

 1

Longitudinal Data Techniques: Looking Across Observations

Ronald Cody, Ed.D.

Introduction

One of the most difficult tasks for a SAS
®
 programmer is to

perform operations across multiple observations. For example,
you may have a data set of patient visits, with a variable number

of visits per patient and the data for each visits stored in a
separate observation. Some of the techniques for working with
such data include the RETAIN statement, FIRST. and LAST.

logical variables, the LAG function, and the use of multiple SET
statements (each with a separate FIRSTOBS= option). Other
techniques for summarizing data for each patient (such as the

number of visits, the mean and median of some variables) involve
procedures such as PROC FREQ and PROC MEANS to output
summary data sets. We will demonstrate and discuss these

techniques in this tutorial.

Using the RETAIN Statement and FIRST. Logical
Variables

Let's start by describing a typical longitudinal data set. This data

set, called LABS, has from one to four observations per patient,
with each observation representing data from a visit to the clinic.
Run the program below to create this data set:

***DATA STEP TO CREATE LABS;

DATA LABS;

 LENGTH PATNO $ 3;

 INFORMAT DATE DOB MMDDYY10.;

 INFILE DATALINES MISSOVER;

 INPUT PATNO DATE DOB HR SBP DBP;

 FORMAT DATE DOB MMDDYY10.;

DATALINES;

001 10/21/1997 10/21/1946 48 128 74

003 11/11/1998 09/08/1955 52 140 80

123 01/28/1998 01/01/1944 80 180 96

001 11/04/1998 . 52 130 76

001 11/07/1998 . 54 132 78

123 05/04/1998 . 80 178 90

007 04/04/1998

008 03/22/1998 02/08/1980 58 144 72

008 04/21/1998 . 66 144 74

001 02/01/1998 . 44 126 70

354 04/12/1998 07/07/1955 90 210 110

012 05/06/1998 . 80 120 80

013 11/11/1998 11/09/1930 100 180 108

013 11/18/1998 . 90 170 98

554 06/08/1998 09/12/1944 48 108 66

888 01/01/1998 03/14/1922 46 110 68

;

Below is a listing of this data set after we sorted by patient
number (PATNO) and date of visit (DATE):

Listing of Data Set LABS

PATNO DATE DOB HR SBP DBP

001 10/21/1997 10/21/1946 48 128 74

001 02/01/1998 . 44 126 70

001 11/04/1998 . 52 130 76

001 11/07/1998 . 54 132 78

003 11/11/1998 09/08/1955 52 140 80

007 04/04/1998

008 03/22/1998 02/08/1980 58 144 72

008 04/21/1998 . 66 144 74

012 05/06/1998 . 80 120 80

013 11/11/1998 11/09/1930 100 180 108

013 11/18/1998 . 90 170 98

123 01/28/1998 01/01/1944 80 180 96

123 05/04/1998 . 80 178 90

354 04/12/1998 07/07/1955 90 210 110

554 06/08/1998 09/12/1944 48 108 66

888 01/01/1998 03/14/1922 46 110 68

Notice several features of this data set. First, as we mentioned
earlier, there are from one to four observations per patient. Next,
the date of birth (DOB) is entered only on the first observation for

each patient. The variables HR, SBP, and DBP represent the
patient's heart rate, systolic blood pressure, and diastolic blood
pressure, respectively.

Our first task with this data set is to add the date of birth to the
observations corresponding to the second to the last, for each

patient. Two very useful tools, the RETAIN statement and the
FIRST.PATNO logical variable make this an easy task. Let's first
look at the program and we will then explain how it works:

PROC SORT DATA=LABS;

 BY PATNO DATE;

RUN;

DATA LABS2;

 SET LABS;

 RETAIN OLDDOB;

 BY PATNO;

 IF FIRST.PATNO THEN OLDDOB = DOB;

 ELSE DOB = OLDDOB;

 DROP OLDDOB;

RUN;

Remember, your data set must first be sorted before you can use
a BY statement. Notice that we chose to sort by visit date (DATE)
within patient number (PATNO), so that the visits are in the

correct order. The BY statement creates two logical variables,
FIRST.PATNO and LAST.PATNO. When we are processing the
first observation within the BY group, FIRST.PATNO is true,

otherwise it is false. Likewise, LAST.PATNO will be true when we
are processing the last observation within the BY group. For
those patients with only one visit, both FIRST.PATNO and

LAST.PATNO will be true. Now that we know how to determine
when we are reading the first observation for each patient, we can
set a variable (OLDDOB) equal to the DOB in order to

"remember" the value for subsequent observations. However,
since the SAS supervisor sets all variables to missing at each
iteration of the Data Step, we need a RETAIN statement to

prevent this activity from occurring. So, each time we are
processing the first visit for a patient, the retained variable
OLDDOB is set equal to the date of birth. For all subsequent

observations for the same patient, the variable DOB is set to
OLDDOB.

 2

Selecting the First (or last) Visit for Each Patient

Selecting the first or last observations for each subject is a

frequently needed operation. Again, thanks to the built-in FIRST.
and LAST. logical variables, this is easily accomplished. First,
let's write a short data step to select the first visit for each patient.

We will use the LABS2 data set, created above, which has the
date of birth on every observation. Here is the program:

PROC SORT DATA=LABS2;

 BY PATNO DATE;

RUN;

DATA FIRST;

 SET LABS2;

 BY PATNO;

 IF FIRST.PATNO;

RUN;

As you can see, this is a very simple program. The key is5

 the BY statement following the SET statement, creating the
temporary logical variables FIRST.PATNO and LAST.PATNO.
Remember that these are logical variables (with values of true or

false), so it is not necessary to write:

IF FIRST.PATNO = 1;

Although that would also work. The IF statement is a subsetting
IF, which means that if it is true, an implied OUTPUT is performed
and the only observations in data set FIRST will be the first visit

for each patient.

Selecting the last visit for each patient is equally easy to do; just

replace the variable FIRST.PATNO with LAST.PATNO (and
change the name of the data set to something appropriate).

Computing Differences Between Observations

For our next trick, let's find the difference between the heart rate,
systolic blood pressure, and diastolic blood pressure, from the

first visit to the last visit, not counting patients with only one visit.
As you can guess, the FIRST. And LAST. variables will come in
handy. We can "remember" the value of the three variables (HR,

SBP, and DBP) on the first visit by using RETAINED variables
and, when we are processing the data for the last visit, we can
subtract the two. Here is the program:

DATA DIFFERENCE; /*WHAT? NOT USING

 VERSION 7! */

 SET LABS2;

 BY PATNO;

 *REMOVE PATIENTS WITH ONE VISIT;

 IF FIRST.PATNO AND LAST.PATNO

 THEN DELETE;

 RETAIN R_HR R_SBP R_DBP;

 IF FIRST.PATNO THEN DO;

 R_HR = HR;

 R_SBP = SBP;

 R_DBP = DBP;

 END;

 IF LAST.PATNO THEN DO;

 DIFF_HR = HR - R_HR;

 DIFF_SBP = SBP - R_SBP;

 DIFF_DBP = DBP - R_DBP;

 OUTPUT;

 END;

 DROP R_: ;

RUN;

Before we explain anything else about this program, we had
better explain the DROP statement before you all think this is a
typo! A colon following R_, means to include all the variables

starting with R_. This is a somewhat obscure, but useful SAS
programming feature. There are several similarities between this
program and the previous one--they both use FIRST. ,LAST., and

retained variables. Remember that for patients with a single
observation both FIRST.PATNO and LAST.PATNO are true. We
use this fact to delete such observations (remember that following
a DELETE statement, the logic returns to the top of the Data

Step). Next, we choose three variables to hold the values of HR,
SBP, and DBP corresponding to the first visit. Finally, when we
are processing the last visit for each patient, we compute the

difference scores and output the observation. The new data set
will contain a single observation for each patient with the three
difference variables.

Adding a Visit Number to Each Observation

It might be convenient to include a visit number in each of the

observations in the LABS2 data set. Again, by using the FIRST.
and LAST. variables, this is easily accomplished. At the first visit,
we need to set the number of visits to one, and at each

subsequent visit, we need to increment it. Here is the program:

DATA LABS3;

 SET LABS2;

 BY PATNO;

 IF FIRST.PATNO THEN VISIT = 1;

 ELSE VISIT + 1;

RUN;

Remember, when we use an expression of the form: VAR +
INCREMENT; the variable is automatically retained. When we
run this program, each observation will include a visit number

from one to four.

Computing Differences Using the LAG (or DIF)
Function

The LAG function should come to mind, when searching for
techniques that can be used with longitudinal data. The LAG
function returns the value of its argument, the last time the

function was executed. Suppose we want to compute the
difference in HR, SBP, and DBP from each visit to the next. The
LAG function is one straightforward way to accomplish this. Look

at the program below:

DATA DIFF2;

 SET LABS2;

 BY PATNO;

 DIFF_HR = HR - LAG(HR);

 *ALTERNATIVE: DIFF_HR = DIF(HR);

 DIFF_SBP = SBP - LAG(SBP);

 DIFF_DBP = DBP - LAG(DBP);

 IF NOT FIRST.PATNO THEN OUTPUT;

RUN;

You need to take care when using the LAG (or DIF) function. In
this program, we execute the LAG function for every observation

in the LABS2 data set. When we are processing the first visit for
a patient, the difference variables are the difference between the
current value of these variables minus the value of these

variables for the last visit of the previous patient! Not to worry.

 3

We are not outputting an observation corresponding to the first
visit. If you want to include the first visit in your data set and to

have a missing value for the difference variables, you can
proceed as follows:

DATA DIFF3;

 SET LABS2;

 BY PATNO;

 RETAIN R_HR R_SBP R_DBP;

 R_HR = LAG(HR);

 R_SBP = LAG(SBP);

 R_DBP = LAG(DBP);

 IF NOT FIRST.PATNO THEN DO;

 DIFF_HR = HR - R_HR;

 DIFF_SBP = SBP - R_SBP;

 DIFF_DBP = DBP - R_DBP;

 END;

 DROP R_: ;

RUN;

Notice how this differs from the previous program. This time, we
output an observation for every visit but only compute the

difference variables for the second through last visit. Thus, the
difference variables will be missing for the first visit.

Counting the Number of Observations in each
BY Group

Suppose you would like to see a listing of all your patient numbers
and the number of visits for each. We will solve this problem two
ways: one, using a Data Step approach and the other, PROC

FREQ.

All we need with a Data Step approach, is to modify the program

we used to create a visit number variable. Here it is:

DATA COUNT_IT;

 SET LABS2(KEEP=PATNO);

 BY PATNO;

 IF FIRST.PATNO THEN N_VISITS = 1;

 ELSE N_VISITS + 1;

 IF LAST.PATNO THEN OUTPUT;

RUN;

Here we decided to use a KEEP= data set option to bring in only
the patient number. The only other change to the previous

program was to output an observation only when we were
processing the last visit.

Using PROC FREQ to Output a Data Set
Containing Counts

We will now show how to use PROC FREQ to create a data set
containing the number of visits by each patient.

PROC FREQ DATA=LABS2 NOPRINT;

 TABLES PATNO /

 OUT=COUNTS(KEEP=PATNO COUNT

 RENAME=(COUNT=N_VISITS));

RUN;

The NOPRINT procedure option prevents the procedure from

doing its usual outputting to the output window. The TABLES
option OUT= creates an output data set of counts. Since we want
the data set to look like the Data Step example, we rename the

default variable COUNT to N_VISITS. As an alternative to PROC

FREQ, we could have used PROC MEANS. We will discuss how
PROC MEANS can be used to output a variety of summary

statistics, as our next topic.

Creating Summary Data Sets Using PROC
MEANS

If we use PROC MEANS, either with a CLASS or BY statement,
we can produce an output data set summarizing statistics for
each patient. Suppose we want to know the number of visits for

each patient, the number of nonmissing values for HR, SBP, and
DBP, as well as the patient means for each of these variables.
The solution is easy. Here it is:

PROC MEANS DATA=LABS2 NWAY NOPRINT;

 CLASS PATNO;

 VAR HR SBP DBP;

 OUTPUT

 OUT = SUMS(DROP=_TYPE_

 RENAME=(_FREQ_=N_VISITS))

 N = N_HR N_SBP N_DBP

 MEAN = M_HR M_SBP M_DBP;

RUN;

Since we choose to use a CLASS statement instead of a BY

statement, it is essential to include the NWAY option so that we
only obtain statistics for each patient and not the grand mean.
The NOPRINT option serves the same purpose as it did with

PROC FREQ. The output data set is called SUMS. Since
TYPE will have a value of one for every observation, it is not
useful to us so it is dropped. While we are at it, we rename the

FREQ variable to N_VISITS. This variable represents the
number of observations (missing or nonmissing) that were used to
compute each of the patient statistics. Thus, it represents the

number of visits for each patient. The values obtained from the
N= statistics request, are the number of nonmissing values of HR,
SBP, and DBP for each patient, respectively. The three M_

variables are, or course, the means for the three variables.

What if we wanted to include a median in the summary statistics?

Before we had Version 7, it was necessary to use PROC
UNIVARIATE. However, with Version 7, the median is one of the
statistics that can be computed and added to the output data set.

Here is the same program as above, with the three median values
added:

PROC MEANS DATA=LABS2 NWAY NOPRINT;

 CLASS PATNO;

 VAR HR SBP DBP;

 OUTPUT

 OUT = SUMS(DROP=_TYPE_

 RENAME=(_FREQ_=N_VISITS))

 N = N_HR N_SBP N_DBP

 MED = M_HR M_SBP M_DBP;

RUN;

If we use PROC UNIVARIATE to compute the median, we cannot

use a CLASS statement and the automatic variable _FREQ_ is no
longer available. To overcome this problem (in case you are still
using Version 6.12), you need to output the number of missing

observations (NMISS=) and, in a subsequent Data Step, add the
number of non-missing and missing observations together to
compute the total number of visits. Adding the median to PROC

MEANS was a terrific upgrade.

 4

Selecting all Patients with "n" Visits

Suppose you had a longitudinal data set and wanted to create a

subset of all patients with "n" visits each. There is more than one
approach to this problem and we will demonstrate two.

We already know how to create a data set containing the patient
number and the number of visits. By merging this with the original
data set, using an IN= data set option, we can select the patients

we want. Here is the code to select all patients with exactly two
visits:

PROC FREQ DATA=LABS2 NOPRINT;

 TABLES PATNO /

 OUT=COUNTS(KEEP=PATNO COUNT

 WHERE=(COUNT = 2));

RUN;

DATA TWO_VISITS;

 MERGE COUNTS(IN=IN_COUNT)

 LABS2;

 BY PATNO;

 IF IN_COUNT;

RUN;

OK, let's see how this works. First, we add a WHERE= data set
option to subset the output data set from PROC FREQ. Since the
original data set is sorted, we do not have to sort data set

COUNTS. We merge the original data set (LABS2) with the data
set containing the patient numbers for patients with two visits. We
also use an IN= data set option to create the logical variable
IN_COUNT. IN_COUNT is true whenever the data set COUNTS

is making a contribution to the current observation being formed
by the merge operation. Thus, adding the statement IF
IN_COUNT; subsets the final data set to only those patients with

two visits.

Instead of PROC FREQ, we can easily use a Data Step to create

a data set containing the patient numbers of all patients with two
visits. From there, we can merge the two data sets as before.
Here is the Data Step approach:

DATA TWO;

 SET LABS(KEEP=PATNO);

 BY PATNO;

 IF FIRST.ID THEN N = 1;

 ELSE N + 1;

 IF LAST.ID AND N = 2 THEN OUTPUT;

RUN;

We initialize the counter (N) for each new patient and increment it

at each visit. When we encounter the last visit for each patient
and if the counter has a value of two, we output an observation.

Looking Ahead, Using Multiple SET Statements

While retained variables and LAG functions work great for looking
backward, they don't help us if we need to look forward through
observations.

Suppose that for each visit, we had the initials of the doctor that
was treating the patient. If the same patient came back to the

clinic within one month, we want to "credit" that particular doctor
with a failure to cure the patient. In order to do this, we need to
have access to the present observation for the doctor's identity
and the next observation to determine if the same patient came

back within the month. We could, alternatively, create a retained
variable containing the doctor's ID, but we might want access to a

large number of variables associated with the initial patient visit.
What we need, is to be able to look ahead to see if the next visits

fits the description for a treatment failure.

The "trick" here is to use two SET statements, with one of them

employing a FIRSTOBS=2 data set option. This allows us to
process the current observation and to "peek" ahead to see
values from the next observation. To demonstrate this, we need

another data set. Running the short data set below will create a
data set called DOC:

DATA DOC;

 INPUT @1 PATNO $3.

 @5 VISIT MMDDYY10.

 @16 DOCTOR $3.;

 FORMAT VISIT MMDDYY10.;

DATALINES;

001 10/21/1998 ABC

001 10/29/1998 XYZ

001 12/12/1998 QED

002 01/01/1998 ABC

003 02/13/1998 QED

003 04/15/1998 MAD

005 05/06/1998 XYZ

005 05/08/1998 QED

;

Next, we will use a Data Step with two SET statements to create
a data step of treatment failures (any patient that returned with 30
days). Here it is:

PROC SORT DATA=DOC;

 BY PATNO VISIT;

RUN;

DATA FAILURES;

 SET DOC;

 BY PATNO;

 SET DOC (FIRSTOBS=2

 KEEP=VISIT

 RENAME=(VISIT=NEXT_VISIT));

 IF NOT LAST.PATNO AND

 (NEXT_VISIT - VISIT) LT 30 THEN

 OUTPUT;

 KEEP PATNO VISIT NEXT_VISIT

 DOCTOR;

RUN;

Conclusion

We have demonstrated a few of the very powerful SAS

programming tools that allow us to process longitudinal data sets.
This is by no means an exhaustive collection of techniques, but it
should give you a good start on working with longitudinal data.

SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries, ® indicated
USA registration.

Ronald P. Cody, Ed.D.
ron.cody@gmail.com

