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ABSTRACT 

Solving Kenken puzzles requires more than making sure that numbers are used only once in a row and column of a 
matrix.   Unlike Sudoku puzzles that can use any symbol and have sub-matrices, Kenken puzzles require actual 
integers and have contiguous cells, called cages.  And, unlike a sub-matrix that contains a unique collection of 
numbers or symbols, Kenken puzzles have cages that must contain natural numbers representing a total as a 
function of its assigned arithmetic operation.   For example, consider a 4x4 Kenken puzzle having a cage containing 
3 cells whose total is 11 as a function of simple addition.  One possible set of 3 numbers would be: 4+3+4=11.  The 
objective is to complete the grid using numbers ranging from 1 to N that satisfies both cage arithmetic and row / 
column uniqueness.   
 
Depending on the size of the NxN grid, the number (and size) of the cages, as well as the arithmetic operations 
used, a Kenken puzzle offers a formidable challenge for logic puzzle fans.  However, rather than play the game of 
considering numerous possible sets ranging from two integers, for subtraction and division, to N-digits, for addition 
and multiplication, this paper proposes a SAS solution that obtains the viable sets for each cage straight-away and 
solves the puzzle by identifying the only appropriate collection of cage-specific sets. 

INTRODUCTION  

Ken-Ken puzzles are the latest craze of logic puzzles that might even exceed Sudoku puzzles.  Both puzzles are 
similar, that is, each symbol occurs exactly once in each row and exactly once in each column.  However, Kenken 
puzzles require the use of actual numbers in order to complete a collection of adjacent cells, called Cages.  In fact, 
a cage has an assigned total and associated arithmetic operation (the clues to the puzzle), which indicate the 
possible values allowed.  Thus, Kenken puzzles pose an added challenge of populating a grid that has been 
partitioned by cages. 
 

 
 
 

The arithmetic operations include addition, subtraction, multiplication, and division.  Addition and 
multiplication use all sets.  For example, the highlighted cage whose total is three when the numbers 
1,3,1 are multiplied.  However, subtraction and division are restricted to sets having two numbers; 
moreover, regardless of the order of these sets, the result is always a Natural number.  For example, the 
sets {6,2} and {2,6} compute to the value 3 when divided and 4 when subtracted.  In fact, their order 
determines their placement in the grid as defined by the cage.  Finally, there is the singular set as 
illustrated by the highlighted cell (4,4) containing the number 3 and having no arithmetic operator. 



 

DEFINING A PUZZLE 

We proceed to propose a data file that intuitively represents several Kenken puzzles.   Certainly, there must be a 
field representing the ith puzzle.  The remaining fields denote the Cage, the total, the arithmetic operation, and the 
cell (x,y) coordinates that define the cage.  Notice that the operation for a singular cage is denoted by a dot, similar 
to the missing value in SAS, since there is no arithmetic operation.   Finally, the order of the coordinates must not 
conflict with the natural order of valid sets, which is left as an exercise for the reader to ponder. 
 
 

 
1  C1   2  /  1,1  1,2 
1  C2   3  *  1,3  1,4  2,3 
1  C3   8  +  2,1  2,2  3,2 
1  C4   4  .  2,4 
1  C5   3  -  3,1  4,1 
1  C6   4  .  3,3 
1  C7   6  *  3,4  4,4 
1  C8   2  /  4,2  4,3 
2  C1   3  .  1,1 
2  C2   8  +  1,2  2,2  2,3 
2  C3   3  -  1,3  1,4 
2  C4   8  +  2,4  3,4  3,3 
2  C5   1  .  4,4 
2  C6   8  +  3,2  4,2  4,3 
2  C7   7  +  2,1  3,1  4,1 

 

 
 
Consider the following Data step that reads the two 4x4 Kenken puzzles, selecting the first puzzle.   Notice that the 
variable NCELLS is computed, which is needed later when obtaining possible sets that satisfy a given cage. 
 

%let puzzle = 1;                                                                                                                     
                                                                                                                                        

             data puzzle;                                                                                                                         
                array cells{*}$3 c1-c4;                                                                                                          

   infile p4x4 missover;                                                                                                             
   input puzzle $ cage $ total oper $ (c1-c4)($&);                                                                                  
   if puzzle ne "&puzzle."                                                                                                           
      then delete;                                                                                                                   
   do i = 1 to dim(cells);                                                                                                           
      if cells{i} eq ''                                                                                                       
         then leave;                                                                                                                 
      end;                                                                                                        
   ncells = i - 1;                                                                                                                   

                drop puzzle i; 
run;                                                                                                                    

 
Next we need a mechanism to render the puzzle in a meaningful way so that you can discern one cage from 
another in the context of the grid.  The following Data step processes a data set that emulates the raw data file 
representing a puzzle by performing two tasks: first it populates a 2-dimensional matrix that contains the Cage 
Number, Total, and Arithmetic Operation; and, it uses that matrix to generate the reporting data set such that it 
writes four observations containing the variables ROW, COL1-COL4.   
                     
     data rep;                                                                                                                            
              array puzzle{4,4}$10 r1c1-r1c4 r2c1-r2c4 r3c1-r3c4 r4c1-r4c4;                                                                     
           retain r1c1-r1c4 r2c1-r2c4 r3c1-r3c4 r4c1-r4c4;                                                                                   
           array cols{4} $10 col1-col4;                                                                                                      
           array cells{4} $5 c1-c4;                                                                                             
           set puzzle end=eof;                                                                                                               
           do i = 1 to 4;                                                                           
                if cells{i} ne ''                                                                                                              
                      then do;                                                                                                                    
                         row = input(scan(cells{i},1),best.);                                                                                     
                         col = input(scan(cells{i},2),best.);                                                                                     



 

                         puzzle{row,col} = trim(left(cage)) || '['  
                            || put(total,3.) || ' ' || trim(left(oper)) || ']';                            
                        end;                                                                                                                     
                     else leave;                                                                                                                 
                  end;                                                                                                                           
               if eof                                                                                                                            
                  then do;                                                                                                                       
                     do row = 1 to 4;                                                                                                            
                        do col = 1 to 4;                                                                         
                           cols{col} = puzzle{row,col};                                                                                          
                           end;                                                                                                                  
                        output;                                                                                                                  
                        end;                                                                                                                     
                     end;                                                                                                                        
               keep row col1-col4;                                                                                                               
            run;   
 
Then, the following Report procedure renders the puzzle such that the cages and their attributes are easily 
understood, as shown below. 
 
           proc report data=rep nowindows headline headskip split='!';                                                                          
               columns row ('- Column -' col1-col4);                                                                                             
               define row     / order                       'Row';                                                                               
               define col1    / display  width=10 center    '1';                                                                                 
               define col2    / display  width=10 center    '2';                                                                               
               define col3    / display  width=10 center    '3';                                                                                 
               define col4    / display  width=10 center    '4';                                           
               break after row / skip;                                                                                                           
               title1 "KenKen 4x4 Puzzle";                                                                                                       
            run;  
 

     
 

               ------------------- Column ------------------- 

          Row      1           2           3           4 

    --------------------------------------------------------- 

 

            1  C1[  2 /]   C1[  2 /]   C2[  3 *]   C2[  3 *] 

 

            2  C3[  8 +]   C3[  8 +]   C2[  3 *]   C4[  4  ] 

 

            3  C5[  3 -]   C3[  8 +]   C6[  4  ]   C7[  6 *] 

 

            4  C5[  3 -]   C8[  2 /]   C8[  2 /]   C7[  6 *] 

 
 

     

ASSUMPTIONS 

Before proceeding to solve Kenken puzzles, it is assumed that a Kenken puzzle is well-constructed having only one 
unique solution.  In order to emphasize the importance of having a well-constructed puzzle, imagine a simple 4x4 
Kenken puzzle whose grid is partitioned into 8 cages such that each row contains two cages, as follows.  
 

 
 
               ------------------- Column ------------------- 

          Row      1           2           3           4 

    --------------------------------------------------------- 

 

            1  C1[  3 +]   C1[  3 +]   C2[  7 +]   C2[  7 +] 

 

            2  C3[  5 +]   C3[  5 +]   C4[  5 +]   C4[  5 +] 

 

            3  C5[  7 +]   C5[  7 +]   C6[  3 +]   C6[  3 +] 

 

            4  C7[  5 +]   C7[  5 +]   C8[  5 +]   C8[  5 +] 

 



 

 

 
 
This simple puzzle has more than one solution, as shown below.  In fact, the two solutions shown differ merely by 
swapping the second and fourth rows.  Notice that the rows 1 and 3 could not be swapped in order to formulate 
another solution since the totals are not the same.  However, if the arithmetic operation were subtraction and the 
total were 1 for cages: 1, 2, 5, and 6, rows 1 and 3 respectively; then these rows could have been swapped.  More 
importantly, such puzzles are neither challenging nor interesting, hence not considered. 
 

 

 

           1   2   3   4   1   2   3   4 

 

           2   3   4   1   4   1   2   3 

                       And  

          3   4   1   2   3   4   1   2 

  

           4   1   2   3    2   3   4   1 

 

 

VIABLE SETS 

In the context of the grid, a cage is merely a collection of contiguous cells.  However, in the context of its respective 
arithmetic operation, a cage represents a collection of natural numbers.  Thus, depending on the number of cells 
and the arithmetic operation, there is a pre-ordained collection of numbers called Viable Sets.   A Viable Set is an 
ordered collection of Natural numbers ranging from 1 to N whose values may be used more than once, however, 
cannot be consecutive.  Consider the following valid and invalid sets 
 

Valid Sets   {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,2}, and {1,2,1,2} 
 

Invalid Sets   {1,1,2}, {1,2,3,3}, and {1,null,2}  
 
The invalid sets are not viable since their placement in the NxN grid would conflict with the requirement of having 

unique values per row and column, similar to Latin Squares.  Also, Singular sets (e.g. {1}, {3}) are not considered 
viable sets since there is no associated arithmetic operation.   
 
How do you generate viable sets?  How many are there for a 4x4 puzzle?  How many are there for a 6x6 or a 9x9 
puzzle?  Well, consider viable sets in the context of their arithmetic operation for 4x4 puzzles.  Notice that addition 
and multiplication can utilize 2, 3, or 4 numbers; however, subtraction and division, naturally, are limited to two 
numbers.  Moreover, a set always produces a natural number, regardless of their order.  Yet, it is important to have 
both sets (e.g. {2,6} and {6,2}) in order to solve a puzzle.  Consider the following examples. 
 

Addition & Multiplication  {1,2}; {1,2,3}; {1,2,3,4}; {1,2,3,2} 
 

Subtraction   {2,6} and {6,2} � 4, not -4 
 

Division    {2,6} and {6,2} � 3, not 0.33 
 

{1,2} and {2,1} � 2, not 0.50 

 
Computing the number of viable sets is not a straight-forward combinatorial problem.  However, the following 

formula seems to work for Kenken puzzle of any size.  
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where  Σ denotes the aggregate sum such that d=2 to d; such that 
d denotes the dimension of the puzzle; and, 



 

n denotes the number of integers in a set, ranging from 2 to d. 
 
 
 
Consider the cardinality of viable sets for NxN Kenken puzzles: 
 

• 4x4 Kenken Puzzle 

 

[4(4-1)
2-1

] + [4(4-1)
3-1

] + [4(4-1)
4-1

]  =  156 Viable Sets 

 

• 5x5 Kenken Puzzle  
 

[5(5-1)
2-1

] + [5(5-1)
3-1

] + [5(5-1)
4-1

] + [5(5-1)
5-1

]  = 1,700 Viable Sets 

 

• 6x6 Kenken Puzzle  
 

[6(6-1)
2-1

] + [6(6-1)
3-1

] + [6(6-1)
4-1

] + [6(6-1)
5-1

] + [6(6-1)
6-1

]  =  23,430 Viable Sets 
 

• 8x8 Kenken Puzzle  
 

[ 8(8-1)
2-1

 ] + [ 8(8-1)
3-1

 ] + [ 8(8-1)
4-1

 ] + [ 8(8-1)
5-1 

] + [ 8(8-1)
6-1

 ]  

+ [ 8(8-1)
7-1 

] + [ 8(8-1)
8-1

 ]  =  7,686,392 Viable Sets 
 

• 9x9 Kenken Puzzle  
 

[ 9(9-1)
2-1

 ] + [ 9(9-1)
3-1

 ] + [ 9(9-1)
4-1

 ] + [ 9(9-1)
5-1 

] + [ 9(9-1)
6-1

 ]  

+ [ 9(9-1)
7-1 

] + [ 9(9-1)
8-1

 ] + [ 9(9-1)
9-1

 ]  =  172,565,640 Viable Sets 
 

• 10x10 Kenken Puzzle � Over 4.3 Billion Viable Sets!! 
 
It is no wonder why Kenken puzzles pose a formidable challenge.   Imagine trying to conceptualize possible viable 
sets for a cage consisting of five cells, for example, in attempting to solve a 6x6 puzzle.  How many viable sets are 
there?  Well, there are 23, 430 viable sets for 6x6 puzzles.  However, there are only 3,750 viable sets that may be 
considered for a 5-cell cage.  That's a lot of possibilities.  Even worse, try conceptualizing what those sets are, such 
as: {1,2,3,1,5} and {2,3,4,3,6}.  But, wait!  You must consider the arithmetic operation and the total amount, which 
means a subset of the 3,750 viable sets.  But, what are they?  The daunting task worsens knowing that you must 
select a viable set that computes to the assigned total based on the respective arithmetic operation, as well as 
attempting to satisfy the Latin Square requirement. 

   :  :  :  

GENERATING VIABLE SETS 

 
Consider the following method for generating viable sets for a 4x4 puzzle.  The method actually determines those 
sets that must be discarded.  Also, keep in mind that you are always considering a four items. 
 

• First two numbers are equal      {1,1,null, null} 
 

• Second and third numbers are equal and not null {1,2,2,null}  
 

• Third and fourth numbers are equal and not null {1,3,1,1} 
 

• Third number is null and fourth number is not null {1,3,null,2} 
 

The following Data step implements this method using DO loops such that the aforementioned rules are placed in 
the inner DO loop.  Of the four DO loops, notice that the third and fourth loops include the Null-value as part of its 
list of enumerated values. 
 

data p4sets; 
   do n1=1,2,3,4; 
      do n2=1,2,3,4; 



 

         do n3=.,1,2,3,4; 
            do n4=.,1,2,3,4; 
 

  < Determine Viability Of Set > 

< If Viable, Then Compute Totals > 

 
               end; 
            end; 
         end; 
      end; 
run; 

 

For a 6x6 Kenken puzzle the above SAS code would require two more DO loops such that all the DO loops would 
have enumerated values up to its dimensional limit (i.e. 6), and so on for larger puzzles.   Certainly, the SAS Macro 
Language could be used to generate the appropriate Data step that would create the collection of viable sets for any 
puzzle.   Then, if a set is viable, the innermost DO loop would compute the four totals representing the arithmetic 
operations, as follows: 
 

• Addition – Simply use the SUM function, as follows.    
 

add = sum(of n1-n4); 
 

• Multiplication – Requires more effort because an assignment statement in SAS returns a missing value 
whenever one or more of its operands contains a missing value.    

 
if n2 eq . 

      then mult = n1; 
      else if n3 eq . 
         then mult = n1 * n2; 
         else if n4 eq . 
            then mult = n1 * n2 * n3; 
            else mult = n1 * n2 * n3 * n4; 

 

• Division & Subtraction – Can be performed when only the first two numbers are not null.  Even then, the 
assignment statement is performed depending on the order of the values of the numbers such that the 
result is always a positive number; otherwise, the result is for both operations. 

 
if n3 eq . and n4 eq . 
   then do; 
      if n1 gt n2 
         then subt = n1 – n2; 
         else subt = n2 – n1; 
      if n1 gt 2 and int(n1/n2) eq n1/n2 
         then div = n1 / n2; 
         else if n2 gt n1 and int(n2/n1) eq n2/n1 
            then div = n2 / n1; 
      end; 
   else do; 
      subt = .; 
      div  = .; 
      end;            

 

 
Similar to the DO loops, for larger puzzles, the assignment statements would need to be altered accordingly in 
order to include the extra operands.  For multiplication, the Nested IF statement would require considerable 
adjustment.  For subtraction and division, however, only the IF clause would be expanded to make sure that all 
numbers except for N1 and N2 would be null; otherwise, the code remains in tact. 
 
Recall that there are 156 viable sets for a Kenken puzzle.  However, how many of those sets apply to subtraction 
and division?  Or, how many sets have three operands that are used for addition?  In other words, what is the 
distribution with respect to the content of those sets having missing / non-missing values?   Consider the following 
table that shows more detailed information about the viable sets. 

 
 



 

 
 
 
 
 
 

 
 

Viable Sets for 4x4 KenKen Puzzles 

 
=============== Cells ================ 

    1         2          3         4            Add         Subtract     Multiply       Divide 

------------------------------------------------------------------------------------------------ 

 

Not Null   Not Null   Null       Null       12   7.69     12  100.0     12   7.69      8  100. 0 

Not Null   Not Null   Not Null   Null       36  23.08      .    .       36  23.08      .    . 

Not Null   Not Null   Not Null   Not Null  108  69.23      .    .      108  69.23      .    . 

                                          =====  =====  =====  =====  =====  =====  =====  ===== 

                                            156  100.0     12  100.0    156  100.0      8  100.0 

 

 

 

 

Notice that there are three types of sets for a 4x4 Kenken puzzle, which makes sense since a cage can have no 
more than 4 cells of which the first two cells are not null.   There are only 12 viable sets that are applicable to 
subtraction and only 8 viable sets for division.  Reasonably, there are 156 viable sets for addition and multiplication; 
moreover, they have the same distribution with respect to actual and null values.  Finally, it is reasonable that the 
number of sets increases with the number of cells. 
 

IMPLEMENTING A STRATEGY  

When playing by the rules, solving Kenken puzzles requires logic, arithmetic, even some algebra, and lots of trial 
and error.  Hence, the proposed strategy for solving Kenken puzzles abandons the rules outright.  Instead, let's 
consider an obvious fact: A solution to a puzzle consists of a unique collection of viable sets representing the several 
cages.   Also, we can determine the viable sets for any cage consisting of N-cells and an associated arithmetic 
operator.  Therefore, if we perform a Cartesian product on those collections of viable sets, then one of those joins 
must be the solution to the puzzle.  Consequently, programmatically, we can process each conglomerate of viable 
sets, representing all cages, and test whether it conforms to a Latin Square – single instance of row and column 
values.  Ironically, the hard part of determining a viable set that might contribute to the solution becomes a non-
issue.  

 

THE SAS SOLUTION   

The SAS code that implements the proposed strategy is a bit involved.  Keep in mind that the following code is part 
of a SAS macro.   Using the data file discussed earlier, initially, it is necessary to determine the number of cages, 
which is easily done using the SQL procedure with the INTO operator. 
                                                                                                                    

      proc sql noprint;                                                                                                                 
         select count(*) into :ncages from puzzle;                                                                  
      quit;      

       

Next we must obtain the viable sets for each cage.  Knowing that each record in the data set PUZZLE represents a 
cage,  we use the %DO loop to process each cage performing two functions: creating macro variables and 
obtaining the viable sets.   The Data _null_ step creates macro variables representing the number of cells, the 
arithmetic operation, and the total, as shown below.  
                                                                                                        
      %do i = 1 %to &ncages.;                                                                                                           
         data _null_;                                                                                                                   
            set puzzle(where=(cage eq "C&i."));                                                                                         
            call symput('total',  trim(left(put(total,best.))));                                                                        
            call symput('ncells', trim(left(put(ncells,best.))));                                                                       
            select(oper);                                                                                                               



 

               when('+')  call symput('oper','ADD');                                                                                    
               when('-')  call symput('oper','SUBT');                                                                                   
               when('*')  call symput('oper','MULT');                                                                                   
               when('/')  call symput('oper','DIV');                                                                                    
               otherwise  call symput('oper','NO');                                                                                  
               end;                                                                                                                     
         run;       

 
Fortunately, the design of the PUZZLE data set facilitates the code needed to obtain the desired sets.   Given one of 
four arithmetic operations, the %THEN %DO block generates a SQL step such that the WHERE clause subsets the 
total set of Viable sets, accordingly.   Notice the macro variable &PSIZE, which denotes the size of the puzzle, 
which resolves to the value 4 when processing 4x4 puzzles.  For instance, the FROM clause accesses a permanent 
data set called, for example, P4SETS, which contains all 156 Viable sets for 4x4 puzzles.  This same macro 
variable is used in several %DO loops, as well.  For our discussion, let's assume that we're processing a 4x4 
puzzle.  
                                                                                                                     
   %if "&oper." ne "NO"                                                                                                           
      %then %do;                                                                                                                  
         proc sql;                                                                                                                
            create table c&i._vsets as                                                                                            
            select %do j = 1 %to %eval(&psize.-1);  
               n&j. as c&i.n&j., %end; n&j. as c&i.n&j.                                        
               from kk.p&psize.sets                                                                                               
               where &oper. eq &total.                                                                                            
                  and n(%do j = 1 %to %eval(&psize.-1); n&j., %end; n&j.) eq 
&ncells.;                                             
               quit;                                                                                                                    
         %end;  
               

In the event that there is a Singular cage, the %ELSE %DO block generates a simple Data step that creates a 
Viable set emulating those Viable sets representing non-Singular cages.  
                                                                                                     
         %else %do;                                                                                                                  
               data c&i._vsets;                                                                                                         
                  retain c&i.n1 &total. %do j = 2 %to &psize.; c&i.n&j. %end; .;                                                        
               run;                                                                                                                     
               %end;                                                                                                                     
         %end;    
 

Since the cages are defined vertically in the PUZZLE data set, it is necessary to create a single observation data 
set, called CAGES, that will be employed in the next step as a 2-dimensional table, as follows:  c1c1-c1c4, c2c1-c2-
c4, c3c1-c3c4, etc, for as many as there are cages.  As mentioned earlier, the solution is a bit involved. 
 
   data cages;                                                                                                                       
      array cages{&ncages.,&psize.} $3  
         %do i = 1 %to &ncages.; c&i.c1-c&i.c&psize. %end; ;                                           
      retain %do i = 1 %to &ncages.; c&i.c1-c&i.c&psize. %end; ;                                                                     
      array cells{*}$ c1-c&psize.;                                                                                                   
      set puzzle end=eof;                                                                                                            
      do i = 1 to dim(cells);                                                                                                        
         cages{_n_,i} = cells{i};                                                                                                    
         end;                                                                                                                        
      if eof then output;                                                                                                            
      keep %do i = 1 %to &ncages.; c&i.c1-c&i.c&psize. %end; ;                                                                       
   run;      
 

Finally, we're able to evaluate the aggregate collection of Viable sets obtained from the Cartesian product.  The 
information needed is available either as macro variables or two data sets: CAGES and VSETS, the latter 
containing the sets to be evaluated.   Notice that the Data step reads CAGES only once; thus preserving the 2-
dimensional array called CELLS that is used during the evaluation process.  In fact, there are two other 2-
dimensional arrays: VSETS that contains the aggregate collection of viable sets to be evaluated; and, PUZZLE that 
represents the Kenken grid. 
 
   data solution;                                                                                                                    
      array cells{&ncages.,&psize.} $3  



 

         %do i = 1 %to &ncages.; c&i.c1-c&i.c&psize. %end; ;                                           
      array vsets{&ncages.,&psize.}     
         %do i = 1 %to &ncages.; c&i.n1-c&i.n&psize. %end; ;                                           
      array puzzle{&psize.,&psize.}     
         %do i = 1 %to &psize.;  r&i.c1-r&i.c&psize. %end; ;                                           
      if _n_ eq 1                                                                                                           
         then set cages;                                                                                                             
      set vsets;                                                                                     
      do cage = 1 to &ncages.;                                                                                                       
         do item = 1 to &psize.;                                                                                                     
            if cells{cage,item} ne ''                                                                                                
               then do;                                                                                                              
                  row = input(scan(cells{cage,item},1,','),best.);                                                                   
                  col = input(scan(cells{cage,item},2,','),best.);                                                                   
                  puzzle{row,col} = vsets{cage,item};                                                                                
                  end;                                                                                                               
            end;                                                                                                                     
         end;   
 

After the PUZZLE matrix is populated, the Data step proceeds to evaluate the grid.  Every observation in the VSETS 
data set is assumed to be the solution, that is, until proven otherwise.  Fundamentally, the following code is 
checking whether the Latin Square criterion is maintained.  If there's any instance of having the same number occur 
more than once in a row or column, then the variable SOLUTION is re-assigned the value zero, which denotes a 
false condition in SAS.  If there is a solution found, then that observation is written out and the Data step terminates 
immediately.                                                                                                                    
                                                                                                                                        
      solution=1;                                                                                                                    
      do row = 1 to &psize.;                                                                                                         
         do col = 1 to &psize.;                                                                                                      
            value = puzzle{row,col};                                                                                                 
            if value eq .                                                                                                            
               then solution=0;                                                                                                      
               else do;                                                                                                              
                  do i = 1 to &psize.;                                                                                               
                     if (i ne col and puzzle{row,i} eq value)  
                        or (i ne row and puzzle{i,col} eq value)                                
                        then solution=0;                                                                                             
                     end;                                                                                                        
                  end;                                                                                                               
            end;                                                                                                     
         end;                                                                                                                                                                                                                                  
      if solution                                                                                                                    
            then do;                                                                                  
               output;                                                                                                                  
               stop;                                                                                                                    
               end;                                                                                                                                                                                        
         keep %do i = 1 %to &psize.; r&i.c1-r&i.c&psize. %end; ;                                                                        
      run; 
                                                                                                                  

THE SAS SOLUTION – WHY IT FAILS 

In theory, the solution works.  In fact, the SAS solution works very well for 4x4 puzzles.  However, unless you have 
access to a supercomputer, the solution is not practical.   Ironically, the solution fails for the same reason that it 
works, namely, the Cartesian product.  For example, consider a 9x9 puzzle that employs all four operations and 
consists of around twenty-five cages.  Now let's assume that several of those cages consist of 3, 4, or 5 cells, which 
automatically implies that their totals are obtained by either addition or multiplication.  Just imagine the number of 
possible viable sets for those cages, not to mention the more singular and two-cell cages.  Recall that 9x9 puzzles 

have 172,565,640 Viable sets of which many of these would be considered for the larger cages.  And, here is where 
it fails -- The Cartesian product of all these Cage-specific sets becomes HUGE, thus impractical.   Even if the 
Cartesian product is attainable, the process of evaluating each aggregate collection of viable sets as a possible 
solution only enhances its limitations. 



 

CONCLUSION 

There are several lessons to be learned.  First of all, the concept and cardinality of viable sets affords a better 
understanding of Kenken puzzles, as well as distinguishing it from its enigmatic cousin, Sudoku.  Secondly, the 
notion of pre-ordained cage-specific viable sets was crucial in realizing that there must be a unique aggregate 
collection of these sets that represents the solution to the puzzle.  Also, the Cartesian product of cage-specific sets, 
in theory, generates the solution, albeit amidst many other aggregate collections; whereupon, each collection is 
evaluated to determine whether it meets the Latin Square criterion, of which there is only one.  Finally, however, the 
solution fails for practical reasons for even SAS indexes would not be used from such outrageous SQL-joins.  And 
the big lesson – Back to drawing board. 
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