
M acros Made Simple Introduction:
 Why Use Macros:

 Tom Mannigel There are two very
simple and important
reasons to learn use
Macros to write your SAS®
programs. Using Macros will
allow you to develop your
programs faster and easier.

 Insyst Inc.
 12800 Brair Forest #163
 Houston, Texas 77077
 (713) 975-8734
 tmannigel@aol.com

 This tutorial is
designed to show you how to
use Macro Processing to
increase your programming
proficiency the fast and
easy way. To quickly teach
SAS® programmers/users how
to profit from Macro
Processing, I have
identified the most
valueable features of Macro
Processing by applying the
Perot Principle (80/20
rule) to my work of over 7
years.

 These are the reasons
you'll program faster:

 1. There's less to write.
 2. Code can be reused.
 3. Code is easier to
 change.

 Who should use Macro
Processing?
Everyone from the beginning
programmer/user to the SAS®
expert should use Macros.

Using Macro Processing for
source substitution. Alfred Perot an

Italian economist back in
the 1895 divide activities
to two types: the vital few
versus the trivial many.
What he found was that in
any activity: 20% of those
activities account for 80%
of the value. For example
20% of the customer of most
company provide 80% of the
business. I have identified
the 20% of the Macro
Processing that will give
80% of the value by
categorizes Macro
applications into easily
understandable yet powerful
types. Source Substitution
using Macro Variables,
Macro Statements and Macro
Loops are the three types
that will be discussed.
Each of these three types
are explained via
meaningful and useful
examples of how they can be
used as potent programming
tools.

To appreciate the power of
Macros we must first
understand how Macros are
processed by the SAS
system. Take a look at
Figure 1 and note how the
source you generated is
processed. First it is
checked for Macro symbols
such as & %. If the source
has these symbols the SAS®
system pass it to the Macro
Facility where Macro
variables and statements
are substituted and then
the new source is processed
by SAS®.Its important to
note that the program that
actual runs has no macro
symbols. It looks just like
regular SAS code.

 271

 Results after word scanner
and Macro Facility.

 Figure 1. The Word Scanner
nd Macro Facility.

Proc print
a

 Data=library.data94;
 Title1 "American Report";

SAS Macros

Program

Word Scanner Macro
Facility

RUN

 Title2 " Year:1994";

Note the need for double
quotations in the second
title if single quotations
were used then the &YR
would not be resolved.

 Now lets take a look at a
more powerful example of
source substitution with
Macro Variables. In this
example(see Figure 3) we
are going to use SAS®
languages powerful "by"
process capabilities, First
we input the data with an
infile and save the data in
a SAS® library. Then use
Proc Means to sum costs for
12 months for our company
by division and department
and final print the
results. Figure 3 shows how
we do that using two Macro
Variables and also shows
the results after the Macro
Facility. Now the let's say
we choose to do the same
calculation and report
except with a different
company organization. In
our new case we use region
districts. To create this
report all we do is simple
change the %Let BY
Statement to "%Let
BY=company region
district;" and our work is
done.

Source Substitution using
Macro Variables:

Now let's begin with a
simple but powerful example
to see how Macro Variables
work. In this example we
are going to create a Macro
Variable called &YR and use
that variable to substitute
for the year 94. Figure 2
shows the source we create
with the Macro variables in
it and shows the source
after a pass through the
Macro facility . Note the
source that is pass to the
SAS processor looks exactly
as the source we would
create but wherever &YR
was found we now have 94.
Note the Macro Variable is
at the beginning of the
program for easy changing.

Figure 2. An example of
Source Substitution with
Macro Variables. Figure 3. More source

substitute using Macro
variables

%Let yr=94;
Proc Print
Data=library.data&yr; %Let Yr=94;

 %Let By=company division
depart;
Libname library 'user
Library';

 Title1 'American Report;
 Title2 " Year:19&yr";

 272

Data Library.data&Yr;
Infile 'c:/company.dat';
Input year company division
 region depart
 district cost1-cost12;
 if year=&Yr;
Proc Sort;
 by &By;
Proc Means;
 by &By;
 var cost1-cost12;
 output sum= out=out;
Proc Print;
 by &By;
 sumby company;
 Title "Data for 19&Yr";

 Results after Word Scanner
and Macro Facility.

Data Library.Data94;
Infile 'c:\company.dat';
Input year company division
 region depart
 district cost1-cost12;
If Year=94;
Proc Sort;
 By company division
depart;
Proc Means;
 By company division
 depart;
 Var cost1-cost12;
 Output Sum= Out=Out;

 Proc Print;
 By company division
depart;
 Sumby company ;
 Title 'Data for 94';

Source Substitution Using
Macro Statements.

Now lets say we want to
create a report for 93 and
94 for this we move to our
next application type and
that is Macro Statements.
Lets create a Macro
Statements for our example
in Figure 3. Figure 4 shows
the results. Note the form
:A %Macro with a "name" and

the Macro is concluded with
a %mend;. Then the Macro is
called with a %"name". Now
Figure 4 shows the above
example except in macroized
form.

Figure 4 Source
Substitution using Macro
Statements:

%Macro inputum;
Data library.data&Yr;
Infile 'c:/company.dat';
Input year company division
 region depart
 district
 Cost1-cost12 ;
 If year=&Yr;
 %mend;
%Macro sortsum;
 Proc Sort;
 by &By;
 Proc Means;
 by &By;
 Var cost1-cost12;
 output sum= out=out;
%mend ;

%Macro printum;
 Proc Print data=out;
 by &By;
 sumby company;
 Title "Data for 19&Yr";
%mend;

%Let Yr=94;
%Let By=company division
 depart;
%inputum
%sortum
%printum
%Let Yr=93;
%inputum
%sortum
%printum

After word scanner and
Macro facility the results
are exactly the same as
Figure 3 except we now have
two copies one for 93 and
one for 94.

 273

Note how compact and
concise the code is

Macro %Do Loops.

and how easily changes can
be made.

 We are going to use
Macro %Do loops to reduce
the lines of code. Figure 6
shows marcoized form using
Macro %Do loops. Note how
compact this form is.

 Passing Macro Variables to
Macro Statements.

 Figure 5 illustrates how
to pass the Macro Variables
to Macro Statement. Note
there is no semicolon at
the end of the Macro Call .

Figure 6. Using Macro %DO
loops.
 %Macro Putit;
 %Do I=1 %To 6;

 profit&I=rev&I-
Figure 5 Three ways to pass
Macro Variables to Macro
Statements.

 staff&I-cost&I;
 %End;
%Mend;

 %Putit
after the word scanner the Positional:
above resolves to %Macro inputum(yr);

Data library.data&yr; profit1=rev1-staff1-cost1;
Infile 'c:/company.dat'; profit2=rev2-staff2-cost2;
Input year company division profit3=rev3-staff3-cost3;
 region depart profit4=rev4-staff4-cost4;
 district cost1-cost12; profit5=rev5-staff5-cost5;
 profit6=rev6-staff6-cost6;

For the above example we
could have been used an
array statement and a
regular SAS do loop but
remember regular SAS do
loops can be used only in a
data step.

 If year=&yr;
 %mend;
 %inputum(94)

Keyword:
%Macro sortsum(by=);
 Proc Sort; by &by;

 proc means;by &by;
The follow shows how to use
a %Do for multiple data
steps.

 var cost1-cost12;
 output sum= out=out;
 %mend;

Figure 7 Using %Do loops
outside a data step.

%sortum(by=company division
depart)
 %Macro Print23;
Default: %Do I=93 %to 94;
%Macro printum(yr=94, Proc Print data=data&yr;
 by=company division Title "Data for 19&yr";
 depart); %end;
 Proc Print data=out; %mend;
 by &by; %print23
 sumby company; Results after the Word

Scanner and Macro Facility: Title "Data for 19&yr";

%printum() *Using Default; Proc Print data=data93;
%printum(yr=93) *Override; Title "Data for 1993";
 Proc Print data=data94;

 Title "Data for 1994";

 274

 275

%Do loops can also be used
to loop Macro Statements.
Figure 8 is how we put it
all together to show the
real power of SAS Macro
Processing.

Figure 8 Putting it all
together.
%Printyr(Begin,End);
%Do I= &Begin %To &End;
 %Inputum(&I)
 %Sortsum(Yr=&I)
 %Printum(Yr=&I,By=company
 depart division)
%End;
%Mend ;
%Printyr(70,94)

In this example we’ve
created reports for 14
years of data and over 400
lines of code. Imagine how
difficult it would be to
change the unmacroized code
and how easy the above
example is to change.

Rules for Debugging SAS
MACROS :
1. Debug a Macro by looking
at the Macro output on the
log .
 1a. For Macro variables
 use Options symbolgen.
 1b. For Macro Statements
 use Options mprint.
2. Make certain you called
the Macro?
3. Are Macro variables
correctly referenced?
4. %DO loops can not be in
open code.
5. If the above does not
solve the problem check
your SAS® Macro manual.

