.753598 -.038773 0.000336 -.013192 0.010531,

0.362822 0.857738 0.357391 -.065598 -.024029 0.004087 0.000634 -.002518 0.003643,

0.006507 -.003629 0.011974 0.052495 0.006123 0.730550 0.063865 0.468737 .489399,

0.428838 -.498772 0.751078 -.053457 -.013731 -.012309 -.001704 -.001643 0.001699,

-.001084 -.001167 0.001001 0.001679 -.000234 -.000556 0.525589 0.579421 0.622913,

0.061422 0.008761 0.011051 0.749229 -.655655 -.066505 -.003158 0.014273 -.012832,

0.008627 -.007909 0.001697 0.053374 -.027577 0.677627 -.108431 -.482550 0.540796,

0.823659 .120356 -.552368 -.036770 0.024441 -.001040 0.004254 0.002607 -.003810,

-.002061 -.001042 0.002750 0.004524 -.006767 0.031966 0.841361 -.459683 -.282315

 PC EIGVAL % EACH % CUMULATIVE

 1 457331.360 84651.910 0.4803 0.4803

 2 372679.450 298240.229 0.3914 0.8717

 3 74439.221 37729.504 0.0782 0.9499 �1st 3 Principal

 4 36709.717 27734.064 0.0386 0.9885 Components

 5 8975.653 7770.862 0.0094 0.9979 explain 95%

 6 1204.791 796.726 0.0013 0.9992 of the

 7 408.065 208.876 0.0004 0.9996 variation.

 8 199.188 6.658 0.0002 0.9998

 9 192.530 0.0002 1.0000

 Table 1: Principal Component Results on a National Anthem MIDI

Based on the principal components of a National Anthem MIDI in Table 1, the first three

account for 95% of the variation across the instruments; based on the position of the

highlighted weights, the 2
nd

, 4
th
, and 8

th
 instruments comprise the majority of information

in this particular rendition of the national anthem. Consideration for transformation of

this MIDI file based on various principal components amounts to particular choices made

for the “across instruments” transformation R as the only transformation. To illustrate

interesting choices here for this rendition of the National Anthem, the following results

were generated, using the specifics discussed herein, “for you listening pleasure”:

1. The original National Anthem MIDI can be listened to at:

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2.mid

2. From the above, since the first three principal components accounted for about

95% of the total variation, upon checking the coordinates of the first 3 principal

components, instruments 2, 4, and 8 were the most important; to listen to just

those three instruments (i.e., excluding the other 6 instruments), click on the

following:

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_3_pca_selected_instruments.

mid

3. Another interesting MIDI is the transformation of the National Anthem MIDI

using the full 9 by 9 principal component matrix (specifically, this is the matrix

listed at the top of Table 1); consequently, the original MIDI file was converted to

11

11

its frequencies in hertz using the SAS approach discussed previously, then matrix

multiplication was performed using the principal component matrix as the value

of the matrix R, and, finally, the MIDI was converted back for playback. There

were no particular expectations regarding the audio on playback; at this time,

playback was done for curiosity purposes. To listen to the “principal component

matrix transformed results”, click on the following address:

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2_trans_by_9_by_9_pcm.mid

4. The MIDI resulting from multiplying by the weights of the top three principal

components (i.e., those three having the largest 3 eigenvalues), with the other

columns of R being zeroed out, can be heard by clicking on this address:

http://www.shsu.edu/~mth_crh/SCSUG/natanthem_2_by_top_3_pcs.mid

Other results concerning other specific choices for R will be presented at conference

time.

Note that if R is an orthogonal matrix, then
1' −= RR . Then RLM1 in Result 1

reduces to () () RMMRRMMRMRLM 1

'

1

'1'

1

'

1

1

01

−+−= after distributing the

pseudoinverse (see Schott (1997)) across the parentheses, which becomes

() RMMMMRMRLM 1

'

11

'

1

1

01

+−= . For this to reduce further, consider that

() () 1

1

'

11

'

1

−+
= MMMM , which is possible only if 1M is of full column rank, in which

case ()
0

1

01

'

1

1

1

'

1

1

01 MRRMRMMMMRMRLM ===
−−− . This implies that if 1M is of full

column rank and R is orthogonal, then the transformation of RM 1 (i.e., by

multiplying by L on the left) into the MIDI matrix 0M results in no error. Note that

in order to satisfy the condition that
1' −= RR , it suffices for R to be a permutation

matrix. Also note that the transformation of 1M into 0M will result with no error if

the MIDI matrix 1M is of full column rank. This yields Conclusion 4, which is a

special case of Result 1.

4. The transformation whereby matrix 1M is multiplied by a matrix R on the right, i.e.,

ERLMM += 10 , does not affect the relationship between 0M and 1M provided R

is an orthogonal matrix. (Note: In the special case whereby R is a permutation

matrix, the above multiplication by R amounts to a switching of instruments in

regard to the frequencies played). This observation was made in the Cannon and

Hallum (2004) paper.

5. Since increasing the frequency of a note by a semitone, or half-step, is accomplished

by multiplication by the factor , which is approximately 1.059, this can be

accomplished by simply multiplying the frequency matrix by a diagonal matrix with

the constant on the diagonal (which, of course, is equivalent to multiplying by this

constant as simply a scalar).

12

12

Some additional “listening” examples regarding the general transformation results

obtained from the use of the conclusions of Result 1 are listed as follows:

• The results of transforming the tune Ashogan’s Farewell (a Civil War tune) to the

National Anthem:

o First, below is the address of the Ashogan’s Farewell MIDI tune itself:

http://www.shsu.edu/~mth_crh/SCSUG/Ashogans_Farewell.mid

NOTE: Here, upon checking, the Ashogan’s Farewell MIDI matrix is of

rank 2 while the National Anthem MIDI matrix is of rank 9; obviously,

this type of relationship between two MIDI tunes impacts the auditory

playback sound of the National Anthem in the range and null spaces of

Ashogan’s Farewell. Speaking algebraically, the more of the National

Anthem matrix that lies in the range space of the Ashogan’s Farewell

matrix, the more distinguishable the playback expectedly would be. A

similar conclusion can be made regarding the part of the National Anthem

that lies in the null space of Ashogan’s Farewell. Similar conclusions

should hold for the other mapping attempts discussed below as well. At

this point, these observations are made for “aesthetic pleasure” only;

specific utilities (or the lack thereof) for such information will be

forthcoming with future research.

o To playback the part of the National Anthem that lies in the range space of

Ashogan’s Farewell, click on the following:

http://www.shsu.edu/~mth_crh/SCSUG/Ash_NatAnth_Range.mid

Here M1 is the Ashogan’s Farewell MIDI matrix of frequencies and M0 is

the National Anthem MIDI matrix (and RMRMM 110)(
+

 is the mapping of

the National Anthem to the range space of Ashogan’s Farewell; it is the

MIDI file at the above Web address).

o To playback the part of the National Anthem that lies in the null space of

Ashogan’s Farewell (i.e., this is Ê in Result 1), click on the following:

http://www.shsu.edu/~mth_crh/SCSUG/Ash_NatAnth_Null.mid

• The results of transforming Eidelweiss (an integral part of the movie The Sound of

Music) to the Wild Side of Life (WSL, a Hank Williams tune) are discussed

below:

13

13

o First, below are the addresses of Eidelweiss and the Wild Side of Life

MIDI files utilized herein (just to have a “feel” for their sound):

Eidelweiss: http://www.shsu.edu/~mth_crh/SCSUG/Eidelweiss.mid

WSL: http://www.shsu.edu/~mth_crh/SCSUG/WSL.mid

NOTE: Both matrices have 8 columns, but the Eidelweiss MIDI matrix is

of rank 2, while the Wild Side of Life MIDI matrix is of rank 8. The

reason the Eidelweiss matrix is of rank 2 is because it is played with 2

instruments, but both instruments were duplicated three times each, for a

total of 8 columns (again, with 6 being duplicates of the original two).

o To playback the part of the Wild Side of Life that lies in the range space of

Eidelweiss (i.e., RMRMM 110)(
+

; see Result 1), click on the following:

http://www.shsu.edu/~mth_crh/SCSUG/Eid_WSL_Range.mid

Note here that 1M is the Eidelweiss MIDI matrix of frequencies and 0M is

the Wild Side of Life MIDI matrix of frequencies.

o To playback the part of the Wild Side of Life that lies in the null space of

Eidelweiss (i.e., again this is Ê in Result 1), click on the following:

http://www.shsu.edu/~mth_crh/SCSUG/Eid_WSL_Null.mid

Note that the file played back here is the file:)]()([ˆ
110 RMRMIME +−= .

This is that part of the Wild Side of Life matrix that lies in the null space

of the Eidelweiss matrix.

• Other “mapping” results will be available for demonstration at conference time.

“LISTENING” TO VECTOR-VALUED, DIGITAL DATA – A MIDI SPIN-OFF

At the outset of this study, it was anticipated (i.e., hoped) that considerable insight

would be gained from the study of MIDI data to assist a seeing-impaired person in regard

to “hearing objects” via the sound sensor, i.e., the ear. This is demonstrated with the aid

of the ©SoftStep Version 3.2 software (at www.algoart.com ; I believe SoftStep has

recently been updated and is probably now referred to by the name “Artwonk”) which,

with a little programming, has the ability to simultaneously sound out the red, green and

blue (RGB) values at the pixel-level from digitized photographs; consequently, success

was had in getting SoftStep to playback sounds for each pixel’s color in a digitized photo,

which is specifically the task of sounding out vectors of length 3 with coordinates R, G,

and B based on the location of the cursor.

14

14

Through the use of this software, one can listen to 7 bit data (i.e., integer values

ranging from 0 through 127) whereby the larger the numerical value, (i.e., the closer it is

to 127), the higher the sound pitch. But this is precisely the type of approach utilized in

“hearing” MIDI music which is multivariate in structure as well. The tricky part here

was that of “fooling” the ©SoftStep software into playing vector-valued data (it is

designed to sound out univariate values). Below in Figure 4 is a screen shot of the

object-filled screen that permits listening to the red, green, and blue (RGB) values at the

pixel-level of a Landsat satellite image of Lake Livingston. The effort of getting

SoftStep to sound out the red, green, and blue pixel values simultaneously required

dropping a triple of each scene on the screen and having three identical screen control

language modules running simultaneously. This effort was totally successful and will be

demonstrated at conference time; note in Figure 4 that there are three identical scenes of

Lake Livingston on the screen, one is used for sounding out the redness in the pixel, one

for sounding out the greenness in the pixel, and the third for sounding out the blueness in

the pixel. After some preliminary screen control language programming in SoftStep

software, upon moving the cursor over the Lake Livingston image, the user hears the

results of a sounding out of the RGB values for each pixel the cursor moves across. This

leads to a number of possibilities for assisting a seeing-impaired person to “hear” digital

information. At conference time, this capability will be demonstrated on a digital photo

of a sunset, a digital photo of the petals of a flower, and on an additional “very

memorable photo” as well (to be revealed at conference time).

Figure 4: GUI Screen for “Listening” to a Satellite Image of Lake Livingston

15

15

A number of thoughts come to mind in regard to further worthwhile research

along these lines: one is that of investigating patterns of multiple cursors that a seeing-

impaired person might have access to in regard to “choices for listening configurations”.

As an example, consider the lap board in Figure 6 for possible usage by a seeing-

impaired person. Assuming that the indexing of each button on this board results in a

predetermined choice for the number of cursors (i.e., not necessarily just a single cursor)

along with a chosen pattern with which these are dispersed over the digital scene based

possibly on a selected beginning point (e.g., a dispersing of 6 cursors outward in a

semicircular array form from the sun’s center in Figure 5); such considerations could be a

big benefit for the seeing-impaired and they could easily be taught to use this setup for

enhancing listening options. Other possibilities will be discussed at conference time.

Figure 5: GUI Screen for the Capability to “Listen” to a Digital Photo of a Sunset

16

16

 Figure 6: Lap Board for a Seeing-Impaired Person’s Configuration Choices

A PRACTICE BACKUP RHYTHM BAND PLUS GUI INTERFACE TO MUSIC

As a wrap-up to this discussion regarding a GUI capability for handling music entities,

last, but far from least, is my favorite: a SAS GUI capability to expeditiously select from

a large library of music existing in numerous formats with each requiring differing

software modules for playback. The author extensively uses this capability in SAS for

practice sessions in preparation for gigs, for fun in relaxed music sessions with music

friends, and for just general listening. The screen below (see Figure 7) is essentially self-

explanatory, but this capability will be further demonstrated and explained at conference

time. This SAS GUI is set up to interface with several other music software modules

including Band-in-a-Box, PowerTracks, RealBand, Sonar 8.5, ©Karafun (a karaoke

player) and Windows Media Player; the first three are products of ©PGMusic, Sonar 8.5

is a product of ©Creative, and, of course, Windows Media Player is a product of

©MicroSoft. You may wish to Google each for further information.

17

17

Figure 7: A GUI Interface to Band-in-a-Box, to Sonar 8.5, to RealBand, to Windows

 Media Player, to PowerTracks PRO, and to Karafun Karaoke Player

Incidentally, all GUI screens herein are contained in the file “transmusic.dat” available at

http://www.shsu.edu/~mth_crh/SCSUG/transmusic.dat. This file was produced using

PROC CPORT. To bring these screens along with their SCL (screen control language)

and put them in place on another computer (on which SAS is implemented), the

assumption is that a SAS library exists with the name “MUSIC” and, by running the

PROC CIMPORT with the catalog name MUSIC.MIDI as the output catalog, all screens

should load without a problem. Feel free to contact the author if assistance is needed in

doing this.

ADDITIONAL RESEARCH QUESTIONS

Future research will include, as time permits, comparisons of numerous additional

known pieces of music (some similar, some quite different; e.g., it would be particularly

interesting to discover ways and means for effectively determining similarities and

dissimilarities within and across waltzes, rock tunes, blues tunes, various artists, key top

Billboard tunes, etc.).

1. How might one extensively compare (where such requires a mathematical and/or

statistical assessment and/or modeling effort to permit doing so) the “similarities”

and “dissimilarities” of a given tune with:

18

18

a. A given collection of tunes that one has specific interest in?

b. A given genre of tunes?

c. The current Billboard top 20?

d. Those of a particular artist?

e. A specific category (e.g., waltzes)?

f. Etc.

2. In number 1, what “similarities” and/or “dissimilarities” are sufficient for

distinguishing across a collection of tunes; in what manner might these be arrived

at mathematically and/or statistically?

3. Again, in number 1 and 2, how might one arrive at a minimal set of discriminant

features that are quantifiable.

4. Given a collection of tunes (possibly quite large), it appears worthwhile to

determine ways and means of identifying subgroups that “make sense” in a

mathematical and/or statistical manner. For example, one way might be to find a

way to have the resulting subgroups have “maximum similarity” within each

subgroup and, at the same time, “maximal dissimilarity” between groups (such as

optimal clustering approaches might permit).

5. To what extent might the positive features of one tune be effectively transformed

to another via mathematical/statistical transformations (e.g., what transformations

might be worthy of consideration and to what extent might it be (or not be)

successful). What transformations might improve a tune’s “listening aesthetics”,

e.g., improve vibrato, improve the balance of volumes across instruments, ways

and means to achieve optimal mixing, etc.?

6. Given that MP3 and WMA files are sampled WAVE files, how might this

sampling be done differently to permit other advantages?

7. All the above can be considered separately for:

a. MIDI tunes (probably the easiest).

b. MP3 and WMA files.

c. WAVE and other CD audio files.

8. What can be learned from any of the above to help in other areas? For example,

how might digital pictures (which can be digitized into RGB values) be

transformed and converted to sound in such a way to permit a seeing-impaired

person to “listen” to digital photography in a meaningful way that might be even

more enlightening (i.e., beyond the “somewhat simple” ways discussed herein).

9. How about a design for bar coding so that aesthetically pleasing sounds are heard

(maybe even discernible music) when an item is scanned in the super market or

wherever?

19

19

REFERENCES

Cannon, Lisa and Hallum, Cecil (2004), “SAS and Multivariate Music: A GUI for

Multivariate Analysis of Musical Instrumentation Digital Interface (MIDI) Data”, SAS

Conference Proceedings: South-Central SAS User Group 2004, Austin, Texas.

Chew, E., and Chen, Y. (2003), “Mapping MIDI to the Spiral Array: Disambiguating

Pitch Spellings,” Proceedings of the International Multimedia Conference, Berkeley,

CA.

Das, M., Howard, D., and Smith, S. (1999), “Motion Curves in Music: the Statistical

Analysis of MIDI Data,” Proceedings of the 25
th
 Euromicro Conference, Milan.

Dubnov, S., Assayag, G., Lartillot, O., and Bejerano, G. (2003), “Using Machine-

Learning Methods for Musical Style Modeling,” Computer, 36, 73-80.

Foote, J., Cooper, M., and Nam, U. (2002), “Audio Retrieval by Rhythmic Similarity,”

Proceedings of the International Conference of Music Information Retrieval, Paris.

Jensen, J.H., Christensen, M.G. and Jensen, S. H. “A Framework for Analysis of Music

Similarity Measures,” ©2004 EURASIP available at

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.105&rep=rep1&type=pdf.

Jensen, J.H., Christensen, M.G., Ellis, Daniel P.W., and Jensen, S.H., (2008), “A Tempo-

insensitive Distance Measure for Cover Song Identification based on Chroma Features”,

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, pp. 2209–2212.

Johnson, R., and Wichern, D. (2002), Applied Multivariate Statistical Analysis (5
th
 ed.),

Upper Saddle River, NJ: Prentice Hall.

Krygier, J. (1994), “Sound and Geographic Visualization,” Visualization in Modern

Cartography, New York: Pergamon, 149-166.

Lartillot, O. (2003), “Perception-Based Musical Pattern Discovery,” Proceedings of the

International Computer Music Conference, Singapore.

Lodha, S., Beachan, J., Heppe, T., Joseph, A., and Zane-Ulman, B. (1997), “MUSE: A

Musical Data Sonification Toolkit,” Proceedings of the International Conference on

Auditory Display, Palo Alto, CA.

Martins, A., Portela, L., Rangayyan, R., Amaro, E., and Ruschioni, R. (1996), “Auditory

Display and Sonification of Textured Image,” Proceedings of the International

Conference on Auditory Display, Palo Alto, CA.

Moon, T., and Wynn, S. (1999), Mathematical Methods and Algorithms for Signal

Processing. Upper Saddle River, NJ: Prentice Hall.

20

20

Myers, R., and Milton, J. (1998), A First Course in the Theory of Statistical Models (2
nd

ed.), New York: McGraw-Hill.

Pauletto, S., and Hunt, A. (2004), “Interactive Sonification in Two Domains: Helicopter

Flight and Physiotherapy Movement Analysis,” Proceedings of the International

Workshop on Interactive Sonficiation, Bielefeld, Germany.

Petersen and Pedersen (2008), The Matrix Cookbook, available at

http://matrixcookbook.com/.

Pickens, J. (2000), “A Survey of Feature Selection Techniques for Music Information

Retrieval,” Proceedings of the International Symposium on Music Information Retrieval,

Plymouth, MA.

Schott, J. (1997), Matrix Analysis for Statistics, New York: John Wiley and Sons.

Serra, X. (1997), “Musical Sounds Modeling with Sinusoids Plus Noise,” Musical Signal

Processing, eds. C. Roads, S. Pope, A. Picialli, and G. De Poli, Barcelona: Swets and

Zeitlinger Publishers.

Tzanetakis, G., Ermolinskyi, A., and Cook, P. (2002), “Pitch Histograms in Audio and

Symbolic Music Information Retrieval,” Proceedings of the International Computer

Music Conference, Gothenburg, Sweden.

Yeung, E. (1980), “Pattern Recognition by Audio Representation of Multivariate

Analytical Data,” Analytic Chemistry, 52,1120-1123.

APPENDIX 1: DERIVATION OF RESULT 1

The key derivation question is: “What are the desired characteristics of the

transformations L and R that result from ‘mapping’ one MIDI tune to another?” The

distance utilized herein between two matrices (i.e., 0M and RLM1 in this particular

case) is the Frobenius norm (see Schott (1997)) defined (using the trace operator “Tr”) as

),(10 RLMMd where

())()(),(101010 RLMMRLMMTrRLMMd −′−= .

In this expression, the prime in the exponent position is notation for the matrix transpose

operator. Notice that RLMM 10 − is simply the error associated with the above

transformation of 1M into 0M . Emphasis is now given to finding the transformation L .

The matrix R is a known matrix (with a default value to be discussed shortly) carefully

preselected to ensure that the matrix dimensions are conformal between the right and left

21

21

sides of the equation ERLMM += 10 . In order to find an appropriate transformation, L

of 1M , the transformation obtained is the one that minimizes the square of the Frobenius

norm, () ()]()[00 RLMMRLMMTrEETr
ii

−′−=′ , i.e., this is the “error minimization

criterion” utilized herein (See Schott (1997)). Two identities of matrix differentiation

utilized herein to minimize the Frobenius norm are (here CBA ,, and X are matrices and

differentiation is the usual (see the Matrix Cookbook (2008)): in particular, if)(Xf is a

scalar function of the matrix X then the derivative of)(Xf with respect to the matrix X

is defined by

()
)(

)(

, jix

Xf

X

Xf

∂

∂
=

∂

∂

which is the standard component-wise differentiation. From this, we have

BCXBBXBCCXBXBTr
X

′+′′=′′
∂

∂
][and BAAXBTr

X
′′=

∂

∂
][.

where, of course, “Tr” is the trace operator.

Consequently, upon taking the derivative of ()EETr ′ with respect to the matrix

L , i.e.,

][)(00100111 MMRLMMMLMRRLMLMRTr
L

EETr
L

′
+

′
−′′′−′′′

∂

∂
=′

∂

∂

and equating the result to zero, the equation
′′=

′′
1011 MRMMRRLM results; solving this

for L yields

 




 ′′′′−+

′′′′= ++)()(11111110 MRRMMRRMIZMRRMMRML

where the superscript “+” denotes the matrix pseudoinverse (see Schott(1997)).

Multiplying by RM 1 on the right in the above expression results in

() RMRMMRMRMZRMRMRMMRLM i

++ =−+′′=)(]))([()(101111101 .

Note that if RM i is of full column rank, then

())()()()(1

1

111
′′=

−+ RMRMRMRM ,

in which case 01 MRLM = , or 0ˆ =E . Consequently, one obtains Result 1.

A Default Choice for R: The “Between Instruments” Transformation

 Since MIDI tune 0M is rm× and 1M is pk × , for the matrix RLM1 to be

conformable for addition, the matrix R will be selected to be of dimension rp × . In

particular, if 0M has fewer columns than 1M , i.e., pr < , then the MIDI tune 1M

utilizes rp − more instruments than 0M . In this situation, the default value for R is that

22

22

of an rr × identity matrix concatenated below (i.e., vertically) by a rrp ×−)(matrix of

zeros. If pr > , then the default value for R is the pp × identity matrix concatenated on

the right by a)(prp −× matrix of zeros. To complete the default assignment, if pr = ,

then R is selected to be the pp × identity matrix. Finally, for investigative and/or

experimental purposes, many other choices (e.g., a few columns of the principal

components matrix computed from the row vectors of 1M) can be made for R . Choices

and properties of the matrix R are given in the following discussion. It should be noted

that this default choice for R is done, typically, only for the purpose of attaining
conformability for multiplication, i.e., there is nothing “magic” about this choice. In fact,

note that in the case where 1M utilizes more instruments (i.e., this is the case pr <) than

0M , then the default choice for R actually results in simply muting the instruments that

play the last rp − columns of 1M .

