
1

Macro Quoting
Toby Dunn, AMEDDC&S, Fort Sam Houston

Abstract

One of the more perplexing things for any SAS® programmer to learn is the effective use
of macro quoting functions. This confusion is of little wonder, given the number of
quoting functions, their similarity, and the subtle differences between when each may be
applied. Choosing the optimal function or combination of functions to use is often a
daunting task for even advanced programmers. The difficulties in debugging macro errors
increase the complexity even more. To intelligently choose the optimal quoting function
the programmer needs to know what symbols to mask and when they need masking, and
how this depends on the compilation and execution of the macro and surrounding
program. This paper surveys macro quoting, with an emphasis on which quoting function
to use and when to use them. The paper assumes working knowledge of macro
processing and the intended audience is journey-level SAS programmers and above.

Key Words: Macro Quoting, Advanced Macro, Macro Strings, Macro Masking, Macro
Debugging, Macro Functions, %Str, %Nrstr, %Quote, %NrQuote, %BQuote,
%NrBQuote, %SuperQ, %QScan, %QUpcase, %QSubstr

Introduction

Many people say that Macro Quoting is difficult and indeed it is one of if not the most
complex topics in the SAS language for a programmer to grasp. Those people who think
it is easy or simple do not have a full grasp of Macro Quoting. Yet even though Macro
Quoting is a difficult subject to master, we will soon see that learning the basics is not as
bad as some would have you to believe. This paper will look at Macro Quoting from its
most fundamental level of what it is, why it is needed, the basic quoting functions and
some examples of their use and lastly, it will give some useful hints as to which one to
use and when. It is important to note that Macro Quoting will not and cannot save you
from poor macro design, lack of macro language knowledge, or just out right poor
programming. It will, however, provide you with a tool to overcome some obstacles with
the Macro language.

The Basics Of Macro Quoting

The number one problem I see programmers make when using Macro Quoting is that
they just start quoting everything without regards to what and why they are quoting these
values in the first place. So before any serious discussion can take place we first need to
define; what it is we are talking about, why we need it, and how is it performed. Finally,

2

I would like to add that we will do this by first looking at Macro Quoting from the
philosophical side of the language as well as the practical side, both of which are
necessary to fully understand Macro Quoting.

Macro Quoting, in essence, does nothing more than hide certain characters from the
macro processor at certain times, and it marks the starting and ending delimiters in
certain macro functions. SAS is just a bunch of different languages (IE. Data Step,
Procedures, Libname, etc…) that are held together by Data Sets. The Macro language is
some what different from these in that its sole purpose is to create SAS code. To put it
another way, Data Step and Procedure code use data sets as data while Macros use SAS
code as data.

Since Macros use Data Step and Procedure code as data there needs to be some way in
which to distinguish between the Macro code and the SAS code that the macro is to
create. To find the answer to this we need look no further than the philosophical
differences between the two languages. In the non-Macro world words have meaning
Data, Run, Set, Merge Proc, Quit, etc…. and it is up to the programmer to distinguish
between what SAS should interpret as having meaning and what it should just consider as
plain text. To do this the programmer places quotes around what they want SAS not to
interpret as having some special meaning. In the Macro language everything, by default,
is excluded from being interpreted as having meaning. It is the programmer’s job to tell
SAS what should be interpreted as having meaning by prefixing those words with either a
% or &.

We know that in the Macro language % and & prefix words that SAS should interpret as
having some special meaning. However, it would be pretty darn inconvient for a person
to place these everywhere such as in front of every parenthesis, equal sign, comma, or
semi colon in, say, a Macro function. Therefore, once a Macro instruction is begun, those
pieces of code that are required for the instruction need not be distinguished. This leads
us to a problem in that how does SAS distinguish who owns a parenthesis, semicolon,
comma, quote marks, or even an OR, AND, LE, EQ, etc… . Quote marks cannot be
used because they already have a meaning in the Macro language, so SAS decided to use
functions which will, in effect, mask the meaning of these character(s) to the Macro
Facility. Incidentally, ever wonder where Macro Quoting received its name from?
Remember that in order to tell SAS not to interpret a word as having meaning, quotes are
placed around text in non Macro languages. Well, since Macro Quoting functions have
pretty much the same effect in the Macro language someone along the way put two and
two together and coined the phrase “Macro Quoting”. The best way to solidify all of this
is to look at an example.(you started 3 of 4 sentences with the word “well” so I switched
it up)

Consider the following:

%Let ABC = 123 ;

3

When SAS encounters the % sign it invokes the Macro facility provided it is turned on.
The Macro Facility sees the % sign and immediately looks for some Keyword. In the
case of our example it is Let. The %Let is a macro instruction and the macro facility then
knows that it needs to create a Macro variable and to expect certain syntax. It will then
take everything between the word Let and the equal sign, drop the leading and trailing
spaces and, if that word is a valid macro variable name, use it. If not, then it will report an
error in the log. Then it takes everything from the right side of the equal sign up to the
semicolon and assigns that as the value of the macro variable ABC. Now imagine if
SAS required us to prefix every bit of Macro instruction with, say, a % sign. Our
example above would look like this:

%Let %ABC %= 123 %;

Think of the absurdity of this style. Imagine how hard it would be to write, read, maintain
and debug. Now lets take this example a bit further and suppose we also wanted a
semicolon as part of the macro variable ABC’s value.

%Let ABC = 123; ;

If we were to run the code above, how would SAS know that the first semi colon is to be
included in the value of ABC and not as part of the Macro code that ends the %Let
statement. This is why we need Macro Quoting. Since quote marks have meaning in the
Macro language we cant very well use those so we have a set of functions.

%Let ABC = %Str(123;) ;

In the above example everything happens just as before except when the value of the
Macro variable ABC gets assigned. In this case the %Str gets interpreted and the macro
facility starts looking for characters to hide. The only character that can be hidden by the
%STR function is the semicolon. Now the Macro Facility knows which semicolon is part
of the Macro instruction and which is part of the Macro variable’s value.

Macro Quoting Mechanics

Now that we know what Macro Quoting is and why we need it, it is time to look at how
SAS actually performs the act of masking a value. The mechanics of Macro Quoting are
pretty straight forward. Whenever a Macro Quoting function is used it simply attaches an
unprintable ASCII or EBCDIC character to the beginning and ending of the specified
string as well as exchanges the character(s) that need to be hidden for a delta character.
Then, when these delta characters need to be switched back to printable characters, it
reverses the process. Not only does SAS keep track of what characters it switched with
what, the leading delta characters keep track of what type of quoting was used -- more
about this in the next section.

4

If you are (or you’re, but not supposed to use contractions) wondering how SAS knows
what delta character to use for what special character, it is simple: somewhere down deep
in the Macro Facility SAS has two tables; one is EBCDIC which stores the translations
and the other is ASCII . The special characters are: blank ; % & ‘ “ () + - = * / < > ^ | , ~
-- # GE LE EQ OR AND GT LT NE IN. Then, depending on the operating system, you
are running SAS will choose which of the two tables to use. For the most part the
programmer will never see these delta characters and even when one does see them on
the computer screen, they look like junk characters. Let us use the ■ symbol to denote a
delta character and look at what quoting actually did to our previous example:

%Let ABC = %STR(123;);

The value stored by SAS is:
■123■■

If we added leading and trailing spaces to the value:
%Let ABC = %STR(123;);

The value stored by SAS is:
■■123■■■

Lucky for us, SAS keeps all of the information straight as to what delta character was
switched with which special character and it does the switching for us. As I mentioned
earlier, normally you do not need to worry yourself with the details however, every once
in awhile when you debug a macro it is helpful to see what is getting hidden. In these
cases you can simply submit %Put <_User_, _Local_, _Global_) and, depending on your
editor, will be able to see the junk characters in your macro variable values. It is
important to note that %Put and %Symbolgen will convert the delta characters back to
their original values when printing things to the log.

There will be those who think that this section is an overkill of sorts, but experience has
taught (me) it is not. An example of how this type of knowledge came in handy is when I
was working with PRX functions in the Macro Facility. After many attempts and much
frustration I could not figure out why the position at which my PRXMatch function
returned was wrong. After some careful digging and a %Put I realized that the Macro
Facility did not remove the delta characters before handing off the value to the Perl
engine. This lead me to contact a friend who works at SAS who specifically deals with
the Perl functions and in V9.2 of SAS the problem is (was?) fixed. Had I not known
about the mechanics of how Macro Quoting works I would not have solved the problem.

Macro Quoting Functions

5

In all of the previous examples the Macro Quoting function %STR has been used. This
was partly because it is the most commonly used quoting function and partly because it
fit the problem trying be solved by the examples. However, there are in fact 16 Macro
Quoting functions in all. This section will first provide a brief description of Macro
Quoting functions’ evolution and then proceed to explain each one separately.

The very first quoting function was %STR and it masked certain characters at macro
compile time thus necessitating another function %Quote that would work at macro
execution time. Given there are functions that masked things, there also needed to be a
way to unmask these characters hence, the %UnQuote function. Soon after %STR and
%Quote came out it became apparent that these functions could not handle values that
should come in pairs and have some special meaning to the Macro Facility. These values
were unmatched single and double quotes, opening and closing parentheses, and
interestingly enough they found that they needed the ability to mask the % sign. So SAS
augmented these functions so that by prefixing these unmatched pairs of symbols or %
sign with, of all things, a % sign (is that what you mean? I didn’t understand that
sentence if I didn’t punctuate that inner clause). However, this posed a problem with
%Quote because it works at execution time and the unmatched or % sign, more often
than not, was the result of resolving a macro variable. Thus, a new quoting function was
introduced, %BQuote, which is often called the Blind Quoting function. %BQuote not
only masked unmatched pairs in the resolve, but it also allowed the macro facility to
continue to try to resolve values as long as it could. To allow the case where the
programmer wanted to only have the first resolution of a macro variable occur and stop,
all subsequent macro resolutions in the value %SuperQ were (plural verb for plural
resolutions) created.

At some point SAS realized that there were instances whe people needed to be able to
easily mask the % and/or & signs for %STR, %Quote, and %BQuote so SAS introduced
the NR versions of these functions. The NR stands for No Rescan which refers to the fact
that the macro facility will not try to resolve any %Macro or Macro variables inside of
these functions.

Macro quoting functions come in two varieties; compile time functions and execution
time functions (when introducing new things it can be good to be repetitive). Compile
time functions only work on values at compile time and these functions are %Str and
%NRStr. All the other functions are execution time functions and work during macro
execution time. As a general rule of thumb, if you want the value from resolving a macro
variable or %Macro to be quoted then use an execution time function, otherwise use a
compile time function.

Compile Time Quoting Functions

%STR and %NRSTR mask special characters at compile time of a %macro or macro
variable and will remain quoted until it is explicitly removed. They both mask the
following characters: ‘ “ () + - = * / < > ^ | , ~ -- # GE LE EQ OR AND GT LT NE IN

6

while %NRSTR also masks the & and % sign. These quoting functions only mask
special characters at compile time. This means that they will only mask the characters
that are given to the argument and not any resolved macro values. To help make this
clearer let us look at an example:

38 %Let A = X,X ;
39 %Let B = Y%Str(&A)Y ;
40 %Let C = Y%Str(X,X)Y ;
41 %Put %Substr(&B , 4 , 1) ;
ERROR: Macro function %SUBSTR has too many arguments. The excess arguments
will be ignored.
ERROR: A character operand was found in the %EVAL function or %IF condition where
a numeric operand is required. The condition was: XY
ERROR: Argument 2 to macro function %SUBSTR is not a number.

42 %Put %Substr(&C , 4 , 1) ;
X

Why did the first %Substr fail while the second did not? To answer this question let us
look at the values given to the %Str function in the compile time of the macro variable B.
Its values are Y%Str(&A)Y. The leading and trailing Ys are fine, they are just text. The
problem lies in the fact that what was given to the %Str at compile time was &A which is
a macro variable reference but at compile time this reference is not resolved so &A was
fed to the %STR function. Since there are no special characters for it to match it has
nothing to change into delta characters. Thus, when the macro variable B is resolved in
the %Substr function, the comma between the Xs is not hidden and we get the “too many
arguments to the %Substr function” error. The second example works because the %STR
was give X,X and at compile time the function sees the comma and converts it to a delta
character and therefore no problems occur with the %Substr function call.

Had we wanted the & in the macro variable B to be just an & and not have special
meaning to the macro facility then we should have used %NRSTR and the whole thing
would have worked out.

43 %Let A = X,X ;
44 %Let B = Y%NRStr(&A)Y ;
45 %Put %Substr(&B , 4 , 1) ;
Y

Execution Time Quoting Functions

The macro quoting functions %QUOTE and %UNQUOTE were the first macro
execution time macro quoting functions. They mask the exact same special characters as
%STR and %NRSTR at macro execution time. These functions were limited by their

7

inability to handle unpaired parentheses, single or double quotes, and percent signs. So
%BQUOTE and %NRBQUOTE were created and they superseded these, thus negating
originals’ usefulness. Since these functions have been superseded we will not go any
further with this explanation.

%BQUOTE and %NRBQUOTE or ‘Blind quoting’ mask special characters at macro
execution, meaning that they mask the resolved value of either a macro variable or a
%macro. They mask the same characters as %STR and %NRSTR, respectively, as well
as unmarked and unmatched percent signs, opening and closing parentheses, and single
or double quotes. One of the interesting things is that %BQUOTE and %NRBQUOTE
allow for the macro expressions to be resolved as far as possible before they quote the
special characters. If a macro call cannot be resolved it issues a warning and quotes the
resolved value. %NRBQUOTE will mask all of the same characters as %BQUOTE as
well as mask the & and % in the final value. An example will help us to see this a little
better.

Data _Null_ ;
Call SymputX('A' , 'Ben&Jerry') ;
Run ;

108 %Let B = %NRBQUOTE(&A) ;
WARNING: Apparent symbolic reference JERRY not resolved.
109 %Let C = %BQUOTE(&A) ;
WARNING: Apparent symbolic reference JERRY not resolved.
WARNING: Apparent symbolic reference JERRY not resolved.
110
111 %Put B = &B ;
B = Ben&Jerry
112 %Put C = &C ;
WARNING: Apparent symbolic reference JERRY not resolved.
C = Ben&Jerry

In the example above you will see that both function calls generate warnings. Since each
of these functions tries to resolve the expression as far as possible this is inevitable. At
some point, if there is a & or % that it cannot resolve, the macro facility will issue the
warning. The %BQUOTE example has 2 warning messages; the first warning message is
the first attempt at resolving the value. When it cannot, it tries again. The
%NRBQUOTE only has one warning message because after the first failed attempt at
resolving the macro value it masks the &. However, when we look at the %Put
statements we see that value was generated with %BQUOTE issue a warning the value
for the %NRBQUOTE value does not (I can’t even guess at how to change this prior
sentence so that it makes sense). This is what is meant when we say that %NRBQUOTE
will mask & and % in the final value.

8

The %SuperQ function is the most stringent execution time quoting function. It requires
the macro variable name as its argument and masks all special characters in that value. It
differs form %NRBQUOTE in that it will not try to further resolve the macro expression
if either a & or % sign are present in the macro expression after the first resolution.

Data _Null_ ;
Call SymputX('A' , 'Ben&Jerry') ;
Run ;

%Put %SuperQ(A) ;

Log Shows:
Ben&Jerry.

If you need to quote a value in order to hide it from some part(s) of the macro processor it
stands to reason that at some point you will need the ability to unquote these values.
%UNQUOTE works at execution time and simply reverses the macro quoting.

%Let Name1 = %NrStr(Ben&Jerry) ;
%Let Name2 = %NrStr(&Name1) ;
%Let Name3 = %UnQuote(&Name2) ;
%Put Name1=&Name1 Name2=&Name2 Name3=&Name3 ;

On Log:
Name1=Ben&Jerry Name2= &Name1 Name3=Ben&Jerry

In this example we start by assigning a value to macro variable Name1 which has an & in
it so we use the %NrStr function to hide the & from the macro processor at compile time.
Macro variable Name2 uses the same function to stop the resolution of &Name1 in its
assignment. If you were to run the code you would find that, at this point, there were no
warnings or errors produced by having those &s in the values. This means we have used
the correct quoting function for the job at hand. Proof that everything worked out as
planned can be seen in the %Put statement. Lastly, the %Unquote function was used to
remove the macro quoting from &Name2. Assigning its resolved value to macro variable
Name3 and using the %Put statement, we clearly see that, yes indeed, everything worked
as intended. Interestingly enough you will notice that even though we unquoted the value
for Name2, SAS did not complain about the & in its value. The reason for this is that
when &Name2 gets resolved it resolves to a quoted value of &Name1, which is all
%Unquote sees. It then unquotes that and the macro facility resolves it to the quoted
value of Ben&Jerry.

9

Quoting Text Functions

Given that the Macro language is basically a text manipulation language it contains a host
of text manipulating functions. Anyone who has used the Macro language has used
these functions. A few examples are %Length, %UpCase, %Sysfunc, etc…. . These
functions always return an unquoted value regardless of whether the value was initially
quoted or not. This poses a problem when you need to do something like convert
everything into upper case characters for a comparison and there is an & in the middle of
the value. To handle these situations SAS came out with a Q or quoted version of these
functions and they can be distinguished by the first letter starting with a Q. The
following is a list of these Quoting Text functions: %QCMPRES, %QLEFT,
%QLOWCASE, %QUPCASE, %QSCAN, %QSUBSTR, %QSYSFUNC, and %QTRIM.

We will look at a few examples:

One of the great things about a %Macro is that the programmer can pass values via a
parameter and have the %Macro make a decision based on this value to conditionally
generate SAS code. It is good practice to ensure that the value you are passing will
compare properly to the hardcoded value in the %If statement. To do this it is common
for the passed value to have all of its values upcased or lowercased. Let us turn back to
our Ben&Jerry example.

27 %Let Name = %NrStr(Ben&Jerry);
28 %Put Name = &Name ;
Name = Ben&Jerry
29
30 %Let Name = %NrStr(Ben&Jerry);
31 %Put Name = %UpCase(&Name) ;
WARNING: Apparent symbolic reference JERRY not resolved.
Name = BEN&JERRY
32
33 %Let Name = %NrStr(Ben&Jerry);
34 %Put Name = %QUpCase(&Name) ;
Name = BEN&JERRY

The first %Let and %Put statement pair the value for Name has to be quoted due to the &
in the value (rework this prior sentence, it doesn’t make English sense). Now if we were
to compare this to a hardcoded value we would have to know that value had a capital B in
Ben and J in Jerry. Since different users could pass different variations of this, the easiest
way is to hard code all upper case or lower case values in the %Macro and then convert
the parameter’s value to match, thus always giving the %Macro a good comparison. In
the second pair, %UpCase was used and, sure enough, it creates a warning message
because %UpCase always returns an unquoted value. In the third pair of statements
%QUpCase was used and, as expected, the value retained its quoted ampersand.

10

Our next example uses %Scan and %QScan. Macro array processing has, for the most
part, been superseded by macro list processing methodology. As such, it becomes
necessary to know how to grab certain members(?) (you use ‘elements’ twice here) from
a list of elements. One of the easiest ways to accomplish this task is through the use of
%Scan.

35 %Let NameList = %Str(O%'Conner O%'Tool O%'Donald);
36 %Put %QScan(&NameList , 1 , %Str())
37 %QScan(&NameList , 2 , %Str())
38 %QScan(&NameList , 3 , %Str()) ;
O'Conner O'Tool O'Donald

The %QScan allows us scan, grab and print out each name even though the names have a
single quote embedded in them. Had we used just the %Scan function the single quotes
in the names would have caused SAS to think that there was a mismatched pair of quotes
and the code would not have executed properly. Furthermore, since quotes have
meaning, if %Scan had been used, SAS would still be looking for a closing quote mark
causing further problems with any code submitted after it.

General Macro Quoting Tips

As mentioned through this paper Macro quoting is the most difficult topic that a SAS
programmer will have to learn and use. It is bad enough that even advanced users get
tripped up over it and those who know the most about it still, in many cases, really have
to think through what is going on in the code. This section will provide a short list of
simple rules which should help any user when working with macro quoting.

Rule #1.) The first rule to macro quoting is DON’T (I would leave the contraction in
(instead of DO NOT as it is more dramatic or has more effect). If you think or find
yourself needing to use macro quoting, stop and rethink your program or your macro
design. More often than not programmers tend to use macro quoting to overcome a poor
knowledge of SAS or of a poorly designed macro. Macro programming is difficult
enough as it is Do not make it any harder than it has to be.

Rule #2.) For 99.99% of all the macro quoting problems you will ever face, %STR,
%NRSTR, %SuperQ and %UnQuote will solve them. The other .01% of the time
%BQuote will solve them. Many books and very smart people will tell you to use
%BQuote and %NRBquote for most of your execution quoting functions. However, I
disagree. If you have to have the macro variable continually resolving the macro
expression then most likely you have some serious design issues that you need to fix. To
put it another way, you did not follow rule #1. Secondly, if you use these two functions
you have to remember two different functions and what each will mask and will not

11

mask. %SuperQ is simpler in that you will only have to remember one function and only
one execution time function.

Now I did say that %BQuote is necessary for .01% of the time and here is an example of
that .01% of the time, which I took from SAS-L. The question asked, “Is there a way to
determine if a %Macro exists?” Ian Whitlock came up with the following solution (the
code is copied verbatim from his reply):

 %macro symmacroexists(macname) ;
 %eval(%str(%%)&macname ^= %bquote(%&macname))
 %mend symmacroexists ;

 /* test code */
 %macro bigcall(mac) ;
 %if %symMacroExists(&mac) %then %do;
 %&mac
 %end; %else %do;
 %put WARNING: %superq(mac) not a macro call or it is not resolved.;
 /* nothing */
 %end;
 %mend bigcall ;

 options nomerror mprint ;
 %bigcall(x)

 %macro q ;
 data w ; x = "abc' 1" ; run ;
 %mend q ;

 %bigcall(q)

Ian further went on to say the following: “This code gives an example where such
quoting is useful and could not be handled by %SUPERQ because it is the consequence
of a macro invocation (or more generally any macro expression that is not a macro
variable) that must be hidden.”. This type of problem and the use of %BQuote is the
exception rather than the rule.

Rule #3.) Macro quoting is nothing more than hiding one or more specific sets of
characters from some part of the macro facility. Always know what you are hiding, who
you want to hide it from, and when you are hiding it. If you can answer these questions
then choosing which of the macro functions in Rule #2 becomes easy.

12

Rule #4.) Earlier in this paper I stated that a value will stay quoted until either the user
specifically unquotes the value or SAS unquotes (the UNQUOTE is plural, not
possessive) it, say when a %Put or %Upcase is used. If you are using a quoted macro
value and you are not getting the right result and everything looks good, Unquote it.
More often than not the problem is that the value is quoted and the quoting is causing
problems.

Conclusions

Learning Macro Quoting is difficult and mastering it is even more so. However, learning
the basics of it is not. I truly hope that this paper has given you insight to Macro Quoting
as well as taught you the tools that you will need to use and learn more about Macro
Quoting. Remember, follow the simple rules in this paper and you cannot go wrong.

Special Thanks To: Paul St. Louis and Dianne Piaskoski for their hard work in editing
this paper. Also Ian Whitlock who’s time, patience, and knowledge have helped me
more than e could ever imagine.

Whitlock, Ian “A Serious Look at Macro Quoting”
www2.sas.com/proceedings/sugi28/011-28.pdf

O’Conner, Susan “Secrets of Macro Quoting Functions How and Why”
www.ats.ucla.edu/stat/sas/library/nesug99/bt185.pdf

Your comments and questions are valued and encouraged. Contact the author at:

Toby Dunn
 AMEDDC&S
 Fort Sam Houston. TX

E-mail: Toby.Dunn@amedd.army.mil

Join the SAS-L! @ listserv.uga.edu or Google Groups

SAS and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

13

