
New Functions in SAS®9 – A Sampling
Keith Cranford, Office of the Attorney General of Texas, Child Support Division

Abstract
SAS®9 provides many new functions, including many new character functions, a few new descriptive statistics functions,
and many other miscellaneous functions. This paper gives an overview for many of these functions, including syntax and
examples.

Character Functions
SAS®9 greatly expands the list of functions available for character manipulation. These include functions that search for
types of characters, join two or more strings together, compare strings, and much more. These new functions will be
presented in groups as they relate to one another. In most cases, the function syntax will be shown accompanied by an
example illustrating use of the function. However, due to the large number of functions, sometimes only the name and a
description are given, especially when there are a number of functions that work similarly.

Search Functions
Searching capabilities have been expanded through a series of functions that either checks for the existence of a type of
character (preceded by ANY) or that a certain type is not contained in the string (preceded by NOT). These are:

ANYALPHA NOTALPHA
ANYALNUM NOTALNUM
ANYDIGIT NOTDIGIT
ANYPUNCT NOTPUNCT
ANYSPACE NOTSPACE
ANYXDIGIT NOTXDIGIT
ANYPRINT NOTPRINT
ANYGRAPH NOTGRAPH
ANYNAME NOTNAME
ANYFIRST NOTFIRST
ANYCNTRL NOTCNTRL
ANYUPPER NOTUPPER
ANYLOWER NOTLOWER

Syntax:

 ANYALPHA(string <,start>)
 NOTALPHA(string <,start>)
 etc.

Each of these functions takes a character expression or variable as its first argument and a second optional argument
indicates at which position to start. The result is either the position of the first character that meets the specified type or a
value of zero if the type of character is not present. ANYALPHA searches for any alphabetic character, ANYALNUM
searches for any alphanumeric character, ANYDIGIT for any numeric character, ANYPUNCT for punctuation, and
ANYSPACE for any white space character (space, tab, line feed, etc.). Similarly, NOTALNUM searches for any character
that is not alphanumeric, NOTALPHA for those not alphabetic, NOTDIGIT for those not numeric, and NOTUPPER for
those not upper case alphabetic.

Example 1

 select string,
 anyalnum(string) as AlphaNum,
 anyalpha(string) as Alpha,
 anydigit(string) as Num,
 anypunct(string) as Punctuation,
 anyspace(string) as Space
 from test ;

 select string,
 notalnum(string) as Not_AlphaNum,
 notalpha(string) as Not_Alpha,
 notdigit(string) as Not_Num,
 notupper(string) as Not_Upper
 from test ;

 76

This results in the following output.

 string AlphaNum Alpha Num Punctuation Space
 ƒƒƒ
 abc 1 1 0 0 4
 123 1 0 1 0 4
 abc123 1 1 4 0 7
 ABC/123 1 1 5 4 8
 abc 123 1 1 5 0 4

and

 string Not_AlphaNum Not_Alpha Not_Num Not_Upper
 ƒƒ
 abc 4 4 1 1
 123 4 1 4 1
 abc123 7 4 1 1
 ABC/123 4 4 1 4
 abc 123 4 4 1 1

Note that all the strings begin with alphanumeric characters, but ‘123’ does not contain any alphabetic characters (hence
the zero for Alpha). There are no numeric characters in ‘abc’ and only ‘ABC/123’ contains punctuation. All the strings
have spaces either imbedded or at the end.

All of the strings have at least one non-alphanumeric (space is not considered alphanumeric). ‘123’ begins with a non-
alpha character, but the others do not have a non-alpha character until the fourth character, which is a space, number, or
punctuation. All but ‘123’ begin with a non-numeric character, whereas the space accounts for the first non-numeric
character in ‘123’. Finally, ‘ABC/123’ does not have a non-upper case character until the fourth position, while all others
begin with non-upper case characters. The other listed functions worked similarly.

Two new functions, FIND and FINDC, search for either a specific substring or specific characters in a string. They have
additional options to modify the substring such as ignoring case and to specify a position to begin the search.

Syntax:

 FIND(string,substring<,modifiers><,startpos>)
 FINDC(string,characters<,modifiers><,startpos>)

Example 2

 select name,
 find(name,'Sam','i') as FindSam_nocase,
 find(name,'Sam',5) as FindSam_start5,
 findc(name,'st','i') as Findc_ST
 from test ;

results in

 FindSam_ FindSam_
 name nocase start5 Findc_ST
 ƒƒ
 BOB JONES 0 0 9
 JaNe dOe 0 0 0
 SAM SPADE 1 0 1
 MEL O'DAY 0 0 0
 sally ride 0 0 1

The first FIND discovers ‘Sam’ in the first position for ‘SAM SPADE’, ignoring case. The other modifier is ‘t’ to trim trailing
blanks in the string and substring. The second FIND does not find any ‘Sam’ starting the search in the fifth position. The
FINDC function searches for occurrences of ‘s’ or ‘t’ ignoring case. This occurs in the ninth position in ‘BOB JONES’ and
in the first position in ‘SAM SPADE’ and ‘sally ride’.

 77

Concatenation
There is a new series of concatenation functions and call routines. These function and routines will generally be faster
than using other functions or the concatenation operator. These handle blanks in various ways or insert separators. Each
of the functions, except for CAT, has a corresponding call routine which works in a similar manner. The arguments for the
functions are lists of strings to be concatenated, with CATX having an additional argument of the separator character.
Although the following example shows concatenating two strings, the functions can concatenate any number of strings.

Syntax:

 CAT(T string-1 <, ... string-n>)
 CATS(string-1 <, ... string-n>)
 CATT(T string-1 <, ... string-n>)
 CATX(separator, string-1 <, ...string-n>)
 CALL CATS(result <, string-1, ...string-n>);
 CALL CATT(T result <, string-1, ...string-n>);
 CALL CATX(separator, result<, string-1 , ...>string-n);

Example 3

 select string1, string2,
 cat(string1, string2) as CAT,
 cats(string1, string2) as CATS,
 catt(string1, string2) as CATT,
 catx(' ', string1, string2) as CATX
 from test ;

results in

string1 string2 CAT CATS CATT CATX
 ƒƒ
 abc 123 abc123 abc123 abc123 abc 123
 ab 23 ab 23 ab23 ab 23 ab 23
 bc 12 bc12 bc12 bc12 bc 12
 abc 23 abc 23 abc23 abc 23 abc 23
 ab 12 ab 12 ab12 ab12 ab 12

CAT concatenates strings without removing blanks. Notice the leading blanks as well as blanks in the middle of the
resulting strings. CATS concatenates and removes leading and trailing blanks. CATT removes only trailing blanks. Notice
the leading blank in ‘ bc12’, and the blank in ‘ab 23’ is from the leading blank in ‘ 23’. Lastly, CATX removes leading and
trailing blanks, but allows you to specify a separator character. In this example, a space is used for the separator.

Trimming Blanks
The STRIP function removes both leading and trailing blanks from a string. This can be used in place of the combination
of TRIM and LEFT.

Syntax

 STRIP(string)

Example 4

 select string1, string2,
 strip(string1)||strip(string2) as strip
 from test ;

results in

 string1 string2 strip
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 abc 123 abc123
 ab 23 ab23
 bc 12 bc12
 abc 23 abc23
 ab 12 ab12

 78

Of course, the result here is the same as the previous example of the CATS function.

String Comparisons
There are several new functions used for comparing strings. The COMPARE function returns the position of the left-most
character by which two strings differ, or zero if there is no difference. There is an optional argument that modifies the
comparison. The modifiers specify whether to trim leading blanks, ignore case, or truncate the comparison to the shorter
of the two strings. Also, the functions COMPGED and COMPLEV and the routine CALL COMPCOST compare strings
using more complicated distance measures.

Syntax

 COMPARE(string-1, string-2<,modifiers>)

Example 5

 select string1, string3,
 compare(string1, string3) as COMPARE1,
 compare(string1, string3, 'il') as COMPARE2
 from test ;

results in

 string1 string3 COMPARE1 COMPARE2
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 abc abc 0 0
 ab a 2 2
 bc BC -1 0
 abc def -1 -1
 ab ba -1 -1

Notice that the first set compare exactly, so the values of COMPARE1 and COMPARE2 are zero. The comparison of the
second set indicates that the second character is the first position there is a difference. For the third set, the first compare
indicates a difference in the first position and the negative indicates that the first string precedes the second in a sort
sequence, but the second compare matches since the modifiers ignore case and trim the leading blanks. Finally, the last
two sets do not compare and the first string precedes the second in a sort sequence.

Scan
There is a new scan function, SCANQ, which returns the nth word from a character expression, but ignores delimiters that
are enclosed in quotation marks. The default set of delimiters for SCANQ are white space characters, such as blank, tab,
and carriage return, which is different from the default list for SCAN. Also, SCANQ does not generate a note in the log if
the value of the word count is zero, as SCAN does. Additionally, there are new routines CALL SCAN and CALL SCANQ,
which correspond to SCAN and SCANQ but return the position and length of the word.

Syntax

 SCANQ(string, n <,delimiter(s)>)
 CALL SCANQ(string, n, position, length <,delimiters>);

Example 6

 select string,
 scan(string,2) as SCAN,
 scanq(string,2) as SCANQ,
 scan(string,0) as SCAN0,
 scanq(string,0) as SCANQ0
 from test ;

results in the following output

string SCAN SCANQ SCAN0 SCANQ0
 ƒƒ
 abc
 123
 abc123
 ABC/123 123

 79

 abc 123 123 123

and the following log.

699 select string,
700 scan(string,2) as SCAN,
701 scanq(string,2) as SCANQ,
702 scan(string,0) as SCAN0,
703 scanq(string,0) as SCANQ0
704 from test ;
NOTE: Invalid argument 2 to function SCAN. Missing values may be
 generated.

SCAN uses ‘/’ as one of its default delimiter, while SCANQ does not. Also, SCANQ does not generate the note in the log
when the word count is zero.

Length
SAS®9 has three new length functions. LENGTHC returns the length of a character string, including trailing blanks;
LENGTHM returns the amount of memory in bytes that is allocated to a character string; and LENGTHN returns the length
of a non-blank character string, excluding trailing blanks, and returns 0 for a blank character string. This last characteristic
distinguishes LENGTHN from LENGTH.

Syntax

 LENGTHC(string)
 LENGTHM(string)
 LENGTHN(string)

Example 7

 select string4,
 length(string4) as LEN,
 lengthc(string4) as LENC,
 lengthn(string4) as LENN
 from test ;

results in

 string4 LEN LENC LENN
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 abc 3 3 3
 bc 3 3 3
 ab 2 3 2
 1 3 0
 a c 3 3 3

Notice that the results are the same if the string contains leading blanks, but can vary if the string contains trailing blanks.
Also, the blank string results in a 1 for LENGTH, but a 0 for LENGTHN. Since the variable string4 has a length of 3, the
result of LENGTHC will always be 3.

Count
There are two new functions that count the occurrences of a specific substring or specific characters in a string. COUNT
looks for a specific substring, while COUNTC searches for specific characters. An optional argument specifies whether to
ignore case, trim trailing blanks, or for COUNTC count those characters that are not in the list of specified characters.

Syntax

 COUNT(string,substring<,modifiers>)
 COUNTC(string,characters<,modifiers>)

 80

Example 8

 select name,
 count(name,'ne') as COUNT,
 count(name,'ne','i') as COUNTcase,
 countc(name,'aeiou','i') as COUNTC,
 countc(name,'aeiou','ivt') as COUNTCnot,
 countc(compress(name),'aeiou','ivt') as COUNTCnot2
 from test ;

results in

 name COUNT COUNTcase COUNTC COUNTCnot COUNTCnot2
 ƒƒ
 BOB JONES 0 1 3 6 5
 JaNe dOe 0 1 4 4 3
 SAM SPADE 0 0 3 6 5
 MEL O'DAY 0 0 3 6 5
 sally ride 0 0 3 7 6

Without the ‘i’ modifier the case must match, so COUNT does not recognize ‘NE’ or ‘Ne’ as ‘ne’. The first COUNTC counts
the vowels which for ‘BOB JONES’ is 3, and the second COUNTC counts the non-vowels including the blank which is 6.
The last COUNTC does not count the blank since the COMPRESS function eliminates the blank between the names,
resulting in a consonant count.

Proper Names
A nifty function for proper names, PROPCASE, has also been added in SAS®9. This function capitalizes the first letter of
each word in a character expression. This works for most names, except for those names that have multiple
capitalizations such as those that begin with Mc.

Syntax

 PROPCASE(argument <,delimiter(s)>)

Example 9

 select name, propcase(name) as Proper
 from test ;

results in

 name Proper
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 BOB JONES Bob Jones
 JaNe dOe Jane Doe
 SAM SPADE Sam Spade
 MEL O'DAY Mel O'day
 sally ride Sally Ride

This works well, except for Mel O’day. Specifying “ ‘” as the delimiters would accommodate this case, but not “Mc” or
“Mac” names. Additional logic would need to be included to handle these special cases.

Descriptive Statistics Functions
SAS®9 has also added a few descriptive statistics functions. The extensions are not nearly as great as the character
functions, but they are still useful.

Central Tendency and Variation
There are three new functions for central tendency, MEDIAN for the median, GEOMEAN for the geometric mean, and
HARMEAN for the harmonic mean. Additionally, there are also three new functions for spread or variation, IQR for the
interquartile range, MAD for median absolute deviation from the median, and RMS for root mean square. These functions
all take a list of variables or values as their arguments.

 81

Syntax

MEDIAN(value1<, value2, ...>)
GEOMEAN(argument<,argument,...>)
HARMEAN(argument<,argument,...>)
IQR(value-1 <, value-2...>)
MAD(value-1 <, value-2...>)
RMS(argument<,argument,...>)

Example 10

 select x1, x2, x3, x4, x5,
 median(x1,x2,x3,x4,x5) as Median,
 geomean(x1,x2,x3,x4,x5) as Geometric format=4.1,
 harmean(x1,x2,x3,x4,x5) as Harmonic format=4.1
 from test2 ;
 select x1, x2, x3, x4, x5,
 iqr(x1,x2,x3,x4,x5) as IQR,
 mad(x1,x2,x3,x4,x5) as MAD format=5.2,
 rms(x1,x2,x3,x4,x5) as RMS format=5.2
 from test2 ;

results in

 x1 x2 x3 x4 x5 Median Geometric Harmonic
 ƒƒ
 1 2 4 5 6 4 3.0 2.4
 2 5 6 7 2 5 3.8 3.3
 4 8 3 2 4 4 3.8 3.4

and

 x1 x2 x3 x4 x5 IQR MAD RMS
 ƒƒƒ
 1 2 4 5 6 3 2.00 4.05
 2 5 6 7 2 4 2.00 4.86
 4 8 3 2 4 1 1.00 4.67

You can see that the median of the first observation is 4. You will have to consult your favorite statistics book or the SAS
documentation for the formulas for geometric and harmonic means. The first quartile for the first observation is 2, and the
third quartile is 5, so the interquartile range is 5 -2 = 3. The absolute deviations from the median are 3, 2, 0, 1, and 2, so
the MAD is 2. The mean of the squares for the first observation is 16.4, so the RMS is 4.05.

Percentiles and Extreme Values
Another set of descriptive statistics functions works with percentiles and extreme values. The PCTL function returns the
specified percentile from a list of numeric expressions. You can also specify the percentile definition as in PROC
UNIVARIATE by adding a suffix to the function name, such as PCTL5 (which is the default). Two extreme value functions,
SMALLEST and LARGEST, return the kth smallest or largest value in a list of numeric expressions. Another function,
ORDINAL, although not new in SAS®9 but fits into this theme, returns the kth ordered value.

Syntax

SMALLEST (k, value-1<, value-2 ...>)
LARGEST (k, value-1<, value-2 ...>)
PCTL<n>(percentage, value1<, value2, ...>)
ORDINAL(count,argument,argument,...)

Example 11

 select x1, x2, x3, x4, x5,
 smallest(2,x1,x2,x3,x4,x5) as SMALL2nd,
 largest(2,x1,x2,x3,x4,x5) as LARGE2nd,
 pctl(25,x1,x2,x3,x4,x5) as P25 format=5.1,
 ordinal(2,x1,x2,x3,x4,x5) as ORDER2,
 ordinal(4,x1,x2,x3,x4,x5) as ORDER4
 from test2 ;

 82

results in

 x1 x2 x3 x4 x5 SMALL2nd LARGE2nd P25 ORDER2 ORDER4
 ƒƒ
 1 2 4 5 6 2 5 2.0 2 5
 2 5 6 7 2 2 6 2.0 2 6
 4 8 3 2 4 3 4 3.0 3 4

The second smallest value for the first observation is 2, the second largest is 5, and the 25th percentile is 2. The second
ordinal value is 2 and the fourth ordinal value is 5, which also correspond to the second smallest and second largest
values.

Other Functions
There are other new functions that are of special use. These include functions used with the macro facility, and date,
truncation, and math functions.

Date
There is a new date function, WEEK, that returns the week value from a date or datetime value. There is a second
argument to specify the definition of the first week of the year.

Syntax

 WEEK(<sas_date>, <descriptor>)

Example 12

 select date,
 week(date) as WEEK,
 week(date,'W') as WEEKW,
 week(date,'V') as WEEKV,
 week(date,'U') as WEEKU
 from test3 ;

results in

 date WEEK WEEKW WEEKV WEEKU
 ƒƒƒ
 01JAN2005 0 0 53 0
 17JUL1972 29 29 29 29
 15DEC1993 50 50 50 50
 31DEC1995 53 52 52 53
 06JUN1944 23 23 23 23

For 01Jan2005, it may be considered in the first week of the 2005 or the last week of 2004, depending on the definition.

Truncation
SAS®9 provides several new truncation functions and a modification to the previous ROUND function. Rounding on a
computer can be a bit tricky due to the precision of the decimal values, and the difference between decimal (what we do in
our head or on paper) and binary (what the computer does) arithmetic must be considered. The ROUND function, as well
as ROUNDE, INT, CEIL and FLOOR, tries to mimic decimal arithmetic, so it makes some adjustments. SAS now provides
other functions, ROUNDZ, INTZ, CEILZ and FLOORZ, which do not make these adjustments. ROUND now defaults to a
rounding unit of one, if one is not provided. When a value is half-way between rounded values, ROUNDE rounds to the
even value, so could be up or down; ROUND always rounds up in this case.

Syntax

ROUNDE (argument <,rounding-unit>)
ROUNDZ (argument <,rounding-unit>)

 83

Example 13

 select x,
 round(x) s ROUND, a
 round(x,.1) as ROUND1,
 rounde(x,.1) as ROUNDE
 from test3 ;

results in

 x ROUND ROUND1 ROUNDE
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 3.23 3 3.2 3.2
 5.46 5 5.5 5.5
 0.5 1 0.5 0.5
 4.25 4 4.3 4.2
 5.35 5 5.4 5.4

Notice the difference in the fourth observation where ROUND rounds to 4.3 and ROUNDE rounds to 4.2 (since 2 is even).

Coalesce
There are two new coalesce functions, COALESCE and COALESCEC, which return the first non-missing value from a list
of arguments. The first is a numeric version, while the second requires character arguments.

Syntax

COALESCE(argument-1<..., argument-n>)
COALESCEC(argument-1<..., argument-n>)

Example 14

 select x, y,
 coalesce(x/y,0) as coal,
 varname,
 coalescec(varname,'N/A') as char_coal length=3
 from test3 ;

results in

 x y coal varname char_coal
 ƒƒƒ
 3.23 5.4333 0.594482 b23 b23
 5.46 6.532 0.835885 23b 23b
 0.5 . 0 _bc _bc
 4.25 0.5 8.5 bc% bc%
 5.35 1.234 4.335494 N/A

Notice that the value of COAL is 0 for the third observation, since x/y is missing. Similarly, CHAR_COAL is ‘N/A’, since
varname is missing for the last observation.

Zip Codes
A new function, ZIPCITY, returns the name of a city, given a zip code value. You must have the data set
SASHELP.ZIPCODE available for this function to work.

Syntax

ZIPCITY(zip-code)

Example 15

 select zip,
 zipcity(zip) as city length=20
 from test3 ;

results in

 84

 zip city
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 78746 Austin, TX
 10020 New York, NY
 50020 Anita, IA
 44230 Doylestown, OH
 99110 Clayton, WA

Cool, huh!

Valid Variable Names
The function NVALID checks the validity of a character string to be used as a variable name. The function returns a value
of 1 if the string is a valid variable name, and a 0, otherwise.

Syntax

NVALID(string<,validvarname>)

Example 16

 select varname,
 nvalid(varname) as valid
 from test3 ;

results in

 varname valid
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 b23 1
 23b 0
 _bc 1
 bc% 0
 0

In this example, b23 and _bc are valid variable names, but the other values begin with a numeric value, contain a special
character other than underscore, or are blank.

Choose
Two new functions, CHOOSEC and CHOOSEN, select a specified item from a list of arguments. The first argument is the
item number to be selected, and the rest are items to be selected. CHOOSEC returns character value, while CHOOSEN
returns a numeric value.

Syntax

CHOOSEC (index-expression, selection-1 <,...selection-n>)
CHOOSEN (index-expression, selection-1 <,...selection-n>)

Example 17

 select x, y, int(uniform(0)*2)+1 as select,
 choosen(calculated select, x,y) as selection
 from test3 ;

results in

 x y select selection
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 3.23 5.4333 1 3.23
 5.46 6.532 1 5.46
 0.5 . 1 0.5
 4.25 0.5 2 0.5
 5.35 1.234 2 1.234

 85

This example randomly chooses from the variables x and y.

Macro
The CALL SYMPUTX assigns a macro variable removing all leading and trailing blanks. This new routine differs from the
CALL SYMPUT routine only in its handling of blanks. There are also three functions, SYMEXIST, SYMGLOBL and
SYMLOCAL, which check the existence of a macro variable, or whether the macro variable is global or local.

Syntax

CALL SYMPUTX(macro-variable, value <,symbol-table>);
SYMEXIST (argument)
SYMGLOBL (argument)
SYMLOCAL (argument)

Example 18

data _null_ ;
 set test(obs=1) ;
 call symput('x1',name) ;
 call symputx('x2',name) ;
run ;
%put &x1:&x2: ;

data _null_ ;
 x=symexist('x1') ;
 y=symexist('y1') ;
 globalx=symglobl('x1') ;
 localx=symlocal('x1') ;
 put x= y= ;
 put globalx= localx= ;
run ;

produces in the log

100
101 data _null_ ;
102 set test(obs=1) ;
103 call symput('x1',name) ;
104 call symputx('x2',name) ;
105 run ;

NOTE: There were 1 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

106 %put &x1:&x2: ;
BOB JONES :BOB JONES:

and

107
108 data _null_ ;
109 x=symexist('x1') ;
110 y=symexist('y1') ;
111 globalx=symglobl('x1') ;
112 localx=symlocal('x1') ;
113 put x= y= ;
114 put globalx= localx= ;
115 run ;

 86

x=1 y=0
globalx=1 localx=0

CALL SYMPUT assigns a macro variable value containing trailing blanks, while CALL SYMPUTX does not. In the second
data step, the macro variable x1 exists (SYMEXIST function returns a 1) but y1 does not. Also, x1 is a global, and not
local, macro variable.

Create Directories
SAS®9 allows the creation of directories with the DCREATE function. Simply specify the subdirectory and the parent
directory.

Syntax

new-directory=DCREATE(directory-name<,parent-directory>)

Example 19

data _null_ ;
 x=dcreate('scsug05','c:\temp') ;
 put x= ;
run ;

results in the log

157 data _null_ ;
158 x=dcreate('scsug05','c:\temp') ;
159 put x= ;
160 run ;

x=c:\temp\scsug05

This creates the subdirectory scsug05 under the parent directory c:\temp.

Logic Functions
Two new functions, IFC and IFN, return either character or numerical expressions based on a conditional expression.
These could be used in place of IF/ELSE logic and could be used in a WHERE statement.

Syntax

IFC(logical-expression, value-returned-when-true, value-returned-when-false
 <,value-returned-when-missing>)
IFN(logical-expression, value-returned-when-true, value-returned-when-false
 <,value-returned-when-missing>)

Example 20

data check ;
 set test3 ;
 st_size= ifc(zipstate(zip) in ('TX','NY','CA'),'Big','Little') ;
 city= zipcity(zip) ;
run ;

A listing of the data

 Obs city zip st_size

 1 Austin, TX 78746 Big
 2 New York, NY 10020 Big
 3 Anita, IA 50020 Little
 4 Doylestown, OH 44230 Little
 5 Clayton, WA 99110 Little

The first two cities are in Big states, while the last three are in Little states.

 87

Formats
Two new functions, VVALUE and VVALUEX, return the formatted value of a variable or a character expression. These
functions have similar functionality to the PUT statement, but apply the current format.

Syntax

VVALUE(var)
VVALUEX(expression)

Example 21

data check ;
 set test3 ;
 length newdate newdate2 $ 9 ;
 newdate=vvalue(date) ;
 newdate2=vvaluex('da'||'te') ;
run ;

A listing of this data is

 Obs date newdate newdate2

 1 01/01/2005 01JAN2005 01JAN2005
 2 07/17/1972 17JUL1972 17JUL1972
 3 12/15/1993 15DEC1993 15DEC1993
 4 12/31/1995 31DEC1995 31DEC1995
 5 06/06/1944 06JUN1944 06JUN1944

The DATE variable had a DATE9. format, and this is the format VVALUE and VVALUEX used for the new variables. Note
that VVALUE requires a variable name, while VVALUEX can take an expression.

Setting values to missing
There is a new convenient way to set a list of variables to missing through the CALL MISSING routine. This can be used
in place of a DO loop setting the variables to missing.

Syntax

CALL MISSING(varname1<, varname2, ...>);

Example 22

data check2 ;
 set test3 ;
 if _n_=1 then
 call missing(n, sumx, sumy) ;
 if n>2 then call missing(n, sumx, sumy) ;
 n + 1 ;
 sumx + x ;
 sumy + y ;
run ;

A listing of the data is

 Obs n x sumx y sumy

 1 1 3.23 3.23 5.4333 5.4333
 2 2 5.46 8.69 6.5320 11.9653
 3 3 0.50 9.19 . 11.9653
 4 1 4.25 4.25 0.5000 0.5000
 5 2 5.35 9.60 1.2340 1.7340

The variables n, sumx, and sumy are set to missing the first time through the DATA step, and then again once n is greater
than 2.

 88

Conclusion
This paper was not intended to be either an exhaustive list or to provide a full explanation of the new functions in SAS®9.
However, it is hoped that seeing the usefulness of some of these functions will spur you to check them out in the SAS
documentation. Full documentation of these functions and routines are available in the Online Doc for SAS®9. Also, most
of these functions and routines are described in more detail in SAS Functions by Example, by Ron Cody.

References
Cody, Ron, SAS Functions by Example, 2004, SAS Institute, Inc., Cary, NC.

Contact information:
Keith Cranford
keith.cranford@cs.oag.state.tx.us

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

 89

mailto:keith.cranford@cs.oag.state.tx.us

	New Functions in SAS®9 – A Sampling
	Character Functions
	Search Functions
	Concatenation
	Trimming Blanks
	String Comparisons
	Scan
	Length
	Count
	Proper Names

	Descriptive Statistics Functions
	Central Tendency and Variation
	Percentiles and Extreme Values

	Other Functions
	Date
	Truncation
	Coalesce
	Zip Codes
	Valid Variable Names
	Choose
	Macro
	Create Directories
	Logic Functions
	Formats
	Setting values to missing

	Conclusion
	References

