
Randomly Split SAS Data Set Exactly

According to a Given Probability

Vector

Liang Xie
Reliant Energy, NRG

Aug 20, 2009

Abstract

In this paper, we examine a fast method to randomly split SAS data
set into N pieces exactly according to a given probability vector. The
method, which scans the data only twice at the worst case, is an exten-
sion of the K/N algorithm extensively discussed on SAS-L archieve. We
first discuss the mathetmatical rationale behind this algorithm, then we
demonstrate the macro implementation utilizing array and hash table.
Lastly, we compare our method to method utilizing SURVEYSELECT
and discuss their comparative advantage and disadvantage.

1 Introduction

[Introduction] Once upon a time in my career, one of the SAS program-
mers in data management team told me that she had difficulties in split-
ting the population data exactly according to the spliting probability vec-
tor I gave to her, and I have to come up with this program to help her
and her team. It turned out that many SAS programmers were still us-
ing simple strategies to split SAS file based on given splitting probability.
These strategies includes:

1. Append a uniform random variable to the original data set and split
the data according to the uniform random variable;

2. Use int(ranuni(&seed)*&TotalPieces) approach to split the table
on the fly based on returned integer value;

3. Iteratively apply PROC SURVEYSELECT to the original data and non-
selection parts after each iteration;

All of these methods have their disadvantages, either in terms of final
statistical property of the sample or efficiency or both. Method 1 is inef-
ficient and can’t guarantee the splitting probability as given one even for
very large data set. Method 2 has the same problem even though it avoids
the step to append a random variable. Both approaches can’t guarantee

1

rigourous statistical property of the final sample, and implementation be-
comes more complex when strata needs to be considered. Method 3 has
SAS-backed rigorousness when used appropriately, but each run only out-
puts one split piece at a time, so that the efficiency decrease dramatically
as the number of splits increases. For example, with ten splits of equal
probability, SAS has to run through 5.5+1 times observations of the orig-
inal table. In general, when a given probability vector p of k-by-1, it is
required to run through 1 +

∑k
i=1

∑k
j=i pj times observations of original

table, which is 2 ∗ k/3 asymptotically. Given tight timeline of project and
business requirements, an efficient approach that holds sound statistical
property is necessary. I employed the K/N algorithm demonstrated by
SAS [1], and discussed extensively on SAS-L archieves, search for threads
“Random Selection: Anything More Elegant”, or see Whittington [2], Au-
tom [3] for details. This algorithms relies on the conditional probability
for subsequent sampling without replacement.

In our project, we are not simply implementing this algorithm, but
extending it to accommendate data with M stratas, and it is required
that each sample has the same strata ratios as in the original data. For
example, in any of the output sample pieces, the ratio of MALE and
FEMALE of strata GENDER must be the same as that in the original
data.

2 The Algorithm

The K/N algorithm is used in K out of N observations random sampling
without replacement. The idea behind this algorithm is that the marginal
probability of selection of the (S+1)th observation, conditional on the fact
that S observations have been selected in the previous M observations is
still K/N . A nicely presented proof can be found at [3].

But randomly sample K out of N observations without replacement can
be regarded as randomly split the data into predefined two pieces , one is
the selected sample with probability K/N , the other is the left over with
probability (K−1)/N . The decision boundry is determined by comparing
a uniform random variable to the constantly updated conditional selection
probability at each step. Note, however, that the selection probability for
left over part is affected, too, when the selection probability for selected
part is updated. Because probabilities sum to 1, when the selection prob-
ability for selected part is updated with (K − 1)/(N − 1), the counter
part probability for left over part is also updated as (N − K)/(N − 1),
which can be understood as the updating process for selecting N −K out
of N observations as well. When we have more than two pieces, say M ,
to output to, the decision has to be made at M − 1 boundries for the
uniform random variable. For example, if it is required to randomly split
original data into M pieces, with probability pi, i ∈ 1 : M,

∑M
i pi = 1,

it is the same as randomly sample N ∗ pi observations out of N for piece
i independently across pieces, so that other pieces j, j 6= i can be col-
lectively regarded as the left over part. Therefore apply K/N algorithm
at each step is validated for random splitting, simply change the boundry
conditions accordingly due to identification of different M pieces.

2

It is desired to go one step further to ensure that exact strata ratio
is also inherited in output samples. A naive way to do so is to apply
the K/N algorithm to each strata value subset. For example, suppose
the original data has a strata X with z unique different values. This is
without generality because if there are more than one stratum, we can
simply use the combinations of different values of all strata and regard
this combination as one stratum. Then we first apply the K/N algorithm
to each of the z subsets, and then combine the data. Taking a simple
example, suppose we have a data with strata variable GENDER having
two unique values: MALE and FEMALE and we want to split it into M
pieces randomly. We first use the simple K/N algorithm to the MALE
subset, get M pieces for MALE; and then conduct the same operation to
the FEMALE subset, getting another set of M pieces of sample; then these
pairs of M samples are combined accordingly at the final step. While this
approach is absolutely legal, it is very inefficient, but it does shed light on
where we can make improvement.

When the original data are firstly splitted into subset by strata values
and then apply K/N algorithm to each one, we are using their conditional
probability, that is conditional probability of selection observation S that
belongs to stratum value Xk is the same as calculated by original K/N
algorithm, but the marginal selection probability across the whole data
set should be adjusted by the current proportion of stratum Xk in the
remaining portion. This in turn implies that we can transform the random
splitting with strata into the original simple splitting problem by treating
each combination of Stratum Value and Piece as a new unique piece, where
the splitting probability is the product of Stratum Value proportion and
splitting probability. So that randomly splitting into M pieces with z
stratum values becames randomly splitting into M ∗ z pieces, and we
simply update the splitting probability at each observation based on its
stratum value.

3 Algorithm Implementation

Because the more complex problem can be transformed into the simplest
case, we first demonstrate the implementation in problems without strata
constraints. The key idea is updating the conditional probability. At
the 1st observation, the selection probability is Ki/N for piece i, i ∈
1 : M . Then we generate a uniform random variable u, and output to
sample i if

∑i−1
0 pj ≤ u ≤

∑i
0 pj , p0 = 0, and the conditional selection

probability for piece i becomes (Ki − 1)/(N − 1), and for pieces j, j 6= i,
their conditional selection probabilities becomes Kj/(N −1). This simple
algorithm can be implemented as the following code:

data New;

set original nobs=nobs0;

array _P{&M} _temporary_;

array _F{&M} _temporary_;

array _K{&M} _temporary_;

if _n_=1 then do;

temp=0;

3

do i=1 to nobs1;

set Probability nobs=nobs1;

_P[i]=Prob;

if i=1 then _F[i]=_P[i];(1)

else _F[i]=_F[i-1]+_P[i];

if i<&M then do;

_K[i]=int(nobs0*_P[i]); _temp_+_K[i];(2)

else _K[i]=nobs0-_temp_;

end;

end;

u=ranuni(&seed);

notfound=1; j=1;

do while (j<=&M & notfound);

if r<=_F[j] & _K[j]>0 then do;(3)

BLOCK=j; notfound=0; _K[BLOCK]-1;

end;

else do;

j+1;

end;

end;

do j=1 to &M;

_P[j]=_K[j]/(nobs1-_n_);(4)

if j=1 then _F[j]=_P[j];

else if j<&M then _F[j]=_F[j-1]+_P[j];

else _F[j]=1-_F[j-1];

end;

drop j notfound u;

run;

In step (1), we construct the splitting boundries based on initial marginal
probability vector, then in step (2), required sample size in each splitting
piece is calculated. Step (3) decides which piece the observation should
be sent to and step (4) updates the conditional selection probability based
on current output.

Extending this code to accommendate multiple strata, we simply ex-
pand this one dimensional arrays to two dimensions where the first dimen-
sion corresponding to the strata while the second dimension corresponding
to splitting probability vector. That is, conditinal on the strata value, cor-
responding row in the probability matrix _P and frequency matrix _F are
updated. For example, instead of

array _P{&M} _temporary_;

array _F{&M} _temporary_;

array _K{&M} _temporary_;

we use 2-dimensional arrays:

array _Pmat{1:&ncomb, 1:&M} _temporary_;

array _Fmat{1:&ncomb, 1:&M} _temporary_;

array _Kmat{1:&ncomb, 1:&M} _temporary_;

array _Nmat{1:&ncomb, 0:%eval(&M+1)} _temporary_;

4

where &ncomb is the number of unique strata values. The extra matrix
_Nmat is used to store the number of required observations for each strata
value and splitting piece combination. It has extra columns than other
matrices to store agrregate information for each strata and this informa-
tion is to ensure the final output probability will be exact. Since the rows
corresponds to strata value order, for each observation, we can quickly lo-
cate which row of these matrices corresponds to its strata value by looking
up strata value index, which can be accomplished by a hash table:

%if &withcontrol=1 %then %do;

declare hash h();

h.defineKey(%str("&control_key"));

h.defineData("_index_");

h.defineDone();

index=1;

do while (^eof);

set _freq_ end=eof;

rc=h.add();

cn=0;

_Nmat[_index_, 0]=COUNT; _Nmat[_index_, %eval(&n+1)]=0;

do j=1 to &n;

if j<&n then do;

_Nmat[_index_, j]=round(_P[j]*COUNT*PERCENT, 1);

cn+_Nmat[_index_, j];

end;

else _Nmat[_index_, j]=COUNT-cn;

_Xmat[_index_, j]=_Nmat[_index_, j];

_Kmat[_index_, j]=0;

end;

index+1;

end;

%end;

In this step, the macro variable &withcontrol indicate if strata presents,
and if it is the case, the program define a hash table h with satelite
data _index_ indicating the rows of the matrices. Then it reads in the
frequency table generated by PROC FREQ, assign each unique combination
of strata values an index. In this way, we build up a quick look up table
for the strata values in corresponding matrices. Hence, in the probability
updating step, we simply update the probability of corresponding rows:

_Pmat[_index_, BLOCK]

= _Xmat[_index_, BLOCK]/(_Nmat[_index_, 0]-_Nmat[_index_, %eval(&M+1)]);

4 Some Experiments and Conclusion

We generate a synthetic data to see if the program works. The testing
data set has two strata: “TDSP” and “VS”, we expect the output pieces
have the same strata ratios as the original data. Macro %split can be
found in the appendix.

data test0;

5

Figure 4.1: Desired Output and Actual Output

do ID=1 to 796773;

TDSP=min(3, round(ranuni(8976)*4));

if ranuni(93745)<0.3 then VS=’H’; else VS=’M’;

output;

end;

run;

options mprint mlogic;

%let seed=99999;

%let probvector=0.1485905 0.1485905 0.2324283 0.2351954 0.2351954;

%let control_vars=TDSP VS;

%let in_dsn=test0;

%let out_dsn=test_out;

%let sort=NEST;

%split(&seed, &probvector, &control_vars, &in_dsn, out_dsn=&out_dsn);

options nomprint nomlogic;

;;

Figure 4.1 shows the result follows the splitting probability exactly:
In this paper, we demonstrate an efficient way to randomly split a SAS

data set into mutliple pieces exactly according a given splitting probability
vector and the extension of original K/N algorithm allows multiple strata
and ensures the strata ratio in output file will be the same as the original
file. The full code of the macro can be found in the appendix.

6

5 Reference

1. SAS Technical Support, Sample 24722: Simple random sample without
replacement Method 3., http://support.sas.com/kb/24/722.html

2. Whittington, John, http://www.listserv.uga.edu/cgi-bin/wa?A2=

ind9909C&L=sas-l&P=R6540&D=0&H=0&O=T&T=1

3. Autom, Tim, http://www.listserv.uga.edu/cgi-bin/wa?A2=ind9909C&L=

sas-l&P=R10451&D=0&H=0&O=T&T=1

6 Contact Information

Liang Xie
Reliant Energy
1000 Main St
Houston, TX 77081

Work phone: 713-497-6908
E-mail: xie1978@yahoo.com
Web: www.linkedin.com/in/liangxie

Blog: sas-programming.blogspot.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. c© indicates USA registration. Other brand and
product names are trademarks of their respective companies.

7 Appendix

/***/

%macro split(seed,

probvector,

control_vars,

in_dsn,

out_dsn=_out_dsn_,

sort=nest);

%let blank=%str();

%let n=1; %let nv=1;

%let probs=&probvector;

%let dsid=%sysfunc(open(&in_dsn));

%if (&dsid=0) %then %do;

%put %sysfunc(sysmsg());

%put Stop Processing due to Errors;

%goto exit;

%end;

%else %do;

%let nobs=%sysfunc(attrn(&dsid, NLOBS));

%let dsid=%sysfunc(close(&dsid));

7

%end;

%if &out_dsn=&blank %then %let &out_dsn=&in_dsn;

%if &seed=&blank %then %let seed=0;

%let pos=%scan(&probs,&n,&blank);

%do %while(&pos ne &blank);

%let n=%eval(&n+1);

%let pos=%scan(&probs,&n,&blank);

%end;

%let n=%eval(&n-1);

%let pos=%scan(&control_vars,&nv,&blank);

%let control_vars_x=&pos;

%let control_key=%str(&pos);

%let control_find=%str(key:&pos);

%do %while(&pos ne &blank);

%put &pos;

%let nv=%eval(&nv+1);

%let pos=%scan(&control_vars,&nv,&blank);

%if &pos^=&blank %then %do;

%let control_vars_x=%str(&control_vars_x * &pos);

%let control_key=%str(&pos%", %"&control_key);

%let control_find=%str(key:&pos, &control_find);

%end;

%end;

%let nv=%eval(&nv-1);

%put nv=&nv;

%if %eval(&nv>0) %then %do;

%if %upcase(&sort)=NEST %then %do;

proc sort data=&in_dsn out=_in_dsn_;

by &control_vars;

run;

%end;

%else %if %upcase(&sort)=SERP %then %do;

ods select none;

proc surveyselect data=&in_dsn

samprate=1.0

out=_in_dsn_

sort=&sort

method=sys;

control &control_vars;

run;

ods select all;

%end;

%else %do;

%put Specify only NEST or SERP for sort statement;

%goto exit;

%end;

%let in_dsn=_in_dsn_;

8

proc freq data=_in_dsn_ noprint;

tables &control_vars_x /missing out=_freq_;

run;

%let withcontrol=1;

%let dsid=%sysfunc(open(_freq_));

%let ncomb=%sysfunc(attrn(&dsid, NOBS));

%let dsid=%sysfunc(close(&dsid));

%end;

%else %do;

%let withcontrol=0;

%let ncomb=1;

%end;

data probs;

%do i=1 %to &n;

prob&i=%scan(&probs, &i, &blank);

%end;

output;

run;

%let i=&n;

data &out_dsn Nmat(keep=_n:);

array _P{*} _prob_1-_prob_&n;

array _Pmat{1:&ncomb, 1:&n} _temporary_;

array _Fmat{1:&ncomb, 1:&n} _temporary_;

array _Xmat{1:&ncomb, 1:&n} _temporary_;

array _Kmat{1:&ncomb, 1:&n} _temporary_;

array _Nmat{1:&ncomb, 0:%eval(&n+1)} _temporary_;

if _n_=1 then do;

set probs;

do i=1 to &ncomb;

do j=1 to &n;

_Pmat[i, j]=_P[j];

if j=1 then _Fmat[i, j]=_P[j];

else _Fmat[i, j]=_Fmat[i, j-1]+_P[j];

end;

do j=1 to &n;

_Fmat[i, j]=_Fmat[i, j]/_Fmat[i, &n];

end;

end;

%if &withcontrol=1 %then %do;

declare hash h();

h.defineKey(%str("&control_key"));

h.defineData("_index_");

h.defineDone();

index=1;

do while (^eof);

set _freq_ end=eof;

9

rc=h.add();

cn=0;

_Nmat[_index_, 0]=COUNT; _Nmat[_index_, %eval(&n+1)]=0;

do j=1 to &n;

if j<&n then do;

_Nmat[_index_, j]=round(_P[j]*COUNT*PERCENT, 1);

cn+_Nmat[_index_, j];

end;

else _Nmat[_index_, j]=COUNT-cn;

_Xmat[_index_, j]=_Nmat[_index_, j];

_Kmat[_index_, j]=0;

end;

index+1;

end;

%end;

%else %do;

index=1; cn=0;

do j=1 to &n;

if j<&n then do;

_Nmat[_index_, j]=round(_P[j]*&nobs, 1);

cn+_Nmat[_index_, j];

end;

else _Nmat[_index_, j]=&nobs-cn;

_Xmat[_index_, j]=_Nmat[_index_, j];

_Kmat[_index_, j]=0;

end;

%end;

end;

set &in_dsn nobs=ntotal end=eof;

r=ranuni(&seed);

%if &withcontrol=1 %then %do;

rc=h.find(&control_find);

%end;

%else %do;

index=1;

%end;

notfound=1; j=1;

do while (j<=&n & notfound);

if r<=_Fmat[_index_, j] & _Kmat[_index_, j]<_Nmat[_index_,j] then do;

BLOCK=j; notfound=0; _Kmat[_index_, BLOCK]+1;

end;

else do;

j+1;

end;

end;

_Xmat[_index_, BLOCK]=_Nmat[_index_, BLOCK]-_Kmat[_index_, BLOCK];

_Nmat[_index_, %eval(&n+1)]+1;

if ^(eof) then do;

10

_Pmat[_index_, BLOCK]=_Xmat[_index_, BLOCK]/

(_Nmat[_index_, 0]-_Nmat[_index_, %eval(&n+1)]);

do j=1 to &n;

if j=1 then _Fmat[_index_, j]=_Pmat[_index_, j];

else _Fmat[_index_, j]=_Fmat[_index_, j-1]+_Pmat[_index_, j];

end;

do j=1 to &n;

_Fmat[_index_, j]=_Fmat[_index_, j]/_Fmat[_index_, &n];

end;

end;

drop _prob: _n_: i r;

run;

%exit:

%mend;

/***************/

%macro wrap;

%let n=1; %let nv=1; %let blank=%str();

%let control_vars=TDSP VS DWELLING_TYPE_CD;

%let pos=%scan(&control_vars,&nv,&blank);

%let control_vars_x=&pos;

%let control_key=%str(&pos);

%let control_find=%str(key:&pos);

%do %while(&pos ne &blank);

%put &pos;

%let nv=%eval(&nv+1);

%let pos=%scan(&control_vars,&nv,&blank);

%if &pos^=&blank %then %do;

%let control_vars_x=%str(&control_vars_x * &pos);

%let control_key=%str(&pos%", %"&control_key);

%let control_find=%str(key:&pos, &control_find);

%end;

%end;

%let nv=%trim(%eval(&nv-1));

%put nv=&nv;

%put pos: &pos;

%put control_vars_x: %str("&control_vars_x");

%put control_key: %str("&control_key");

%put control_find: &control_find;

%mend;

%wrap;

options mprint mlogic;

11

%let seed=986532147;

%let probvector=0.1485905 0.1485905 0.2324283 0.2351954 0.2351954;

%let control_vars=TDSP VS;

%let in_dsn=test0;

%let out_dsn=test_out;

%let sort=NEST;

%split(&seed, &probvector, &control_vars, &in_dsn, out_dsn=&out_dsn);

options nomprint nomlogic;

;;

12

