

SAS Formats – Simply Powerful

by

Howard Hagemann
Program Specialist

Student Assessment Division
Texas Education Agency

South Central SAS User’s Group Conference

October 2007

SAS Formats – Simply Powerful
by Howard Hagemann

Abstract
SAS formats are powerful and simple to use. In this paper I will discuss the creation of
formats using PROC FORMAT, using formats to identify groups and subgroups, using
SAS modifiers to indicate special instructions and using SAS informats to read raw data.
SAS formats make easy work of complex tasks. They make output easier to read and
interpret.

Introduction
This paper is written to cover multiple uses of SAS formats. The power of PROC
FORMAT to transform data will be discussed in detail. The uses of informats and SAS
modifiers to read data values will be explored.

The ability to transform data by assigning descriptive labels to data values that can be
recognized for future reference is rudimentary to SAS formats. Having procedures that
can recognize the descriptive labels assigned to the original values for data manipulation
provides a powerful tool for users. In this paper I will discuss syntax and give examples
of how formats can transform data and how to utilize the results.

Getting the data into SAS is essential to the process. SAS informats provide a means to
read data of various formats into SAS. SAS modifiers are an extension of the SAS
informat. Syntax and examples of SAS informats and SAS modifiers will be discussed in
detail.

The FORMAT Procedure – VALUE Statement
PROC FORMAT is the SAS procedure that is used to build user defined formats.
Suppose you have data for student scores on exams in biology. You want to break the
scores into grades based on the normal levels where an “A” is for scores 90 to 100, a “B”
is 80 to 89, a “C” is 70 to 79, a “D” is 60 to 69 and an “F” is below 60. The syntax for
the PROC FORMAT procedure to format the scores into the various grades would be as
follows:

 proc format;
 value grade 0 - 59 = ‘F’
 60 - 69 = ‘D’
 70 - 79 = ‘C’
 80 - 89 = ‘B’
 90 – 100 = ‘A’
 ;

The above code for the format procedure contains the PROC FORMAT statement. A
value statement that contains the name for the format named grade is given. The ranges
of data are assigned a value as “A”, “B”, “C”, etc. Notice that the semi-colon is not used
until after the last range is listed.

 1

The example below uses the format created in the above FORMAT procedure to format
the output of the numeric variable score to the corresponding grade. Notice the
FORMAT statement that was used to invoke the user defined format grade.

data stu;
 input name & $15. score ;
 datalines;
Mary Jones 82
Jeff Smith 61
Sue Austin 93
Fred Hart 100
 ;
 proc print data=stu;
 format score grade.; /* format statement */
 run;

The output from the above example is shown below.

 Obs name score

 1 Mary Jones B
 2 Jeff Smith A
 3 Sue Austin A
 4 Fred Hart A

A value range can specify

• a single value such as 33 or ‘T’
• a range of numeric values, such as 0 – 500
• a range of character values enclosed in quotation marks, such as ‘A’ – ‘M’
• a list of unique values separated by commas, such as 90, 180, 270 or ‘B’, ‘D’, ‘F’.

These values can be character or numeric, but not a combination of both because the
FORMAT procedure must be either character or numeric.

When the specified values are character values, they must be enclosed in quotation
marks. The format’s name must start with a dollar sign ($). When the specified values
are numeric values, they are not enclosed in quotation marks and the format name should
not begin with a dollar sign.

You can also use the keywords LOW and HIGH to specify the lower and upper limits of
a variables range. The keyword LOW does not include missing values but does include
missing character values. The keyword OTHER can be used to label missing values as
well as any values that are not specifically addressed in the range.

When specifying a label for displaying each range,

• enclose the label in quotation marks
• limit the label to 256 characters
• use double quotation marks if you want an apostrophe to appear in the label.

 2

Date ranges are special because they have special formatting needs to get the values into
a date format. Shown below is a VALUE statement with ranges created by date values.

Value dates
 ‘01jan2000’d - ‘31mar2000’d = ‘1st quarter’
 ‘01apr2000’d - ‘30jun2000’d = ‘2nd quarter’
 ‘01jul2000’d - ‘30sep2000’d = ‘3rd quarter’
 ‘01oct2000’d - ‘31dec2000’d = ‘4th quarter’
 ;

Notice that each date is enclosed in single quotes and followed by the letter ‘d’.

When creating VALUE statements, I like to put the semi-colon on a separate line so that
it is obvious. It is easy to overlook.

The FORMAT Procedure – PICTURE Statement
Another statement that can be used to create user defined output is the PICTURE
statement. PICTURE formats are different from value formats in two respects.
PICTURE formats can be used with numeric variables only. The PICTURE format
creates a template that is used to display numeric variable values.

PICTURE statements can be specified in two different ways.

1) digit selectors
2) message characters

Digit selectors are numeric characters (0 through 9) that define positions for numeric
values. If you use nonzero digit selectors, zeros are added to the formatted value as
needed. If you use zeros as digit selectors, no zeros are added to the formatted value. If
the PICTURE statement shows output of ‘99’ then the result of a value 01 would be 01.
If a picture output value is shown as ‘00’ then the output value would be 1.

The PICTURE statement below uses ‘099’ and ‘999’ as the template for printing the
numbers and a prefix option to add the alphabetic grade to the printed output.

proc format;
 picture grade (default = 10)
 low - 59 = '099' (prefix = 'F - ')
 60 - 69 = '099' (prefix = 'D - ')
 70 - 79 = '099' (prefix = 'C - ')
 80 - 89 = '099' (prefix = 'B - ')
 90 - 99 = '099' (prefix = 'A - ')
 100 = '999' (prefix = 'A+ - ')
 ;

 3

The results of the above PICTURE statement are shown below.

 Obs name score

 1 Mary Jones B - 82
 2 Jeff Smith D - 61
 3 Sue Austin A - 93
 4 Fred Hart A+ - 100

When using PICTURE formats, the templates specify how numbers are displayed and
provide a method for prefixes, leading zeros, decimal and comma placement, embedding
characters within numbers, truncation and rounding of numbers.

Message characters are non-numeric characters that can be specified. They are inserted
into the picture after the numeric digits are formatted. An example of a message
statement would be the following:

 picture day 01-31 = ‘99’
 Other = ’99 – Illegal Day Value’
 ;

For the values 02 and 67 the result would appear as follows:

 02
 67 – Illegal Day Value

Ranges can be specified with special keywords like LOW, HIGH, and OTHER. The
keyword LOW includes missing values for character formats and does not include
missing values for numeric formats.

A list of options that can be used in the PICTURE statement are shown below.

• FILL = ‘character’ specifies a fill character. This character replaces the leading
characters of the picture until a significant digit is encountered. The default FILL
= ‘ ‘ (blank).

• PREFIX = ‘character’ is a one or two character prefix placed in front of the first
significant digit of the value.

• MULTIPLIER = n specifies a number to be multiplied by a value before it is
formatted. The main purpose of the MULT=option is to get a data value
containing decimals into a form that will fit into the picture template.

Format Options for VALUE or PICTURE Statements
Below is a list of format options that are common to both the VALUE statement and the
PICTURE statement.

• MIN = n specifies a minimum width for the format.
• MAX = n specifies a maximum width for the format.
• Default = n specifies the default width if the format does not have a width

specification.

 4

• FUZZ = n specifies a fuzz factor. If a number does not match a value or fall
within a range exactly, but comes within the fuzz value, the FUZZ factor is used.

The FORMAT Statement
When reviewing the above code for either the VALUE statement or the PICTURE
statement, it was a FORMAT statement that was used to invoke the user defined format.
The FORMAT statement syntax is shown below.

 format variable(s) [format.];

Notice that multiple variables can be associated with a format. Also, recognize that a
period is placed at the end of the format name. The format can be a user defined format
created by the PROC FORMAT procedure or can be an internal SAS format.

The ATTRIB Statement
Another statement that can be used to invoke a format is the ATTRIB statement. The
general form of the ATTRIB statement is as follows:

ATTRIB variable [FORMAT=format] [INFORMAT=informat] [LABEL=’label’]
[LENGTH=[$]length];

In the above program that uses the PICTURE statement, an ATTRIB statement that could
replace the FORMAT statement is shown below.

 attrib score format=grade. Label=’RESULTS’;

Using SAS Informats & Modifiers
A variable’s informat is the pattern that SAS uses to read raw data values into a variable.
The default informat is Best12. for numeric variables and $w. for character variables. If
a character value ($) is used in list input then the default width for a character input value
is a maximum of eight bytes wide. User defined formats created by the FORMAT
procedure can be used to read raw input data. When creating a user defined informat the
INVALUE statement is used instead of the VALUE statement.

proc format;
 invalue grade 0 - 59 = ‘F’ /* invalue statement */
 60 - 69 = ‘D’
 70 - 79 = ‘C’
 80 - 89 = ‘B’
 90 - 100 = ‘A’
 ;

SAS modifiers can be used with list input data. The two format modifiers are the colon
and the ampersand. The colon allows the user to specify an informat for reading
nonstandard data values. The ampersand gives the user the ability to specify an informat

 5

for reading nonstandard data values that contain single embedded blanks. An example of
reading raw data using SAS modifiers is given below.

data mod1;
 input city & $15. count : comma9.;
 datalines;
Denver 123,456,789
Austin 333,333
San Antonio 715,666,333
 ;
 proc print data=mod1;
 run;

Below is the output from the above program. Notice the ampersand after
the input variable named city and the colon followed by “comma9.” after
the variable named count.

 Obs city count

 1 Denver 123456789
 2 Austin 333333
 3 San Antonio 715666333

Creating New Variables with the PUT and INPUT Function
In many applications you must convert one data type to another. You may want to
transform digits that are a character string to a numeric value. You may want to covert a
numeric value to a character string. It can be done implicitly by forcing SAS to do the
conversion for you or explicitly with the input and put functions. The INPUT function
converts a character value to a numeric value and the PUT function converts a numeric
value to character value. User defined formats as well as SAS internal formats can be
used to produce the desired output.

The syntax for the INPUT function is as follows:

INPUT(argument, informat);

where “argument” is a character constant, variable or expression and “informat” is a SAS
informat that is usually numeric.

The syntax for the PUT function is shown below.

PUT(argument, informat);

Below is an example of the PUT function creating a character variable named “result” by
converting numeric data to character data where score is a numeric variable.

 6

options fmtsearch=forlib;

data stu;
 input name & $15. score ;
 result = put(score, grade.); /* put statement */
 datalines;

Mary Jones 82
Jeff Smith 61
Sue Austin 93
Fred Hart 100
 ;

 proc print data=stu;
 run;

In this example a stored format “grade” was called rather than recreating a user defined
format.

The output from the above program is shown below.

 Obs name score result

 1 Mary Jones 82 B
 2 Jeff Smith 61 D
 3 Sue Austin 93 A
 4 Fred Hart 100 A

Creating Permanent User Defined Formats
When you create a permanent format to associate with a variable in a data set, be sure
that the permanent format is always available in the assigned library. Always include a
LIBNAME statement referencing the permanent format in the program that references
the format. The permanent stored format can be created with either a PICTURE
statement or a VALUE statement. The following code creates a permanent user defined
format named grade in a ‘SAS-data-library’.

libname library ‘SAS-data-library’;

proc format library=library;
proc format;
 picture grade (default = 10)
 low - 59 = '099' (prefix = 'F - ')
 60 - 69 = '099' (prefix = 'D - ')
 70 - 79 = '099' (prefix = 'C - ')
 80 - 89 = '099' (prefix = 'B - ')
 90 - 99 = '099' (prefix = 'A - ')
 100 = '999' (prefix = 'A+ - ')
 ;
run;

To retrieve a format stored in a catalog other than work.formats (temporary) use the
options statement as shown below.

 7

options fmtsearch=library;

The library where the permanent format was stored that is given in the above options
statement is used to find the user defined format shown in this PROC PRINT statement.

proc print data=sample;
format scores grade.;
run;

Using FMTLIB with PROC FORMAT to Document Formats
When you have created a large number of permanent formats, it can be easy to forget the
exact spelling of a specific format name or its range of values. The PROC FORMAT
statement displays a list of all the formats in the specified catalog when the keyword
FMTLIB is added to the end of the statement. Below is an example of using the
FMTLIB keyword at the end of the PROC FORMAT statement.

libname library ‘c:\sas’;
proc format lib=library fmtlib;
run;

The output is shown below.

„ƒƒ†
| FORMAT NAME: GRADE LENGTH: 1 NUMBER OF VALUES: 5 ‚
| MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: STD ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒ‰
‚START ‚END ‚LABEL (VER. V7|V8 12JUN2007:14:27:11)‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ‰
‚ 0‚ 59‚F ‚
‚ 60‚ 69‚D ‚
‚ 70‚ 79‚C ‚
‚ 80‚ 89‚B ‚
‚ 90‚ 100‚A ‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒŒ

In the above example the only format that was in the catalog was the format named
‘grade’.

The SELECT and the EXCLUDE statements can also be used to process specific formats
rather than an entire catalog;

PROC FORMAT LIB=library FMTLIB;
 SELECT format-name;
 EXCLUDE format-name;
RUN;

 8

Formats – Simply Powerful
Having the ability to change data using descriptive labels and then having procedures that
can recognize the descriptive labels for processing makes the SAS format process a
powerful tool. Having the ability to create user defined formats gives the process the
flexibility needed to handle many complex jobs. Knowing that the PROC steps will
recognize the descriptive labels allows users to transform data into the results they need.
In this section some examples of the power of formats will be given.

The simple scores to grades example that was used in earlier sections of the paper
demonstrates how the format procedure can give added value to data. The data is shown
below.

Mary Jones 82
Jeff Smith 88
Sue Austin 93
Fred Hart 75
Sally Smith 66
Judy Karnes 99
Lana Parks 87

Counts and percentages given by the PROC FREQ procedure are often useful in
reviewing test results. The following tables are created by PROC FREQ using the data
above.

 The FREQ Procedure

 Cumulative Cumulative
 score Frequency Percent Frequency Percent
 ƒƒ
 D 1 14.29 1 14.29
 C 1 14.29 2 28.57
 B 3 42.86 5 71.43
 A 2 28.57 7 100.00

The FREQ procedure provides statistics on the distributions of the grades derived from
the score data. The code for the FREQ procedure is listed below.

proc freq data=stu;
 table score;
 format score grade.; /* format statement */
 run;

The code is simple but it gives useful results. The real power in the PROC FREQ
procedure is the FORMAT statement. We know the number of students and the
percentages at each assigned grade level. You can see from the output that the class did
well. Formatting gives new meaning to the data.

The format procedure can be a useful tool for finding erroneous data. For instance, the
price of items in a department store would normally run from five dollars to two hundred
dollars. You want to identify any items that are priced outside this range. A user defined

 9

format can identify all items within the range or outside the range. A FORMAT
procedure that would work for this process is shown below.

 proc format;
 value prices 5 – 200 = ‘within’
 other = ‘outside’
;

In the print procedure or in a data step you would invoke the format using the syntax
shown below.

 format price prices.;

Any item where price has the descriptive label of ‘outside’ could be printed to identify
data outside the normal range. One way to capture the unknown is to first define the
known elements.

Conclusion
Getting data into SAS is obviously essential to the process. SAS informats provide a
means to read data of various formats into SAS. SAS modifiers are an extension of the
SAS informat. They provide additional flexibility for reading data into SAS.

The ability to transform data by assigning descriptive labels to data values that can be
recognized for future reference is rudimentary to SAS formats. The VALUE statement
brings flexibility and readability to data when descriptive labels can be assigned. Having
procedures that can recognize the descriptive labels assigned to the original values for
data manipulation provides a powerful tool for users. This was exemplified by the raw
scores to grades frequency distribution.

The PICTURE statement provides a means for putting numeric output into a useful
format by adding prefixes, leading zeros, decimal placement, comma placement,
embedding characters within numbers, truncation and rounding of numbers. When
numeric data is being used, a PICTURE statement can bring meaning to variables being
output.

SAS efficiencies are gained when formats can be used to accomplish tasks. The
FORMAT procedure uses a binary search using the lookup table that makes efficient use
of computer resources. Centralized maintenance is another benefit of using the
FORMAT procedure. Performance efficiencies and the ease of use make SAS formats a
viable solution for SAS users.

References
SAS Online Documentation. Version 9.1, Cary, NC: SAS Institute, SAS Institute, Inc.
SAS Language and Procedures

 10

Carpenter, Arthur L. “Building and Using User Define Formats”. Proceedings of the
Twenty-ninth annual SAS Users Group International Conference. Cary, NC: SAS
Institute, Inc.

Acknowledgements
I would like to acknowledge the Analysis and Reporting Unit in the Student Assessment
Division of the Texas Education Agency for their support. I would like to thank Jenny
Eaton, Joel Bourgeois and Stephanie Weaver for reviewing the paper.

Contact Information
Howard Hagemann
Program Specialist
Student Assessment Division
Texas Education Agency
Austin, TX
Work phone: (512) 463-2597
Email: howard.hagemann@tea.state.tx.us

 11

	Formats Cover_2007.doc
	SAS Formats3.doc

