
“A Hands-On Introduction to PROC TABULATE”
Thomas J. Winn, Jr.

Austin, Texas

Abstract
PROC TABULATE is used to build tabular reports containing descriptive
statistical information, including hierarchical relationships among variables. The
code that is used to invoke PROC TABULATE is complicated, and much of it
looks quite different from other SAS procedures. Nevertheless, it is well worth
the necessary investment of time and effort for learning the intricacies and
subtleties of its syntax. Besides providing a simplified, step-by-step approach for
coding PROC TABULATE, the hands-on workshop that accompanies this paper
also will provide some practical experiences for participants.

Introduction
PROC TABULATE is used to build tabular reports containing descriptive
statistical information, including hierarchical relationships among variables.
PROC TABULATE is the SAS® System’s implementation of TPL (Table
Producing Language), which was developed at the U.S. Bureau of Labor
Statistics during the 1970s, for generating tabular reports of descriptive statistics
involving employment data.

PROC TABULATE is more powerful for producing tabulations than PROC FREQ,
and it is a more flexible statistical report writer than PROC MEANS. Although
PROC TABULATE and PROC REPORT are both capable of generating similar
tabular reports in many situations, each of these procedures has strengths and
weaknesses. PROC TABULATE seems to be better for displaying hierarchical
relationships. The syntax used to invoke PROC TABULATE and PROC
REPORT differ from one another, and both are complicated. However, it is well
worth the necessary investment of time and effort for learning the intricacies and
subtleties of coding both procedures. This workshop will cover the fundamentals
of coding PROC TABULATE.

The examples and exercises in this workshop make use of the SAS® data files,
prdsale (from the SAS 9.1 sashelp data library), and empldata (an inner join of
the empinfo, jobcodes, and salary SAS® data sets, from the SAS 9.1 sample
data library).

Getting Started With PROC TABULATE
The first thing the would-be PROC TABULATE programmer needs to do, before
beginning to write any SAS code, is to decide what the final report should look
like. What is the intended design for the pages, rows, and columns of the
report?

 1

Here are a few examples of uses of PROC TABULATE:

 2

Unfortunately, a lot of the code that is used to invoke PROC TABULATE looks
quite different from the code that is used for other SAS procedures. Here is the
basic syntax for coding PROC TABULATE:

PROC TABULATE <option-list>;
 BY <NOTSORTED> <DESCENDING> variable-1
 < … <DESCENDING> variable-n>;
 CLASS class-variable-list;
 CLASSLEV class-variable-list / STYLE=<style-element-name>
 <[style-attribute-specification(s)]>;
 VAR analysis-variable-list;
 TABLE <<page-expression,> row-expression,>
 column-expression </ table-option-list>;
 FORMAT variable-list-1 format-1
 < … variable-list-n format-n>;
 FREQ variable;
 KEYLABEL keyword-1=‘description-1’
 < … keyword-n=“description-n’>;
 KEYWORD keyword(s) / STYLE=<style-element-name>
 <[style-attribute-specification(s)]>;
 LABEL variable-1=‘label-1’ <…variable-n=‘label-n’>;
 WEIGHT variable;
 TITLE ‘text’;

 3

Here are some options that are frequently used in PROC TABULATE
statements:

DATA=SAS-dataset-name
FORMAT=formatname
MISSING
NOSEPS

The DATA= option specifies the SAS dataset to be used.
The FORMAT option specifies a default format for each table cell. The default
format is overridden by any format specified in a subsequent TABLE statement.
The MISSING option requests that missing values be regarded as valid levels for
classification variables. Unless the MISSING option is specified, observations
with missing values for class variables will not be included in the analysis.
The NOSEPS option removes the interior horizontal lines from the printed report.

Steps for Coding PROC TABULATE
The simplest way to approach coding for PROC TABULATE may be expressed
in terms of the following five steps:

(1) Specification of classification variables,
(2) Specification of analysis variables,
(3) Definition of dimensions of the table,
(4) Identification of desired statistics, and
(5) Labeling and formatting the table.

What are Classification and Analysis Variables?
Classification variables are used to identify categorical groups on which
calculations are performed. They are the variables that make up the rows and
columns of the table. They may be either character or numeric. If numeric,
generally only a small number of distinct values are permitted.

Analysis variables are numeric variables that are used to compute statistics that
are reported in the body of the table.

Step 1 – Specification of Classification Variables
The CLASS statement is used to specify any categorical variables that will be
used for grouping purposes in the analysis. The CLASS statement is required.

PROC TABULATE DATA=tabwkshp.prdsale;
 CLASS country division product; . . .

Step 2 – Specification of Analysis Variables
The VAR statement is used to list any variables that will be used for computing
the statistics that are to appear in the body of the table. Frequency counts can
be computed without an analysis variable. However, under most conditions, the
VAR statement is required.

 4

PROC TABULATE DATA=tabwkshop.prdsale;
 CLASS country division product;
 VAR actual; . . .

Step 3 – Definition of the Table’s Dimensions
The TABLE statement is used to define both the arrangement of the rows and
columns of the table, as well as the requests for any summary statistics. It is the
tricky aspect of using PROC TABULATE. So let’s consider this complex
statement one piece at a time.

In a TABLE statement, the comma is a very important symbol, because it
separates the dimensions of the table.

• If two commas were specified, then the table would have three
dimensions, and the order would be pages, rows, and columns.

• If only one comma was specified, then the table would have two
dimensions, and the order would be rows, columns.

• No comma would be interpreted to mean that the table’s only
dimension would be the column dimension. The table would only have
one row.

So, TABLE statements look like the following:

TABLE page-expression, row-expression, column-expression . . .;
TABLE row-expression, column-expression . . .; or
TABLE column-expression . . .;

In this context, an expression can consist of variables, statistics, operators,
format specifications, and label assignments.

Because our immediate concern is only to define the table’s dimensions, we are
pleased to discover that only three operators are needed to specify the page,
row, and column headings that identify the structure of a table.

• An asterisk (*) can be used to cross the classification variables; that is,
to arrange them in a nested manner, according to the order listed (top,
middle, and lower).

• A blank space is used to concatenate two classification variables
(which will appear in the table: top-to-bottom for row headings, left-to-
right for column headings).

• Parentheses () are used to group the elements of an expression, and
to associate an adjacent operator with each concatenated element
inside the parentheses.

 5

Here are a few simple examples:

TABLE var1, var2;
The preceding would generate a two-dimensional table in which the row
dimension would be the values of var1, and the column dimension would be
the values of var2.

TABLE var1, var2 var3;
This would result in a two-dimensional table in which the row dimension
would be the values of var1, and the column dimension would be comprised
of values resulting from the side-by-side concatenation of var2 and var3.

TABLE var1, var2*var3;
This statement would generate a two-dimensional table in which the row
dimension would be the values of var1, and the column dimension would be
a hierarchical arrangement of the values of var2 and var3, with the values of
var2 comprising the top columns, and for each of these values as columns,
the values of var3 as the lower columns.

Here are three additional examples:

TABLE var1, var2 * (var3 var4) var5 ;
The preceding would generate a two-dimensional table in which the row
dimension would be the values of var1, and the column dimension would be
two side-by-side components, the first of which would be a hierarchical
nesting of the values of var2 over a side-by-side arrangement of the values
of var3 and var4, and the second component would be the values of var5.

TABLE var1, (var2 var3) * var4 ;
This would result in a two-dimensional table in which the row dimension
would be the values of var1, and the column dimension would be two side-
by-side hierarchical components, the first of which would be the values of
var2 over the values of var4, and the second would be the values of var3
over the values of var4.

TABLE var1 var2, var3 * var4 ;
This code would generate a two-dimensional table in which the row
dimension would be the concatenated values of var1 and var2, and the
column dimension would be a hierarchical nesting of the values of var3 over
the values of var4.

Step 4 – Identification of Desired Statistics
We have been considering incomplete TABLE statements (because up to this
point we have only focused on the dimensions of the tables).

 6

Besides specifying the dimensions, the TABLE statement also identifies which
summary statistics should be produced, and pertaining to which analysis
variables. Each statistic is identified by a keyword.

N = the number of observations, the frequency count
MIN = the smallest value
MAX = the largest value
MEAN = the arithmetic mean, or the average value
STD = the standard deviation
VAR = the variance
MEDIAN = the middle (50th percentile) value
SKEWNESS = a measure of the asymmetry of the distribution of values
SUM = the sum of the values
PCTN = the percentage that one frequency is of another frequency
PCTSUM = the percentage that one sum is of another sum
. . . (and other descriptive statistics).

Whenever you cross a variable with a keyword for a statistic, you are identifying
the statistic to be applied to that variable (which tells PROC TABULATE what
type of calculation to perform). You can cross classification variables only with
the N or PCTN statistics. By default, if the TABLE statement does not include an
analysis variable or a statistic, then PROC TABULATE automatically crosses the
N statistic with the indicated class variables. Analysis variables can be crossed
with any statistic. By default, if the TABLE statement includes an analysis
variable but without crossing it with any statistic, PROC TABULATE automatically
crosses it with SUM.

Here are some examples:

 PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode location gender;
 TABLE jobcode, location*gender;
 TABLE jobcode*PCTN, location*gender;
 TABLE jobcode, location*gender*PCTN;
 TABLE jobcode PCTN, location* gender;

The first TABLE statement would
generate a hierarchical breakdown of
frequency counts in the data set,
according to values of jobcode (the rows)
and the nested values of location and
gender (the columns).

 7

The second and third TABLE statements would generate a hierarchical
breakdown of percentages represented in each cell, according to values of
jobcode and the nested values of location and gender.

The fourth TABLE statement would generate a hierarchical breakdown of
frequency counts represented in each cell, according to values of jobcode and
the nested values of location and gender. It would include an additional row that
would represent the percentage of the total population of the data set included in
each column.

 8

 Here are a few more examples:

 PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode location gender;
 VAR salary;
 TABLE jobcode, location*gender*salary;
 TABLE jobcode, location*gender*salary*PCTSUM;
 TABLE jobcode, location*gender*salary*MEAN;

The first TABLE statement would generate a hierarchical breakdown of the sum
of the salary amounts represented in each cell, according to values of jobcode
and the nested values of location and gender.

The second TABLE statement would generate a hierarchical breakdown of the
percentage of the total of salary amounts represented in each cell, according to
values of jobcode and the nested values of location and gender.

 9

The third TABLE statement would generate a hierarchical breakdown of the
average salary represented in each cell, according to values of jobcode and the
nested values of location and gender.

PROC TABULATE has a universal class variable, ALL, which can be used to
generate totals for any specified class variable. Just concatenate the keyword
ALL into the row or column expression of a TABLE statement.

 PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode location gender;
 TABLE jobcode ALL, location*gender ALL;
 TABLE jobcode ALL, (location ALL)*gender;

What is the difference between the tables produced by these two TABLE
statements? Here are the results from the first TABLE statement:

 10

And here are the results from the second TABLE statement:

 11

Calculating Percentages with PROC TABULATE:

PROC TABULATE has the capability of determining the percentage of the value
in one cell to the value in another cell, or to the total of a group of cells, through
the PCTN and PCTSUM statistics, respectively. Whenever you invoke PROC
TABULATE to calculate percentages you, explicitly or implicitly, define the value
that is to be used as the denominator. If you do not specify a particular
denominator then, by default, PROC TABULATE uses the sum of the values in
the N cells for the PCTN denominator, and the sum of the values in the SUM
cells for the PCTSUM denominator.

Brackets < > are used to explicitly specify the denominator that is to be used in
the calculation of percentages.

 PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode gender;
 TABLE jobcode, gender*(N PCTN) ;
 TABLE jobcode, gender*(N PCTN<gender>) ;

The first TABLE statement specifies that the display should include the number
of instances of values for gender occurring with each value of jobcode, and the
percentages of those numbers to the total across all combinations of values of
jobcode and gender.

 12

The second TABLE statement specifies that the display should include the
number of occurrences of values for gender, and the percentage of that number
to the total for all values of gender in each jobcode (that is, a row-percentage).

Here is another example of calculating percentages:

PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode gender;
 VAR salary;
 TABLE jobcode, gender*salary*(SUM PCTSUM<jobcode>) ;

This TABLE statement specifies that the display should include breakdowns of
the total salary amounts, and the associated percentages, for each combination
of values of jobcode and gender, where the percentages are calculated in a

 13

column-wise manner.

Observe that, to obtain percentages by row, we use the column-expression in the
“denominator definition”; and to obtain percentages by column, we use the row-
expression in the “denominator definition.”

And here are two more examples involving percentages, but these examples
include the universal class variable, ALL.

PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode gender;
 VAR salary;
 TABLE jobcode, (gender ALL)*(N PCTN<gender ALL>) ;
 TABLE jobcode ALL,
 gender*salary*(SUM PCTSUM<jobcode ALL>) ;

Notice that whenever row- or column-percentages are to be produced for a
column- or row-expression that includes the ALL universal class variable, then
ALL also must be included in the “denominator definition.”

Step 5 – Labeling and Formatting the Table
Now that we know how to define the basic structure of the tables we will
generate, we would like to be able to make the tables more self-explanatory; that
is, easier to read and interpret.

As in many other SAS procedures, you can use a LABEL statement to replace
variable names with more descriptive headings for your class variables. There
also is a way to specify temporary labels in a TABLE statement.
Similarly, TITLE and FOOTNOTE statements also can be used to enhance the
tabular reports generated by PROC TABULATE.

 14

To assign labels to procedure-generated statistics and the universal class
variable, we use the KEYLABEL statement.

 KEYLABEL N = ‘Count‘
 ALL = ‘Total’
 PCTN = ‘Percent’;

As in other SAS procedures, formats can be used to substitute labels for values
of the classification variables. Formats also can be used to combine many
values of the classification variables into a much smaller number of values to be
printed in the report. We create custom formats by using PROC FORMAT, and
we invoke those formats in PROC TABULATE either through a FORMAT
statement, or by crossing F=format-name. in the TABLE statement with the
particular variable.

The default for displaying cells with missing numeric values is a period. You can
change the way missing values are displayed by using the MISSTEXT= option to
define up to twenty characters of text that will print in the table cells whenever a
particular combination of class variable values is not found in the input data set.

 PROC TABULATE DATA=tabwkshp.empldata;
 CLASS jobcode location gender;
 TABLE jobcode, location*gender / MISSTEXT=‘None’;

Here are a couple of useful TABLE statement options that can be used for
customizing the appearance of tables:

• The RTSPACE= (or RTS=) option defines the total amount of space for
the row headings. If there are several levels of headings for rows, then

 15

the space is divided equally among the levels, after subtracting the spaces
that are needed for the vertical lines.

• Whenever a table produced by PROC TABULATE is too wide to fit on a
single page, the procedure automatically splits the table, to span as many
separate pages as are necessary for printing. For short, wide tables, the
CONDENSE option could be specified on the TABLE statement, in order
to print as many logical pages as possible on a single page, one below the
other.

Some people think that traditional SAS output is ugly. Beginning with Version 7,
the SAS System provided an ability to deliver procedure output in a flexible
variety of file types and formats, through the SAS Output Delivery System (ODS).
Under SAS 9.1.3, ODS can be used to generate results as SAS data sets, output
listings, PostScript, HTML, RTF, PDF, PCL, XML, Excel, and other output file
types. ODS can be used to enhance tabular reports, by wrapping the PROC
TABULATE code in ODS destinations, by changing fonts, colors, and other style
attributes, and by adding graphics. For further information about ODS and
TABULATE, consult the software documentation provided by SAS Institute.

Here is a final example, which illustrates several of the “Labeling & Formatting”
techniques that I have described:

PROC FORMAT;
 VALUE salfmt low-<12000 = ‘Less than $12,000’
 12000-<24000 = ‘$12,000 - $23,999’
 24000-<48000 = ‘$24,000 - $47,999’
 48000-<72000 = ‘$48,000 - $71,999’
 72000-<96000 = ‘$72,000 - $95,999’
 96000-<120000 = ‘$96,000 - $119,999’
 120000-high = ‘$120,000 or more’;
 RUN;

 ODS HTML BODY=‘tables.htm’;

 PROC TABULATE DATA=tabwkshp.empldata MISSING FORMAT=9.1;
 CLASS title location gender salary;
 FORMAT salary salfmt.;
 LABEL title = ‘Job Title’;
 KEYLABEL PCTN = ‘Percent’ ALL = ‘Total’;
 TABLE title*salary ALL, (location*gender ALL)*PCTN
 / RTS=50 MISSTEXT=‘0’;
 TITLE ‘Tabular Summary of Employee Information’;
 RUN;
 ODS HTML CLOSE;
 RUN;

 16

Conclusion
PROC TABULATE is a very useful and very powerful procedure for constructing
tabular reports containing descriptive statistical information, including hierarchical
relationships among variables. It is well worth the necessary investment of time
and effort for learning the intricacies and subtleties of its syntax. Concentrating
on the five steps makes it much easier to learn how to code PROC TABULATE.
We have only just “scratched the surface” of this wonderful procedure! But now
you know enough to continue learning about it on your own.
Happy tabulating!

 17

Resources for Additional Reading
Jeffery M. Abolafia & Stephen M. Noga, “The TABULATE Procedure: One Step

Beyond the Final Chapter,”
• SESUG ‘97 Proceedings (1997), pp. 293-300; and
• Proceedings of the Twenty-Third Annual SAS Users Group International

Conference (1998), pp. 839-844.

Jonas V. Bilenas, “Making Sense of PROC TABULATE (Updated for SAS9®),”
Proceedings of the SAS Global Forum 2007, Paper #230-2007.

Dan Bruns, “The Utter Simplicity of the TABULATE Procedure,”

• Proceedings of the Sixteenth Annual SAS Users Group International
Conference (1991), pp. 365-371; and

• Proceedings of the Twentieth Annual SAS Users Group International
Conference (1995), pp. 363-368; and

• Proceedings of the Seventh Annual South-Central SAS Users’
Conference (1997), pp. 54-60.

Dan Bruns, “The Utter ‘Simplicity?’ of the TABULATE Procedure,” Proceedings

of the Seventeenth Annual SAS Users Group International Conference
(1992), pp. 216-220.

Dan Bruns, “Advanced Features of PROC TABULATE -- or -- The Utter

Simplicity of the TABULATE Procedure - The Sequel,” Proceedings of the
Twenty-First Annual SAS Users Group International Conference (1996),
pp. 242-247.

Dan Bruns, “The Utter ‘Simplicity?’ of the TABULATE Procedure -- The Final

Chapter,”
• Proceedings of the Twenty-Second Annual SAS Users Group

International Conference (1997), pp. 251-256 ; and
• Proceedings of the Seventh Annual South-Central SAS Users’

Conference (1997), pp. 61-66; and
• Proceedings of the Twenty-Ninth Annual SAS Users Group

International Conference (2004), Paper #241-29.

Dan Bruns, “The Power and Simplicity of the TABULATE Procedure,”

• Proceedings of the Twenty-Fourth Annual SAS Users Group
International Conference (1999), Paper #152; and

• Proceedings of the Twenty-Fifth Annual SAS Users Group
International Conference (2000), Paper #152-25; and

• Proceedings of the Twenty-Sixth Annual SAS Users Group
International Conference (2001), Paper #148.

 18

Dan Bruns, “The Simplicity and Power of the TABULATE Procedure,”
Proceedings of the Twenty-Eighth Annual SAS Users Group International
Conference (2003), Paper #197.

Dan Bruns & Ray Pass, “Battle of the Titans: REPORT vs. TABULATE,”

Proceedings of the Twenty-Seventh Annual SAS Users Group
International Conference (2002), Paper #133-27.

Dan Bruns & Ray Pass, “To REPORT or to TABULATE?: That is the Question!,”

Proceedings of the Twenty-Ninth Annual SAS Users Group International
Conference (2004), Paper #122-29.

Diane Louise Rhodes, “Speaking Klingon: A Translator’s Guide to PROC

TABULATE,” Proceedings of the Thirtieth Annual SAS Users Group
International Conference (2005), Paper #258-30.

SAS Institute Inc., “The TABULATE Procedure,” in SAS® 9.1.3 Help and

Documentation, an HTML application that is installed as a component of
the SAS System and is accessible from the SAS main menu by clicking
“Help.”

SAS Institute Inc., “The TABULATE Procedure,” Chapter 52 of Base SAS® 9.1.3

Procedures Guide (2006), available online at
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/
base_proc_8977_new.pdf .

SAS Institute Inc., SAS Guide to TABULATE Processing, Second Edition (Cary,

NC: SAS Institute Inc., 1990).

Bob Virgile, “The Right Approach to Learning PROC TABULATE,” SESUG ‘97

Proceedings (1997), pp. 189-195.

Tom Winn, “Introduction to Using PROC TABULATE,”

• Proceedings of the Eighth Annual South-Central SAS Users’
Conference (1998), pp. 316-326,

• Proceedings of the New Mexico SAS Users Conference (2002),
• Proceedings of the Arkansas SAS Day (2005), pp. 14-33,
• Proceedings of the 2006 Wisconsin-Illinois SAS Users Conference .

Tom Winn, “Advanced Features of PROC TABULATE,”

• Proceedings of the Twenty-Fourth Annual SAS Users Group
International Conference (1999), Paper #153,

• Proceedings of the Ninth Annual South-Central SAS Users’
Conference (1999), pp. 243-248.

 19

Author Information
Tom Winn, Ph.D.
10906 Rustic Manor Lane
Austin, TX 78750

Telephone: 512 / 250-8610
E-Mail: TWIN504@aol.com

Note: SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ®indicates USA registration.

 20

	SESUG ‘97 Proceedings (1997), pp. 293-300; and
	Proceedings of the Twenty-Third Annual SAS Users Group Inter
	Author Information
	Tom Winn, Ph.D.�10906 Rustic Manor Lane�Austin, TX 78750
	Telephone: 512 / 250-8610
	E-Mail: TWIN504@aol.com

