
1 

Paper # 2010-14 

 

Impact of Model Mis-Specification on Conditional Power in  

Interim Survival Analysis    

 

Chao Chen, PharmaNet Development Group, Inc., Princeton, NJ 
 

ABSTRACT  
For survival analysis used in clinical trials and other types of experiment, constant hazard ratio model is commonly 
used to compare the survival rate of active treatments with that of placebo group.  If active treatments do not 
become effective immediately after treatment initiation, constant hazard model is not exactly applicable.  
Nevertheless, with the expectation that as the trial duration becomes longer, the effect of non-constant hazard ratio 
at the initial stage of the trials will diminish and becomes negligible.  Even this argument seems intuitively acceptable 
for a long-term trial, in an interim analysis with data collected and analyzed during the course of the trial, impact of 
non-constant ratio may not be ignored, especially when the interim statistical results is to be used for the calculation 
of conditional power, a projected probability of final study outcome based on existing dataset.  SAS procedure 
PHREG is a versatile tool to model non-constant hazard ratio where there are time-dependent covariates in the 
model.  We used this tool to evaluate the impact of modeling a non-constant hazard ration as constant.  Simulated 
data from non-constant hazard ratio models with different censoring time will be presented to demonstrate the 
impact of model mis-specification in the calculation of conditional power.       

INTRODUCTION  
The motive of this study originates from the statement “all models are wrong, but some are useful” from Box [1].  In 
occasions that interim analysis can be performed at various stages of the trial or experiment, the same model can be 
applied repetitively with various level of validity.  This viewpoint is exemplified in the current study using pseudo 
random variables with matched or mismatched models in an interim survival analysis setup.  Following a review of 
related theory, various datasets analyzed by compatible or incompatible SAS codes will be presented.   The results 
indicated that even the mismatched model can have an acceptable power for final analysis; the power can be 
drastically distorted in the early-stage interim analysis.       

THEORETICAL BACKGROUND 
Theory from survival analysis, random walk model, and conditional power are summarized in this section for future 
reference.  For a general review of conditional power, please refer to Lachin [2, 3].   

MODEL FOR HAZARD RATIO   

In the analysis of survival time data, hazard ( ) at time t is defined as the conditional probability that death or other 

endpoint event will occur at the next time unit when the study object is still alive at time t.  For continuous time, it can 
also be heuristically explained as the instantaneous risk at time t.   When there are two or more study groups 
involved in the study, the ratio of the hazard from various groups can be used to evaluate the difference between 
groups.   In additional to treatment groups, other covariates with potential influence on the hazard ratio can be 
included in a Cox proportional model for the evaluation of covariates effect.  Hazard ratio can be treated as constant 
or non-constant (time-dependent) across the study period.  The focus of current study is on the situation when 
hazard ratio varies over time, and the only covariate considered is treatment group.   Statistical test results from a 
case when the true hazard ratio is non-constant but was treated as constant will be examined and compared with 
cases when model is correctly specified.       

 

RANDOM WALK MODEL  

As in the hazard model, there is a time component involved in the theory of random walk model.  Unlike the survival 
analysis, time in the random walk model can be rescaled as „information time.  Loosely speaking, it is the amount of 
information collected during a trial or experiment.   The information time ranges from 0 to 1, with 0 means the start 
and 1 the end of the trial.   

 

In a discrete-time model, a particle at position 0 moves up (assigned as 1) or down (assigned as -1) with certain pre-
specified probabilities at each discrete time point t = 0, 1, 2, 3, … n.  Suppose the movement in the next step is 
independent of previous movement history and with equal probability (one half) of moving up or down.  The variance 
of the position at time n can be viewed as the variance of the sum of n independent binary random variables with  



2 

equally possible outcome of 1 or -1, which is just the sum of individual variance at each step.  In other words, the 
variance of the final position from origin is proportional to the time the particle travelled.  The longer time the particle 
travels, the larger the variance will be.    This is also true for continuous time model.  If the particle moves up or down 
with unequal probability, this is random walk with a drift, that means the particle has a tendency to move to one 
direction.  In a random walk model without drift, the expected position of a particle at any time is always 0, however, 
the conditional expectation of the particle location at the next move is just the current position.  In a random walk 
model with drift, since there is a tendency to move to one side, the expectation at the end is non-zero.  The 
expectation value of the end position is called drift parameter (or non-centrality parameter in statistical terms).  A plot 
of particle location vs. time is called a sample path.   

 

Distribution theory regarding the position of the particle can be used to calculate probabilities related to interim 
statistical analysis.    

 

TEST STATISTICS AS A RANDOM WALK   

In a typical clinical trial, patients are enrolled sequentially, receive treatment according to a pre-determined 
randomization code list, patients are monitored for clinical outcome measurement or study endpoint.  Theoretically, 
statistical test procedures can be repetitively performed with data from each patient added.  Under regular statistical 
assumptions (including i. i. d. samples in the parametric model) and with certain rescaling, the series of test statistics 
from hypothesis testing with each additional patient added can be viewed as a sample path follows the property of 
random walk model.   

 

To be more specific, we have the following:  

For a test procedure (test of equal hazard in our study), under the null hypothesis ( H0 ) that the difference is zero 
between two treatment groups, the test statistics S follows a normal distribution with mean zero and variance 

n/2

0 , where  
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0   is the known variance and n is the sample size. The rescaled test statistics 0/ nSZ   

follows a standard normal distribution.  Reject the null hypothesis H0 when  1ZZ  will provide a test procedure 

with type I error at  which is usually set as 0.05.  When this general statistical argument applies to interim analysis 

performed at information time )1,0(t ,  we have the following: 

),0(~ tNtZB tt   

under H0 .  Notice that tB is the standardized test statistics tZ  rescaled by a factor equal to square root of 

information time, which is the proportion of sample size used in interim analysis as compared with the final sample 
size for fixed sample size trial with no censored observations, or the proportion of number of endpoint events 
observed at the time of interim analysis vs. total number of endpoint events planned for fixed endpoint trial with 
censored observations.   

 

The reason that random walk theory is applicable to statistical testing is that tB , derived for the test statistics, 

shares the property of random walk in the sense that the variance is proportional to  information time.  At the end of 

the study when all the data are collected for analysis, i. e., when t = 1, tB is just the standardized test statistics which 

follows standard normal distribution with mean zero when the null hypothesis is true.  When the null hypothesis is 

not true, in other words, there is a difference between two groups, tB is still normal with variance t, but the mean 

becomes t  where   is the drift (non-centrality) parameter.  This is comparable to the case of random walk with 

a drift parameter equivalent to the expected location at the end of random walk.   

 

In reality, interim analysis is performed only at certain information time points t, not all the information time point 1/n, 

2/n, 3/n, … n/n = 1.  When tB are calculated at all or certain selected information time t, a sample path can be 

created by plotting tB vs. information time t.  From a theoretical viewpoint, the expected sample path should be right 

on the straight lime between (0,  0) and (1, 0) under the null hypothesis Ho , under the alternative hypothesis H1 , the 

expected final point is (1,  )  as shown in the solid straight lines in Figure 1.  The straight horizontal line or the linear 

increase trend results derived from random walk theory can be affected by various reasons including model mis-
specification investigated in the current study.      
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Figure 1:  Expectation of sample path under three scenarios 1, 2, and 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONDITIONIAL POWER DERIVED FROM RANDOM WALK MODEL   

Conditional power is the probability of detecting the true difference given the rescaled interim test statistics tB .  As 

the final outcome of hypothesis testing depends on 11 ZB   and at the information time t, tB is the realized part 

of 1B , the final outcome actually depends totally on the unrealized part tt BBU  1 .  Under the regular 

assumption of independent trial and the fact that the sum of two independent normal random variables ( tB and tU  

in the current case) is again normal with mean and variance equal to the sum of the corresponding components, it 
can be verified that 

 

)1),1((~1 ttNBBU tt    

 

The calculation of the conditional power depends on the conditional mean of the drift parameter  at information 

time t, which is equal to the sum of realized part tB and the conditional mean of the un-realized part tU .    The 

predicted trajectory of the future sample path is usually based on one of the three scenarios and presented as dotted 
line in Figure 1. 

 

1. The current trend of the data collected by interim analysis will continue in the future analysis.  This will be 
the scenario used in of the calculation of conditional power in the following sections.   

2. The future outcome will be generated from alternative hypothesis H1, therefore, the slope of the projected 
sample path will be the same as the slope under H1. 

3. Disregard the data collected from interim analysis, the null hypothesis will still govern the future outcome, 
the projected future sample path will be horizontal.   

 

A graphical representation of the three scenarios was shown in Figure 1.  In terms of the utilization of existing data, 
scenario 1 and 3 are at the extreme side of each other.  Using both approaches provides the scope of possible 
future study outcomes.  Scenario 2 is in the middle of these two extremes, empirical Bayesian approach can also be 
used to find a balance between these two extreme scenarios.    
 

NUMERICAL SETUP AND RESULTS  
 

In the current study, we consider two sets of data, one from constant hazard ratio model and the other from non-
constant model.  Similarly, SAS codes can be developed with or without the consideration of non-constant hazard 
ratio.  In all, there are four possible combinations of data and SAS codes:  

 B        

      1   

         

         

      2   

         

              Bt   3   

         

       H1  

       (1, Ө)  

         

         

         

                  t   Ho  

 (0, 0)   Inf. Time   (1, 0)  
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1. constant ratio data - constant ratio SAS code, 

2. constant ratio data – non-constant ratio SAS code, 

3.  non-constant ratio data – constant ratio SAS code, 

4.  non-constant ratio data – non-constant ratio SAS code.   

 

Combinations 2 and 3 represent mismatch between data and SAS code.  The goal is to verify computational results 
with the theoretical development based on theory summarized in previous sections when data and code match, and 
to quantitatively evaluate the effect of mismatch (model mis-specification) when interim data were used to project 
final study outcome.  Combination 1 is a simpler case that pretty much follows the theory so the focus is on non-
constant model.  

 

CONSTANT AND NONCONSTANT HAZARD RATIO  

Two cases, one constant hazard, the other one non-constant hazard were considered in our simulation study.   
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where a and b are the two groups to be compared.   For each of the two cases, 300 pseudo random variables were 
generated for each treatment group.  Kaplan-Meier estimates were calculated and plotted, the results were shown in 
Figures 2 and 3. 

 

As expected, group b has a higher survival rate throughout the time span in Case 1.  As for Case 2, since the hazard 
rate is higher for group b when t < 2, the higher survival rate for group b was not observed until t is greater than 7.  
Case 2 is a case that the risk of group b is actually twice of group a when t < 2, however, the risk of group b is only 
half that of group a when t is equal to or greater than 2.  The cut-off point at t = 2 was artificially set to investigate the 
effect of model mis-specification.     

 

There is no guarantee that the hazard ratio will remain constant across the complete time span.  In clinical trials, the 
full treatment effect may not occur at the initial stage [4].  In a comparison study between a surgical group and a 
medically treated group, there can be an initial stage of higher risk before a lower risk can be achieved in the 
surgical group.  In both situations, Case 1, a typical constant hazard model, though can be easily coded, does not 
reflect the actual underlying mechanism the data came from.  As long as the underlying data-generating mechanism 
does not deviate too much form the model, the assumption of constant hazard rate is sometimes ignored.  It is the 
situation when drastic changes in hazard ratio, or even a reverse trend as shown in Case 2 that deserves more 
attention.  In the following sections, SAS codes taking non constant hazard ratio into consideration was developed, 

test statistics for the null hypothesis of equal hazard ( ba   ) was calculated using fixed censored time set at t = 

1, 2, 4, 8, 16 and 32.    
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Figure 2:  Survival Curve for simulated data from Case 1. 

 

 
 

 

 

Figure 3: Survival Curve for simulated data from Case 2  
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SAS PHREG CODE FOR HAZARD RATIO 

The very basic SAS PHREG code is as follow: 

 

SAS Code 1: 

 
proc phreg data = … ; 

model time*flag(0)=treatment; 

run;  

 

where treatment is either a or b.  This simple approach has an implicit assumption that hazard ratio are constant.  
With some minor modifications, SAS PROC PHREG can handle non-constant hazard ratio models.  If the cut-off 
time point t = 2 can be treated as known as in our study, the SAS code are a follow: 

 

SAS Code 2 

  
proc phreg data = … ; 

model time*flag(0)=effect; 

 

if treatment = a then effect = 0;  

 

if treatment = b and time lt 2 then effect = 1;  

if treatment = b and time ge 2 then effect = -1; 

run;  

 

The code specifies risk ratios before and after t = 2 are just reciprocal of each other though the magnitude was 
treated as unknown.  In terms of regression coefficient in the Cox model, they are the negative value of each other.  
As shown in the code, the effect, either 1 or -1, is treated as a time-dependent covariate.  The corresponding 
regression coefficient estimate can be converted into hazard.  All the typical SAS statements in SAS DATA step can 
be used after the model statement to accommodate more general and complicated situations.  Our hypothetical 
example is artificially chosen to provide a clear trend of model mis-specification impact on hypothesis testing.  The 

resulting parameter estimates, including the estimates of regression coefficient  in  Cox model, hazard ratio and p-

values of test statistics can be generated from standard SAS output and  are summarized in Table1. 

 

 

Table 1 

 

 

Censor time  2 4 8 16 32 

Estimate 

of ß 

Code 1 

Code 2 

-0.82 

0.82 

-0.46 

0.68 

-0.13 

0.70 

0.09 

0.67 

0.20 

0.65 

Hazard ratio 

 

Code 1 

Code 2 

1/2.28 

2.28 

1/1.59 

1.97 

1/1.13 

2.02 

1/0.91 

1.96 

1/0.82 

1.96 

P for equal 

hazard ratio 

Code 1 

Code 2 

<0.001 

<0.001 

0.001 

<0.001 

0.288 

<0.001 

0.36 

<0.001 

0.02 

<0.001 

 

 

The results from Code 2 must be explained with care.  Though the SAS code treat group a as baseline, as there is 
an effect statement in Code 2 to reverse the treatment effect, hazard ratio presented as 2.28 in the table is 
equivalent to using group b as baseline so a pretty stable hazard ratio around was achieved in Code 2.  Results for 

information time t, tZ and tB derive from the random walk model are summarized in Table 2 below.  
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Table 2   

 

Censor time  2 4 8 16 32 

Inf. Time t 

(# event/N)  

143/600 205/600 286/600 407/600 530/600 

Zt : 

Est of ß / SE 

Code 1 

Code 2 

-0.82/0.18 

0.82/0.18 

-0.46/0.14 

0.68/0.15 

-0.13/0.12 

0.70/0.13 

0.09/0.10 

0.67/0.10 

0.20/0.09 

0.65/0.09 

Bt : 

Zt  * sqrt(t) 

Code 1    

Code 2 

-2.28 

2.28 

-1.91 

2.68 

-0.73 

3.86 

0.74 

5.29 

2.15 

6.79 

 

Plot of tB vs. information time from Table 2 was shown in Figure 4.   

 

Figure 4: Plot of tB vs. information time 

 

 
 

 

When the SAS Code 2 is applied to data generated from the compatible Case 2, numerical results above are pretty 
consistent with the random walk theory, that is, the sample path indicated by the solid square (■)  closely follows a 

straight line, this reflects the fact that expectation of  tB is  t .  On the other hand, the sample path under the 

mis-specified constant hazard model, as presented by the solid triangle ▲ has an initial dip followed by a late-stage 
surge.  Though not included in this report, the linear trend is also observed when SAS Code 1 was applied to Case 
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1, a further indication that the linear trend is dependent on whether the model matches the data or not, not the model 

alone.     

DISCUSSION AND CONCLUSION  
Interim analysis based on data collected up to information time less than 0.5 must be examined with great care, 
especially when the interim results is to be used to project final study outcome when the information time reaches 1.  
Conditional power based on the assumption that current trend will continue until the end of the study can be used for 
the calculation of conditional power.  However, as illustrated in Figure 4. Current trend can be distorted by model 
mis-specification which in terms leads to the wrong conclusion. 

 

To demonstrate this viewpoint, the analysis using the mismatched SAS code and data from Case 2 in the previous 
section was repeated 100 times.  An overall of 60000 pseudo random variables from the two treatment groups in 
Case 2 were generated and divided equally into 100 sets of 600 observations.  Survival analysis using the incorrectly 
specified constant hazard model was repeated for these 100 data sets, all the associated estimates, test statistics, 
the corresponding values from random walk models were calculated.  With the classical geometrical argument 

applied to Figure 1, estimates of the drift parameter 


 under scenario 1 (continuation of existing trend to the end of 

the study) can be calculated as 

 

tBB
t

t
B ttt /)

1
( 





 

 As 


has a conditional variance of (1-t), the rescaled quantity )1(/ t


, follows standard normal distribution, 

this result can be used for hypothesis testing.  The null hypothesis of equal hazard ratio is rejected when the 
absolute value of this rescaled value is greater than 1.96, and significant difference in hazard ratio in the two groups 
is claimed.  Significant difference was observed in only 33 out the 100 times at the fixed censoring time = 8 
(information time approximately 0.5).  Similar calculation shows when the fixed censoring time is set as 16 
(information time approximately 0.66), 94 out of the 100 simulated cases are projected to be significant.  When the 
fixed censoring time reaches 32, which is about at the information time of 0.9, 99 out of the 100 cases are significant 
by the actual test statistics without using conditional power.  

 

The example above indicates that even with the incorrectly specified model, a reasonable empirical power (99%) can 
be achieved when the information time approaches 1.  On the other hand, there is a sharp drop of projected 
empirical power to only 33% based on test result at information time of 0.5.  Termination of a trial based on lack of 
conditional power during interim analysis can be a misguidance when the underlying model is not correctly specified.  
Various assumptions regarding the future sample path as mentioned in earlier sections, together with model 
checking tools, which is not the topic of this current study, should be used to guard against such mistakes. 

 

We do want to point out that fixed censoring time is purposely chosen in the study with the expectation that it will 
accentuate the deviation from linear trend under model mis-specification.  A plausible conjecture is that when 
patients were enrolled over a longer time span, the untoward effect of deviation for linear trend will be alleviated.  
Fixed censoring time seems to have a more drastic effect, but further study is needed to confirm this conjecture.  
Certainly there are other factors that will push the expected sample path away from a straight line. These factors, 
including homogeneity of the patients enrollment, delayed treatment effect as discussed by Lakatos [4], study 
population due to amendment of the trial procedures, seasonal and geographical effects, to name just a few, may 
intertwined and the net effect can be difficult to isolate.  Some of these factors are controllable (such as 
randomization procedure to assure the homogeneous patient enrollment), some are not (such as delayed treatment 
effect).  Whenever possible, clinical trials should be conducted with the mindset to minimize the digression from 
statistical assumptions.  If this is not feasible, statistical assumptions and the resulting statistical method, 
programming code can be revised to reflect the true data pattern.  This practice is especially important when interim 
data analysis result is to be used for the projection of final study outcome.      
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