
Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

Abstract

SAS has been around awhile and has worked so well that programs are still running
at companies while the person who wrote the program code (the code) has left the
company. When the code requires attention because of changes, ABENDS, or other
reasons, then someone not familiar with the code must be able to quickly make the
changes. Thoughtful people will usually want to understand the code before making
changes, but getting an understanding requires some time for reviewing the code.
Applying a process to evaluate the code can reduce the time needed to understand
the code before making changes. This paper introduces a checklist process that
when applied, reduces the time needed to understand unfamiliar and undocumented
code. The checklist can further be used as documentation of the code for later
reference.

Introduction

A program is written to provide an IT solution to a business problem or specific
requirement. When the program was originally written, there was a specific purpose
intended in support of the business. Changes in a program then should address
changes in the solution needed to solve the changed business problem.

Chances are that every SAS programmer will encounter a situation where a change
to SAS code is needed to programs not written by the programmer. In those cases,
the person needing to make changes will need to at least review the code prior to
making changes. In most cases, the SAS code to be modified has been in use for
many run cycles without problems, and the person that wrote it may be long gone
from the organization. In many cases, the code may not be documented.

For experienced SAS programmers, finding out what the code is really doing may
take only a reading of the code and making a few notes. Reading the code is only
part of the process. An understanding of what is going on in the code is needed
before making changes. A change made and not understood will be a problem
later.

A process of maintaining inherited code is presented here by use of a checklist
approach to documenting the program to identify where in the code changes are
needed. Simply put, this paper will define a way to get to know SAS code written by
others, and now must be maintained by you. You would need to know the code
before making modifications, addressing run errors, and other issues that come up
in changing environments. Making changes without a few key pieces of info can
break the code or cause unintended results.

 219

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

Maintaining SAS code is a process that can be controlled with a checklist. The
process will define what information is included on the checklist such as the location
of the code module, the purpose and other details that assist in documenting the
program.

Maintenance, Enhancements, and Changes

For the purpose of this paper, the terms “maintenance, changes, and
enhancements” are used interchangeably, but are indeed different actions.

To “maintain” is keep in working order as it currently exist. “Maintenance” then is
the process of keeping something working as is. Maintenance items include things
such as backing up code and data, updating because of operational or
environmental issues. Maintaining does not require changes to source code logic or
processing of data.

“Enhancements” are modifications that improve the solution. Enhancements usually
requires changes to source code logic such as selection or extraction criteria, input
sources, output and report requirements, functionality, and other changes that
modify the IT solution.

“Changes” are any material modifications to source code. Changes can be either
maintenance or enhancements.

The process of changing SAS code is the same as that used to change any
programming software code. The COBOL, ALC, JCL, and other ‘legacy’
programming languages have benefited from having to exist in strict production
environments with regards to maintenance and change control.

The Process of Maintaining SAS Code

The common steps when faced with making changes to an unfamiliar program are
to:

1. Print a listing of the code, or get the last run log
2. Read and make notes on the listing
3. Note where changes will be made in the code.
4. Make the changes
5. Test the code for syntax errors and correct if needed
6. Test the code against data and adjust as needed
7. Return the code to scheduled run mode
8. Monitor at least two runs of the program

 220

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

While this is a common approach, the effort needed to make the changes is often
duplicated when the code needs to be modified again, and the steps need to be
repeated. The information about the program that is gained can be forgotten if not
documented. To compensate for documentation, sometimes the marked up listing
is saved for later reference. This is OK for small 1-2 page listings, but for larger
listings and multiple programs, this can be inefficient.

One way to document the information learned is to develop a standard document
that can provide key info about the program to speed the process. The process for
making changes to SAS programs (or any other) includes knowing:

1. The purpose of the program.
2. The location of the program in the IT environment.

a. In mainframe JCL, the source code location can be a PDS or in-stream
as noted in the “SYSIN DD” within the EXEC SAS step

b. In distributed links, icons, and batch files, the source code location is
the “*.sas” filename

3. The input data/files, including record layouts or data elements used in the
program.

a. This varies by site, but can be identified by INFILE, FILENAME, and
FILE references within the SAS code.

4. The program logic and internal processing within DATA and PROC steps that
manipulate data.

5. The output reports, files and data.

Whenever a program is to be changed, the essential items needed are:

1. What changes are needed and where in the program to make them?
a. Changes in input data such as:

i. New record/data element definition changes to current data
sources.

ii. Input data from new data sources.
b. Changes in data element usage and handling.
c. Changes in output data.
d. Reports changes, new reports.
e. Eliminating functions and features no longer needed.
f. Adding new functions and features.

2. What is the impact on the program to be changed?
3. Difficulty of making the change?
4. Time need to implement the change?
5. Is the change permanent or temporary?

a. Temporary changes should be addressed by creating another program
or module.

 221

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

Use A Checklist To Document Changes

One way to document the code is to use a checklist. Checklists are used as a quality
control tool to ensure that items essential to a process is covered. Checklists are
dynamic within the organization, and should include items specific to a process. In
other words, checklists should be created that meets the needs of the people using
them.

An example use of the checklist is applied to the program below in figure 1. The
changes requested are to add processing for handling overpayments.
Overpayments will have a balance of less than zero. As the program is currently
designed, overpayments will not be properly accounted for, and will show up in the
‘BAD’ group as noted in the output report from PROC FREQ (figure 2).

* CHEKDATA reviews input and ensures that the
records are properly coded with the correct status
for the balance due.;

DATA CHEKDATA;
 INFILE “//DATA/ACCT/PAYMENTS.TXT”;
 INPUT STATUS $ 1.
 BALANCE 5.2;
 IF BALANCE = 0 THEN

BAL=‘0 $ DUE’;
 ELSE BAL=‘$$ DUE’;
RUN;

PROC FORMAT;
 VALUE $ST
 'F’=‘PAID'
 'D'='DUE'
 OTHER=’BAD';
RUN;

PROC FREQ;
 FORMAT STATUS $ST.;
 TABLE STATUS*BAL;
RUN;

Figure 1

 The FREQ Procedure

 Table of status by BAL

 status BAL
 Frequency|
 Percent |
 Row Pct |
 Col Pct |$$ due|0 $ due| Total
 =========+========+=
 DUE | 1 | 0 | 1
 =========+========+=
 PAID | 1 | 1 | 0
 | 33.33 | 0.00 |
 =========+========+=
 BAD | 1 | 1 | 0
 =========+========+=
 Total 2 1 3

 66.66 33.33 100.00

Figure 2

A quick reading of the code shows that the DATA step sets the BAL flag based on
the balance due, and the PROC FORMAT step creates formats for the status from
the cards read in. These will be the areas for changes.

 222

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

The first change will be in the DATA step. Logic in the form of an additional ELSE IF
statement is added to account for balances being less than zero, indicating an
overpayment.

Also, the status will need to be recoded for records with overpayments. Current
business rules require that the status be either ‘F’ or ‘D’. An additional status of ‘O’
has been added to the business rules. The program will be required to recode the
status based on the balance in this case.

The second change will be in the PROC FORMAT step. An addition VALUE is added
to $ST to format the new ‘O’ status.

After noting the areas of changes before making the changes, a checklist is used to
document the proposed changes. Beginning with the DATA step, the current logic
and changes are documented. The documentation continues for all areas that are
of concern regarding the program.

The headings on the checklist are:

• Program/module name
• Item
• Description
• Current
• Changed To

The checklist fields that are used are any items that is of importance to maintaining
the program. The list does not need to match the example, but should be adjusted
for organization. Consultants may want different info about the programs than
internal staff. For the example, info noted in the example:

1. Program/module location
2. SAS version
3. Program purpose and business rules
4. Input source(s) and important date elements
5. Output Report(s)
6. Output data/files
7. General processing logic and organization
8. Number of DATA steps
9. MACRO coding used?
10. Run conditions
11. Selection criteria
12. User FORMATs/INFORMATs
13. Error handling procedures

 223

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

After making the changes to the code as noted in figure 3, the program is now
ready for testing and execution. A review of the output report (figure 4) displays
the correct value of ‘overpaid’ instead of ‘bad’, which is the correct result.

An example checklist that documents the changes made to the code is included at
the end of this paper.

* CHEKDATA reviews input and ensures that the
records are properly coded with the correct status
for the balance due.;

DATA CHEKDATA;
 INFILE “//DATA/ACCT/PAYMENTS.TXT”;
 INPUT STATUS $ 1.
 BALANCE 5.2;
 IF BALANCE = 0 THEN

BAL=‘0 $ DUE’;

The FREQ Procedure

 Table of status by BAL

 status BAL
 Frequency|
 Percent |
 Row Pct |
 Col Pct |$$ due|0 $ due| Total
 =========+========+=
 DUE | 1 | 0 | 1
 =========+========+=
 PAID | 1 | 1 | 0
 =========+========+=
 OVERPAID | 1 | 1 | 0
 =========+========+=
 Total 2 1 3

 66.66 33.33 100

Figure 4

 ELSE IF BALANCE LT 0
THEN DO;

BAL=’OVER PAID’;
STATUS=’O’;

END;
 ELSE BAL=‘$$ DUE’;
CARDS;
F 0.00
D 3.00
F -3.00
;

PROC FORMAT;
 VALUE $ST
 'F’=‘PAID'
 'D'='DUE'

‘O’=’OVER PAID’
 OTHER=’BAD';
RUN;

PROC FREQ;
 FORMAT STATUS $ST.;
 TABLE STATUS*BAL;
RUN;

Figure 3

The Value of the Checklist

The value of using a checklist isn’t initially realized, as it could appear to add to the
process of making changes. However, the benefits are many. Documentation now
exists regarding info about the program for later reference. If a need for the
program to be changed later, we have a ready reference of what the program does,
major items within the program, and what was last updated. So the next time the
code needs updating, the checklist can be used as a reference, since it has the info
needed that is usually gained from reading and analyzing the code. Areas for

 224

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

changes are understood sooner, and changes can be made and tracked. The
amount of time needed to make changes is reduced, as well as providing estimates
of the work needed improved. The more programs, the better the value, as the
checklist can be used as an inventory of the programs in use.

Conclusion

The need to make changes to programs is always present in a vibrate organization.
Changes in business rules, laws, regulations, data, and other sources for change
require fast and accurate updates to programs. The checklist should be modified for
the shop in which it is used, with items of importance to the programmers within the
organization in which it is used. Hopefully, the use of checklists to document
programs will assist in the effort to maintain inherited SAS code, as well as provide
documentation for new code.

 225

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

Example Change Review Checklist for ‘CHEKDATA’
Item Description Current Changed To

1. Program/module location LAN //programs/sasjobs/acct/chekdata.sas
2. SAS version Version 8.1
3. Program purpose and business

rules

Checks the balances and
status of accounts in
accordance with current
business rules.

If the balance is 0 then the status
should be ‘F’ for fully paid. If the
balance is greater than 0 then the
status should be ‘D’ for balance due.

Added rule to check for over
payments if the balance is
less than 0 then the status
should be ‘O’ for over paid.

4. Input source(s) and important
date elelements

CARDS from data entry
process contains 2 fields

//DATA/ACCT/PAYMENTS.TXT”
Status $1., Balance 5.2

5. Output Report(s)

PROC FREQ at the end of the
program. Frequency and
counts of records by status
and balance

TABLE STATUS*BAL;

6. Output data/files

None created

7. General processing logic and
organization

Read CARDS.
Compare business rules for
balances to data.
Print frequency of status to
balance due report.

If Balance = 0 then
BAL=‘0 $ due’; else BAL=‘$$ due’;

Added “else if Balance LT 0
then do; BAL=’Over Paid’;
STATUS=’O’; END” before
last ‘else’ statement.

8. Number of DATA steps 1 at the start of the program DATA CHEKDATA

9. MACRO coding used? Not used

10. Run conditions Update cards with current
balances and status

11. Selection criteria All records processed

12. User FORMATs/INFORMATs $ST used for the status code 'F’=‘PAID', 'D'='DUE', OTHER=’BAD' Added ‘O’=’OVER PAID’

13. Error handling procedures 1. Check CARDS for input
2. Rerun job

 226

Maintaining Inherited SAS Code
Clarence Wm. Jackson, CSQA

Contact Info

Clarence Wm. Jackson, CSQA
Manager, Business Risk and Quality Assurance
City of Dallas, Communication and Information Services
1500 Marilla St, 4DS
Clarence.Jackson@DallasCityHall.com
CJac@compuserve.com (home)

This paper will be posted to my personal web site at http://ourworld.compuserve.com/homepages/CJac/list.htm after the
conclusion of the SCSUG 2005 conference.

- 227 -

mailto:Clarence.Jackson@DallasCityHall.com
mailto:CJac@compuserve.com
http://ourworld.compuserve.com/homepages/CJac/list.htm

	Abstract
	Introduction
	Maintenance, Enhancements, and Changes
	The Process of Maintaining SAS Code
	Use A Checklist To Document Changes
	The Value of the Checklist
	Conclusion
	Example Change Review Checklist for ‘CHEKDATA’
	Contact Info

