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Abstract

This paper examines a SVD-based effective and robust approach to
discover temporal electricity usage pattern from a broad customer base.
The rationale behind this method and the relationship between SVD, PCA
and Fourier analysis is discussed, as well as the implementation of SVD
in SAS without IML modular. The output from this method is taken as
input to the k-means clustering algorithm in PROC FASTCLUS. Using
synthetic data, we demonstrate how robust the filtered data is to outliers
and how effective the k-means algorithm can leverage the regulated data.

1 Introduction

Recent development in advanced meter provides residential electricity re-
tailers unprecedent opportunity to collect and analyze high frequency us-
age data from each individual customers and offers enormous information
that challenges analysts and IT infrastructure.

We are facing two fundatmental difficulties in processing and analyzing
such data.

First of all, the amount of data is huge. During the past six months,
from less than 50K currently visible smart meter customers, we cumulated
over 40GB usage data for 15min interval and 60min interval alone, and
this data grows at an increasing rate. Since April, 2009, the data increases
at 15GB to 20GB per month. Given the fact that Reliant has over 1.7
million residential and small business customers and all of them will be
equipped with advanced meter in the next couple of years under DoE’s
plan, we are facing a serious problem. This issue just becomes worse if
ERCOT decides that all competitive electricity retailers have visibility to
all Texas residential customers that equipped with advanced meters.

Second, due to the enormous amount of data, many fancy models for
time series and panel data are litterally not feasible. We need a simple yet
effective method to discover usage patterns that are of business interests
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and of operation feasibility. This method should be robust to outliers and
be fast to execute.

In this paper we introduce a robust approach based on SVD to tackle
this business problem. We will first discuss the rationale behind using
SVD by exploring the relationship between SVD and Fourier analysis.
Then we demonstrate how SVD filter can transform original synthetic
unorganized data into regulated one that shows meaningful patterns. Fi-
nally, its effectiveness and robustness are discuss by applying a k-means
algorithm to this filtered data.

2 SVD Definition

SVD, aka Singular Value Decomposition, is an important mathematical
tool to factor rectangular matrix and has its wide applications in areas
such Data Compression, Pattern Recognization, Microarray analysis, Sig-
nal Processing, etc. It is based on the following theorem in linear algebra
[2]: Any m-by-n matrix X can be written as the product of an m-by-
n unitary matrix U , an n-by-n diagonal matrix Σ with positive or zero
elements (the singular values), and the transpose of an n-by-n unitary
matrix V . In mathematical form:

X = UΣV T (1)

Both U and V are unitary matrices in the sense that that UUT = I, V V T =
I, which also means both matrices are column-orthogonal. Because ma-
trix V is square, V is also row-orthogonal. Expand formula (1), we have

Xij =
∑

k

uikσkv
T
kj =

∑
k

cjkv
T
kj (2)

This formula resembles the Fourier analysis in the sense that the cyclical
term: exp ι2πjk/m is replaced by the normalized eigen vector term vT

kj .
However, while the U matrix from SVD are orthogonal, the coefficient
matrix C[ij] from Fourier analysis is not necessarily orthogonal. That is
SVD can be thought as a special Fourier analysis where the cyclical basis
terms are determined in a particular way according to the linear algebra
definition.

Matrix U can be regarded as an “expression” basis vector directions
for X and V is the corresponding “profile” basis vector directions. There-
fore, each row and column of these matrices provide special information
regarding the original matrix X.

Any row xi· of the matrix X can be expressed as:

xi· =

n∑
k=1

uikσkvT
k· (3)

Any column x·j of the matrix X can be expressed as:

x·j =

n∑
k=1

u·kσkvT
kj (4)

Therefore, each row of X is a linear combination of basis profile data
and each column of X is a linear combination of basis expression data.
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3 SVD in SAS R©

SAS R© doesn’t explicitly support SVD except for in its IML modular which
many companies do not license. However, we are able to trick SAS R© in
order to get a solution that is the same as the SVD output upto a scalar
constant. This trick relies on one of many ways SVD is calculated and
its direct relationship with PCA. Actually, SVD and PCA are so closely
related that in literature, they are also alway discussed inter-changablly.

Because output matrix U is the same dimension as original matrix X
and both U and V are unitary, if original matrix X is square, we know
the matrix U will be the same as matrix V :

XTX = V SV T (5)

where S = Σ2. Once we get both S and V , the output matrix U can be
calculated as follows:

U = XV S−1 (6)

We found these steps are very similar to how PCA was calculated
where the covariance matrix of X is used. Then, if we conduct a PCA
on the original matrix X based on uncorrected covariance matrix, the
right eigen-matrix is the V matrix, and the diagonal elements in the eigen
value matrix S is the square of the corresponding elements in the singular
value matrix Σ, up to a scalar constant, which is the square root of the
row dimension of X. This can be seen by inspecting formula (5). The
uncorrected covarance matrix used in SAS PROC PRINCOMP is actually
XTX/n, where n is the number of observations, i.e. row dimension of X.
Therefore S in formula (5) is actually n times of the eigen values from
PROC PRINCOMP output. With all these matrices at hand, we can
employ formula (6) to get matrix U .

Therefore, we can employ the PROC PRINCOMP procedure in SAS
to accomplish SVD. As an example, suppose we have a matrix:

X =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20


, its SVD output obtained from R is:

U =


−0.09655 −0.76856 −0.63199 0.005024
−0.24552 −0.48961 0.63930 0.536804
−0.39448 −0.21067 0.29155 −0.665307
−0.54345 0.06827 0.02697 −0.299895
−0.69242 0.34721 −0.32582 0.423374



V =


−0.4430 0.7097 −0.03457 −0.5466
−0.4799 0.2640 0.45353 0.7031
−0.5167 −0.1816 −0.80335 0.2337
−0.5536 −0.6273 0.38439 −0.3902
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Σ = diag {5.352E+01, 2.363E+00, 3.654E-15, 5.646E-16}

Submit the following code to SAS:

proc princomp data=X

outstat=Xout(where=(_type_ in (’EIGENVAL’, ’USCORE’)))

noint cov noprint;

var X1-X3;

run;

where the row named “EIGENVAL” contains elements of S, and the rows
of “USCORE” contains the transposed eigen-vector matrix V T . You can
obtain these quantities via ODS, too. For example:

ods output EigenValues=S;

ods output EigenVectors=V;

Note that, first, unlike the OUTSTAT statement, the eigen-vector matrix
obtained from ODS OUTPUT is not transposed; second, the square roots
of calculated S elements are upto the scalar constant of square root of
number of observations, comparing to SVD output. The SAS output of
right eigen-vector matrix V and eigenvalue matrix S are, respectively:

V =


0.4430 0.7097 −0.1195 −0.5345
0.4799 0.2640 −0.2390 0.8018
0.5167 −0.1816 0.8367 0.0000
0.5536 −0.6273 −0.4781 −0.2673


S = diag {572.883, 1.117, 0.000, 0.000}

We see the first two axles of V flip comparing to the R output, but it
doesn’t matter since SVD is only unique upto performing an orthogonal
rotation on any set of columns of U and V whose corresponding elements
of S happen to be exactly equal [2]. Besides, the columns of eigen-vector
matrix are numericall correct upto the significant eigenvalues. This, while
not so desirable, is not of practical importance because only those eigen
vectors of significant eigenvalues matter.

If we scale the eigenvalues by dividing by the number of observations
and taking square root, we can obtain the singular values from SVD:

Σ = diag {53.520 2.363, 0.000, 0.000 }

In order to get U from SAS R©, we apply formula (6) in SAS R©DATA
STEP and get the result that is the same as SVD output corresponding
to significant singular values:

U(SAS) =


0.09665 −0.76856 0 0
0.24552 −0.48961 0 0
0.39448 −0.21067 0 0
0.54345 0.06827 0 0
0.69242 0.34721 0 0


SVD is a robust mathematical tool and SAS is highly capable to con-

duct SVD computation with large data set. According to SAS Online
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Documentation, the time required for full computation is roughly at the
order of O(V 3) and the memory required is at the order of O(V 2), where
V is the number of variables included for computation. On a PC equipped
with C2D6320 1.86GHz CPU and 3GB RAM, we test the algorithm on a
data set with 1.7 million observations and 400 variables, and the SAS log
shows:

15 data x;
16 length ID 7;
17 array _X{*} X1-X400;
18 do ID=1 to 1.7E6;
19 do j=1 to 400;
20 _X[j]=ranuni(1000);
21 end;
22 output;
23 end;
24 run;

NOTE: The data set WORK.X has 1700000 observations and 402 variables.
NOTE: DATA statement used (Total process time):

real time 2:57.60
cpu time 1:34.24

25
26
27 proc princomp data=x noint cov noprint outstat=_stat_;
28 var X1-X400;
29 run;

NOTE: The NOINT option causes all moments to be computed about the origin.
Correlations, covariances, standard deviations, etc., are not corrected
for the mean.

NOTE: The data set WORK._STAT_ has 803 observations and 402 variables.
NOTE: PROCEDURE PRINCOMP used (Total process time):

real time 7:56.63
cpu time 5:52.00

Now we found a way to get the exact SVD output from from tweaking
PCA, which opens a door to many data mining algorithms that are SVD-
based, such as gene-expression analysis [3], Latent Semantic Index in Text
Mining area [6], etc.

4 Temporal Usage Pattern Analysis

Temporal electricity usage data are highly skewed and very volatile in
nature, which cause serious problems when using clustering algorithms
on these naive data. In this section, we show how we can utilize the
SVD filter to accommondate outliers, smooth data and extract business
valuable information from massive household level electricity usage data.

With implementation of Advanced Meters, also called Smart Meter,
in Texas, eletricity retail houses begin to collect huge amount of elec-
tricity usage data at 15 minutes, 60 minutes and daily intervals for each
household equipped with advanced meter.

After tedious data cleaning, which deseres a separate paper, we come to
60-min interval records in continuous 6 month of about 20K smart meters,
that is about 86million observations. Due to limitation in computating
power (currently we are using a poor PC for data processing and analysis),
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we randomly selected 5K meters which has continuous 6 months service
for further analysis. The data has two layers’ information. The first layer
is daily eletricity usage over the 6 continuously observed months, the other
is hourly eletricity usage within a day across the 6 months. We developed
an Multilayer SVD-filtered K-means clustering algorithm to analyze this
data. This algorithm is based on the one detailed by Alter et al. [3]. Our
algorithm follows these steps:

1. For each meter, obtain their daily eletricity usage as a percentage
across the 6 month total; Pool all meters together to form a panel
data; This step normalizes the usage of each meter to 1 which equiv-
alently controls the so called steady state variance;

2. In SAS, apply SVD to above panel data via PCA on non-centered
covariance matrix, obtaining matrices V,

√
S

3. Using formula 6 to get matrix U

4. Set the first eigen value proportion in
√
S to be 0, and use definition

formula 1 to get matrix X ′; In observing the relationship between
SVD and Fourier Analysis, this matrix can be seen as a low pass
filtered result. Alter et al. claimed that this step removes the stead-
state mean. Note that in Alter et al.’s paper, they conducted two
SVD filtering process, respectively, to remove the steady state mean
and steady state variance; But our normalization step 1 can achieve
similar effect;

5. Apply SVD again to low pass filtered matrix X ′, calculate the cor-
relation of each meter’s profile to eigen profile vectors in matrix V ;
This correlation serves as a similarity index for each day and as
features for K-means clustering algorithm;

6. Apply k-means clustering algorithm (PROC FASTCLUS) using these
correlations to calculate the distance measures. There are several
methods proposed to select the optimal number of clusters, K [1].
We employ Bayesian Information Criteria (BIC) for its simplicity
and robustness. Optimal K corresponds to the min BIC value; The
BIC formula follows Moor [5]:

BIC = Distortion+ k ∗ (num of variables) ∗ log(N) (7)

where Distortion =
∑

k

∑
i∈Ω(c̄k)(xi − c̄k)2, c̄k is the mean vector

of cluster k, and Ω(c̄k) is the set of points centred at c̄k. Distortion
is obviously the sum of total variance of each cluster and can be
readily obtained from PROC FASTCLUS in SAS R©.

But BIC critria applies to a given number of features so that we
need to find a way to determine appropriate number of features to
use. Unlike using naive raw data where the number of feature equals
the number of variables or number of selected business meaningful
variables, it is not clear how many to choose from the correlation
features. In this project, we employed a MODE approach. Specif-
ically, we choose only a small number of correlations such that the
corresponding eigen values accounts for, say 70% to 85%, sum of all
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eigen values. This range is choosen aribitrary based on business un-
derstanding of underlying noise level. Then there is a corresponding
range of number of features and for each number, we ran the BIC
selection process, then we get the MODE of BIC selected optimal
number of clusters in this iteration and set this K as the optimal
one.

7. Within each identified daily level cluster, we obtain their hourly
eletricity usage percentage across a “typical” day, or “typical” week-
day and weekend. By “typical”, we actually mean that the hourly
percentage is the average over a month. So that we have 6 vectors of
length 24, or 48 if separating weekday and weekend, for each meter
and by pooling them together, we have a panel data of 144 or 288
columns for each meter during 6 months;

8. Within each identified daily level cluster, we repeat step 1 to 5 on
each of the 6 monthly subsets of the panel data to get 6 months’
correlation vectors for each meter;

9. We then choose first several correlation coefficients from each vector
and conduct the k-means clustering analysis;

10. The appropriate number of clusters is determined via the same BIC
approach;

This multilayer approach leverage the fact that daily usage pattern and
hourly usage pattern within a day are driven by different factors. The
daily usage pattern across months is mostly determined by seasonality
and weather related factors, such as eletricity heating or gas heating, and
house insulation, etc. On the other hand, hourly usage pattern within
a typical day is mostly driven by the life style of the household. For
example, singles will have very different usage curve in a day comparing
to an established household where wife stays at home. Besides, since
this algorithm applies low pass filtering up front, directly work on hourly
usage pattern across all months won’t work because the high frequent
hourly amplitude is removed. We show an example using synthetic data
that resemble typical scenarios in our study. The data is compiled in such
a way that it is able to emphasize the feature of this algorithm.

4.1 Data Simulation

We use a synthetic data set to demonstrate this algorithm. Synthetic
data is generated via a Mixed Model approach like in Wang and Tobias [7],
where we assumed threed underlying clusters. In reality, it is very unlikely,
if not impossible, that there are three distinctive groups but a continuum
of patterns. So that a probablistic than a deterministic approach is more
appropriate. To mimic this continuous nature of patterns, we introduced
a transition smoothing parameter in the model, so that the final model
is similar to the heterogenous model of Verbeke and Molenberghs [8] but
the weights of mixture probability change graduately from one group to
the other. The Model can be written as:

log(Yit) ∼
3∑

j=1

αikN(Xkt + Zitukt, Vk) (8)
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Figure 4.1: Raster Display of Unclustered Daily Profile

where αik is the weights parameter that changes with each simulated
meter so that to smooth the transition from one cluster to the other. Note
that in the original Heterogeneous Linear Mixed Model, αik = αk,∀i.

For details of the model, please consult [8]. Due to sensitivity of busi-
ness information, we do not show the actual parameters and data we used
in the model but related figures, and the data shown in this paper has
been distorted by scaling and shifting. Figure 4.1 shows a Raster Display
of the simulated raw data, not clustered. We observe two prominent usage
peak across the time frame, in the middle and end, respectively.

4.2 Experiment Result

For demonstration purpose, we show here the clustering result following
step 1 to 6 discussed above. Our data is a continuum of 3 latent classes,
and using the MODE selection approach, we obtain the correct number of
clusters. The clustering result has several desirable properties. As shown
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in Figure 4.2, where the cluster and data within a cluster is sorted by the
correlation with the first eigenvector of second SVD filtering process, and
we observed a noticable transition from Peak Usage during Month B, C, D
to Month G, H. So that the eigenvectors are business meaningful and are
able to provide analysts guidance on business intelligence interpretation.
Secondly, from Figure 4.3, we found the clusters are mostly separable
on their peak profile time window. The Boxplot shows that cluster 1
is well separated from the other 2 clusters from Month B to Month D,
since the notch of cluster 1 is almost non-overlap to the notches of the
rest clusters, and cluster 3 is well separated from cluster 1 and 2 from
Month G and H. The non-overlapping of boxplot’s notches is a strong
indication of medians differ among the clusters, see [9]. Thirdly, even
though the raw data has several outliers in the sense that in some time
windows, their profile shows extreme values, the SVD filtered clustering
result is pretty robust and those outlier observations won’t occupy single
clusters which would, however, be the case if we use raw data for k-means
clustering. Under our algorithm, each cluster has adequant number of
relatively homogeneous observations, which make this process well suited
for automation.

5 Conclusion

In this paper, a SVD-based filter is applied to massive dense residential
eletricity usage data over time. The filtered data is transformed into cor-
relation between the filtered value and corresponding eigenvectors, then
a k-means algorithm is applied to this correlation data using correlation
with eigenvectors as features. Through SVD filtering and correlation anal-
ysis, we uncovered hidden patterns that not immediately available to busi-
ness managers and disjoint clustering algorithm on correlation data is able
to group customers into business meaningful segments while immune to
outliers. The algorithm is designed towards facilitating automation. The
output provides marketing team the capability to develop individualized
heterogeneous pricing plans for each customer.

SAS program is avaiable upon request.
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Figure 4.2: Sorted Raster Display of Clustered Daily Profile
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Figure 4.3: Boxplot of Clusters’ Profiles
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