
Proc SQL – A Primer for SAS Programmers
Jimmy DeFoor

Citi Card
Irving, Texas

The Structured Query Language (SQL) has a very
different syntax and, often, a very different method
of creating the desired results than the SAS Data
Step and the SAS procedures. Only a very
thorough manual, such as the SAS Guide to the
Proc SQL Procedure, could even begin to
describe well the complete syntax and the full
capabilities of Proc SQL. Still, there is value in
presenting some of the simpler capabilities of Proc
SQL, especially those that are more efficient or
easier to code than the SAS Data Step. The
reasons: 1) the tables created by Proc SQL can be
read by the SAS Data Step or SAS procedures, so
the SAS programmer can choose to use only
some SQL code without impacting the rest of his

or her SAS code; 2) understanding Proc SQL can
aid the programmer in understanding other DB2,
T-SQL, PL-SQL and other SQL code.

This paper will assume that the reader is a
capable SAS programmer, but is fairly uninformed
about Proc SQL. It will use familiar coding
techniques in the SAS Data Step and SAS
procedures to teach the syntax and function of
Proc SQL as it shows some of the unique
capabilities of the Proc SQL.

The first example involves creating a simple output
listing in Proc SQL vs Proc Print.

Creating an Output Listing with Proc SQL vs a Data Step

Filename out ‘C’:\temp.txt’ new;
/* assign output to a file */
Proc Printo print=out;
Run;
/* print contents of variables */
Proc SQL;
 Select montonic() as obs,
 a.State, a.City as Town,
 a.Store, a.Year,
 a.Month, a.Sales,
 a.VarCost, a.FixedCost
 from Datamart.Measures a;
 quit;

Filename out ‘C’:\temp.txt’ new;
/* assign output to a file */
Proc Printo print=out;
Run;
/* print contents of variables */
Proc Print data = Datamart.Measures;
 Label City = ‘Town’;
 Var State City Store
 Year Month Sales
 VarCost FixedCost;
Run;

Since Proc SQL is a procedure, it requires a Proc
Printto to be used before it is executed if the listing
output is to be directed to a text file instead of the
default list file SAS uses. Proc Print has the same
requirement

Proc Print generates observation numbers
automatically; Proc SQL doesn’t. Only by adding
the little documented function of monotonic can
observation numbers be generated. Notice the
‘as’ reference that follows the function. An ‘as’
reference uses the name that follows to name the
result of the function. It can also be used to
rename variables: here, it is used to rename City
to Town. A Label statement in the Proc Print
example accomplishes the same result.

Compare the syntax of the Proc Print to the syntax
of Proc SQL. Commas separate the variables
listed in the Select statement of Proc SQL. The
Quit statement is the terminator of Proc SQL, not
the Run statement. The semi-colon does not end
every instruction, as it does in usual SAS code;
instead, it ends only the SQL Select statement,
which is really the only statement in SQL

When SAS encounters the semi-colon that ends
the Select statement, it passes all of the preceding
SQL code to the SQL compiler. The compiler
separates the Select statement into individual SQL
clauses as it encounters such key words as From,
Where, and On. It then evaluates the clauses and
passes them to the execution module if they are

 84

syntactically correct. Thereafter, SQL processes
all of the clauses and waits for another Select
statement unless it encounters a Quit statement or
another SAS step. Thus, Proc SQL can create
multiple tables and/or listings until it is closed.

The variables listed in Proc SQL can be defined
relative to the data set in which they occur. The
programmer can create an alias by following the
table name with a shorter name (‘a’, in the
examples below). He or She can then attach the
alias to the front of the variable name with a
period.

This ability to reference variables by their data
sets allows multiple variables with the same name

to be manipulated by Proc SQL. This will be
shown in a later example when a data set is
created by joining two data sets.

Our next example shows the simplest way of
creating a SAS data set: reading into it all the
variables and records of another SAS data set.
Notice that the Select * statement is used to
specify that all variables are to be retrieved from
the Measures data set. The SAS Data Step
retrieves all variables by default. Only the
presence of a Keep or Drop statement as a Data
Set option prevents all variables in the input data
set from being read into the SAS Data Step. SQL
either retrieves all variables or only the specified
variables. It does not explicitly drop variables.

Creating a Table with Proc SQL compared to Creating It with a Data Step, Example 1

Proc SQL;
 Create Table Work1 as
 Select *
 from Datamart.Measures a;
 quit;

Data Work1;
 Set Datamart.Measures;
 Output;
Run;

The syntax of the SAS Data Step states that it
creates a data set, while the syntax of Proc SQL
states that it creates a table, but SAS treats them
as equals. The SAS Data Step can read a Proc
SQL table and Proc SQL can read a SAS Data
Set. Both entities are called tables by SAS when
viewed in its explorer window (when details is
tuned on).

The example that follows has the Select statement
retrieving particular variables from the Measures
data set and writing them to the table Sales. As
discussed earlier, the Data Step must accomplish
the same result with a keep action - in this case,
the Keep= data set option. However, the Select
statement has another result that cannot be easily
duplicated in the SAS data step. It orders the
variables as it retrieves them. Keep, in any form,
does not specify order. Only Length statements or

Format statements set order in a Data Step and
they must be placed before the Set statement if
they are going to determine the order of all
variables in the data set. The problem is,
however, that they require some knowledge of the
variables’ content and existing formats if they are
to be used effectively. The SQL Select statement
does not require such knowledge.

On the other hand, though the Data Step cannot
match the ease of variable ordering that can be
done in Proc SQL, it can perform multiple record
outputs to the same data set or record outputs to
multiple data sets with great ease. For example,
the data statement below could easily be modified
to write part of the record to Sales and part to a
data set named CityList.

Data Sales(keep=Sales) CityList(keep=City);

Creating a Table with Proc SQL compared to Creating It with a Data Step, Example 2

Proc SQL;
 Create Table Sales as
 Select
 a.State, a.City,
 a.Store, a.Year,
 a.Month, a.Sales
 from
 work.Datamart.Measures a;
quit;

Data Sales;
 Length State $12 City $20
 Store $06 Year $04
 Month $02 Sales 8;
 Set Datamart.Measures
 (keep= State City Store
 Year Month Sales);
 Output;
Run;

 85

The Match-Merge Syntax of Proc SQL Compared to the Data Step

Proc SQL;
 Create Table Joined as
 Select
 a.City, b.State,
 b.Store, b.Year,
 b.Month, b.Sales,
 b.VarCost, b.FixedCost
 from
 work.ParticularCities a
 left outer join
 Datamart.Measures b
 On a.City = b.City;
quit;

Data Joined;
 Merge Particular.Cities
 (in=c keep=City)
 Datamart.Measures
 (in=m
 keep=State Store Year
 Month Sales
 VarCost FixedCost)
 By city;
 If c then
 output;
run;

These SAS code match-merges a list of selected
cities with the Measures data set and keeps only
the cities in Measures that match the cities in
ParticularCities. The SQL code does the same
thing, but the action is called an equijoin instead of
a match-merge. This purpose of both sets of code
is to create a data set that has sales and cost
values for only particular cities. The same result
could have been achieved in each example by
using a Where statement that named each city, but
that would have required more coding and,
potentially, more errors.

Notice, however, that the SQL code and Data Step
do more than just keep the records in Measures
that match the cities from ParticularCities. They
also keep the cities that aren’t found in Measures

in order that the user can know if sales and cost
values were not found for a particular city.

The SQL code does this because of the left outer
join clause. The Data Step does it because the If
statement will output a record only if city in that
record was also on Particular.Cities. It use the
special variable, C, that has a value of 1 only when
the value of City comes from that data set.

Below are examples of the coding needed to
obtain particular results from a match-merge or an
equijoin. The desired result is shown under the
heading of function. Notice that the Match-Merge
code references the special variable of M when
records from Measures are being output.

Comparison of SQL Equijoins to Data Step Match-Merges

Function Equijoin Match-Merge

Keep all values of the
merging variable from the
first file and matching
records from the second.

Left outer join If C then output;

Keep all values of the
merging variable from
the second file and
matching records from the
first.

Right outer join If M then output;

Keep only the values of
the merging variable
that are on both files.

Inner join If C and M then output;

Keep all values of the
merging variable from
both files regardless of
whether they match.

Full Join If C or M then output;

 86

Based upon the coding above, Proc SQL and the
SAS Data Step join records on a matching
variable with almost equal ease of coding. They
also join such records with almost equal efficiency,
as long as the right outer data set is not indexed.

Index the right data set, however, and Proc SQL
executes an inner join with far more speed than
does the SAS Data Step. The reason: the match-
merge of the SAS Data Step will not use the index
to retrieve the records on the right (second) data
set while Proc SQL will.

Creating an Index is SAS is easy to code. There
are several methods. Below is the Proc Datasets
approach.

Proc Datasets library = Datamart;
 Modify Measures;
 Index Create City;
 Quit;

No matter the method of creation, the index is
created in the same way. A data set is built that
has the locations of each record matching a
particular value of the indexed variable. That data
set is accessed first whenever the indexed
variable is used to retrieve particular values of the
indexed variable. Where statements that select
particular values of the indexed variable will likely
use the index, as will sorts on the indexed
variable, as will SQL joins. In most cases, the SAS
programmer needs do nothing special to cause
SAS to use the index. If the data set is indexed on
that variable, SAS will evaluate whether the index
will save processing time and use it if it will. To
make certain, however, that SAS even considers
using the index in Proc SQL, however, the indexed
data set must be placed last in the join.

Select *
 from
 work.ParticularCities a
 inner join
 Datamart.Measures b
 On a.City = b.City;

If both data sets are indexed by the same variable,
then SAS may use both indexes in the join, but
only if number of records in the first data set are
numerous enough to warrant using the index. In
that case, it will join the indexes and then join the
records from each data set.

Indexes can speed selection of particular records
by a factor of 10 to 20, but they require additional
processing time to create and additional storage
space to store. In addition, each record retrieved
via the index takes more processing time than
retrieving the same record directly from the data
set. Thus, indexes improve the overall speed of
accessing data only when they can be used to
avoid reading the majority of the records in the
data set. Creating and using an index is,
therefore, only warranted if normal process is to
pull only subsets of the data set and not the full
data set.

Because a data set has been indexed, however,
the programmer doesn’t have to use Proc SQL in
order to use the index. Besides coding Where
statements with the values desired of the indexed
variable, the programmer can use the Set
statement with the Key= option to pull records that
match a list of values. The code below pulls cities
from the Datamart Measures data set that match
the values in Particular.Cities.

Data Subset;
 Set Work.ParticularCities;
 Set Datamart.Measures key=City;
 If _iorc_ = 0 then
 Found = ‘Yes’;
 Else
 Do;
 error = 0;
 Found = ‘No’;
 End;
 Output;
Run;

But this approach requires special handling using
the automatic _IORC_ variable when the value
passed to the index is not found. Proc SQL makes
no such demand on the programmer.

Finally, it should be noted that this discussion of
match-merges and equijoins has assumed that the
data sets were sorted by the variable being match-
merged and that the match-merge involved one-
to-one matching or one-to-many matching. That
is, it has assumed that the at least the first data
set in the merge had unique values and that both
data sets were sorted. If either of those
assumptions is incorrect, then a match-merge will
either fail or it will create an incorrect result. Proc
SQL will not fail, however, because it will internally
sort the data sets before merging and because it
can do many-to-many matching.

 87

Simple Sort, Computation, Assignment, and Selection

Proc SQL;
 Create Table Stats as
 Select
 a.City, a.State, a.Store,
 a.Year, a.Month, a.Varcost,
 sum(a.VarCost, a.FixedCost) as
 TotCost,
 from
 work.Joined
 Where state = ‘TX’
 Order by City, Store, Year, Month
 ;
quit;

Proc Sort Data = Joined
 (where=(State=’TX’)
 Out = Subset;
 By City Store Year Month;
Run;
*;
Data Stats;
 Set Joined
 (Keep=State City Store Year
 Month VarCost TotCost);
 By City Store Year Month;
 Totcost =
 sum(Varcost, FixedCost);
Run;

The above examples perform four actions:

1. Selects only particular variables such as
City, Store, Year, and Month.

2. Retrieves values for those variables from
only the state of ‘TX’.

3. Orders the results by City, Store, etc..
4. Creates a Total Cost field.

In both examples, the sum function was used to
create the values of TotCost from the values of
VarCost and Fixed Cost. Other calculations and
assignments could have been done with very
similar coding.

SQL
1.30 * Sum(a.VarCost, a.FixedCost) as Price
Year||Month as Yearmo
Substr(Store,1,3) as StoreArea

Data Step
Price = 1.30 * Sum(a.VarCost, a.FixedCost);
Yearmo = Year||Month;
Storearea = Substr(Store,1,3);

The SQL code performed the sorting with an
Order clause after it executed the selection,
calculation, and assignment. The SAS code
selected, sorted, calculated, and then assigned.
For the SAS code, this was by choice. The sort
could just as easily been executed after the Data
Step as before. But the next example builds on
this example and it requires that the sort be done
before the summing.

Summarization Combined with Computation, Assignment, and Selection

Proc SQL;
 Create Table Stats as
 select
 State, City, Year, Month,
 sum(VarCost) as VarCost,
 sum(TotCost) as TotCost
 from
 (select
 a.State, a.City,
 a.Year, a.Month, a.VarCost,
 sum(a.VarCost, a.FixedCost)
 as TotCost
 from work.Joined a
 Where state = 'TX')
 group by State, City, Year, Month
 order by State, City, Year, Month;
 quit;

Data Stats;
 Drop FixedCost SumVarCost SumTotCost;
 Set Joined(where=(State='TX')
 keep=State City Year Month
 VarCost FixedCost);
 By State City Year Month;
 If first.month then
 SumTotcost = 0;
 Totcost = Sum(Varcost,FixedCost);
 SumTotCost + TotCost;
 SumVarCost + VarCost;
 If last.month then
 do;
 TotCost = SumTotCost;
 VarCost = SumVarCost;
 output;
 end;
run;

 88

The above example repeats the actions taken in
the previous example, but also uses sum
statements or functions to create totals by State
and City. Accordingly, the Store variable is
dropped. Now the reason for sorting the data
before executing the Data Step becomes obvious.
The Data Step could not have summed the
TotCost and VarCost fields by City, Year, and
Month without the preceding sort. The SQL code,
however, can sum without a Proc Sort because it
will internally sort the data before it calculates a
sum for each grouping of City, Year, and Month.
This happens because both a Group By and an
Order By are present. The Order By sorts and the
Group By indicates that only the summary values
will output for each grouping. Had the Order By
not been present, the SQL code would still have
summed for each grouping, but it would not have
sorted the data before the summing by group.
Instead, it would have just ordered each group as
it encountered it, which could have resulted in a
data order that was not sorted.

The Data Step uses the By variable statement to
establish the first.month and last.month variables
that mark the first and last occurrence of each By
grouping. It then uses sum statements to
calculate the sum for each grouping. Then, it
writes out those sums under the original names of
the variables via the last.month reference.

The SQL step accomplishes the same result with
an in-line view, which – essentially – is a SQL step
within a SQL step. Notice that the Select
statement that sums over the Group By retrieves
data from another Select statement and not a
Table. That statement retrieves Texas cities and
stores from the data set Joined and then creates
the TotCost variable. Thereafter, it passes its
results to the next Select statement, which sums
VarCost and TotCost over the Order By variables
and then writes the result into the variables
VarCost and TotCost.

The use of an in-line view wasn’t required. The
same result could have been achieved this way:

Proc SQL;
 Create Table Stats as
 Select State, City, Year, Month,
 sum(VarCost) as VarCost,
 sum(sum(a.VarCost, a.FixedCost))
 as TotCost
 from work.Joined a
 Where state = 'TX')
 group by State, City, Year, Month
 order by State, City, Year, Month;

But in-line views can be very useful in even when
not necessary, particularly when the programmer
wants to break-up complex code so that it can be
tested independently or, perhaps, just to make the
function of the code more obvious – as it does in
this case. The SQL code in this last example
works because SQL knows by context that it
should for summing over rows after it sums over
the columns. It knows this because only one
value is present in the external sum function after
the internal sum has completed its task of
summing columns. Yet, what a programmer
understands easily and what SQL understands
easily may not always be the same.

Two final notes should be made before going onto
the next subject. Further calculations associated
with TotCost could have been easily added to both
the Data Step code and the SQL code. Here is
how the Expected Revenue calculation could have
added to both sets of code.

SAS Data Step

If last.month then
 do;
 TotCost = SumTotCost;
 VarCost = SumVarCost;
 ExpRev = Totcost * 1.30;
 output;
 end;

SQL Code

sum(VarCost) as VarCost,
sum(sum(a.VarCost, a.FixedCost))
 as TotCost
sum(sum(a.VarCost, a.FixedCost)) * 1.30
 as ExpRev

The key point to notice is that the SQL code
applied the 1.30 rate to the same math calculation
for TotCost as was used in the creation of the
value of TotCost. Normal SQL code cannot, within
the same view, use the value of TotCost to
calculate ExpRev. This is because TotCost does
not exist until SQL completes that view. Until
then, that column is an address space that only
SQL can address. TotCost can be accessed in
the Data Step because it was established at the
beginning of the Data Step and has its own
position in the program data vector. Thus, its value
in the current loop of the program is available as
long as it is accessed after it is populated.

 89

The SAS version of SQL can avoid this issue with
the Calculated reference, however. Adding
Calculated in front of a column will make the SQL
processor create a reference to the result that can
be employed in the same view. In this case, the
above code would be changed to:

sum(sum(Calculated TotCost) * 1.30
 as ExpRev

Remerging calculations onto the same data set

Proc SQL;
 Create Table Stats as
 select a.City, a.State,
 a.Year, a.Month,
 a.VarCost, AvgVarCost,
 (a.VarCost/AvgVarCost)*100
 as PctAvgVarCost
 from work.Joined a,
 (select
 mean(b.VarCost)
 as AvgVarCost
 from
 work.joined b)
 ;
 quit;

Proc summary data = Joined;
 Var VarCost;
 Output out = summary
 (Drop=_type_ _freq_)
 Mean = AvgVarCost;
Run;
*;
Data Stats;
 Set Joined;
 If not eof1 then
 Set Summary end=eof1;
 PctAvgVarCost =
 (VarCost/AvgVarCost)*100;
 Output;
Run;

Analysts often compare the values of a variable.
This is frequently accomplished by comparing the
individual values of the variable to the average of
all values of that variable. This requires that the
average be calculated for the variable and then
remerged with the individual values so that they
can be compared. Typical SAS programming
requires that the average be calculated in a
previous step and then merged with the original
data so that percentages can be calculated.

The Proc Summary above computes the average
of VarCost and then that average is added to each
row of the original data with a second Set
statement that was executed only once. In that
way, the average value is retained for all
subsequent rows of read from the original data set
Joined.

The SQL code accomplishes the same result in
much the same way: the average of VarCost is
calculated with an in-line view and then joined to
back onto Joined. This joining caused SQL to
issue a warning that a Cartesian join was
performed, which is when all rows of the second
data set are joined to each row of the first data set.
This is exactly what was wanted. The single row
of the in-line view of Joined, which has the
average of VarCost was joined to each row of
Joined.

This isn’t the usual coding approach by which
remerging is done in SQL, however, but it is
executed in the same way as the usual approach
and it demonstrates the underlying mechanics of
standard method of remerging. The typical SQL
coding for remerging is as follows:

Proc SQL;
 Create Table Stats as
 select
 a.City, a.State,
 a.Year, a.Month, a.VarCost,
 mean(a.VarCost) as AvgVarCost,
 (a.VarCost/AvgVarCost)*100
 as PctAvgVarCost
 from
 work.joined a
 ;
 quit;

SQL recognizes that the above coding requires
that the average be merged with all records, so it
does so and issues a warning that the results of its
calculation are being remerged with the original
data set, which – by the way – is a Cartesian join.
In fact, the CPU time needed to average the
values for 1 million records and merge that
average back onto the million records is very
similar for the two SQL coding methods. The in-
line view is slightly faster than the remerge, but it

 90

 91

is just a bit slower than the combined time of the
Proc Summary and the Data Step.

The next examples will cover sub-queries and the
Having clause. While the Where statement is
used in evaluating the values of fields on individual
records, the Having clause is used to evaluate

fields that have resulted from the summary of a
group of records, perhaps even all the records in
the table. Thus, the Having clause is either used
with an Group By clause or a function that
calculates a mean, a sum, or some other measure
over all records of the table.

Using a Having Clause to evaluate records summed with a Group By Clause

Proc SQL;
 Create Table Stats as
 select
 a.City, a.State,
 a.Year, a.Month, a.VarCost,
 mean(a.VarCost) as AvgVarCost
 from
 work.joined a
 having Varcost gt AvgVarCost
 Group by City, State, Year, Month
 Order by City, State, Year, Month
 quit;

Proc summary data = Joined nway;
 Class City State Year Month;
 Var VarCost;
 Output out = summary
 Mean = AvgVarCost;
Run;
*;
Data Stats;
 Merge Joined
 Summary(drop=_type_ _freq_);
 By City State Year Month;
 If VarCost gt AvgVarCost then
 Output;
Run;

The above example shows a Having clause
selecting records from grouping of City, State,
Year, and Month that have a variable cost greater
than AvgVarCost. The mean function calculates
the average and, then, the Having clause outputs
only the City and State values of VarCost that
exceed the average. This happens during the
remerging of mean value with the Joined table.

As stated earlier, it is the Group By clause that
causes the calculation of the average by City,
State, Year, and Month. The Order By clause only
ensures that the order of the fields will be in the
expected sort order.

The second example above shows SAS code
accomplishing the same result with a Proc
Summary and a match-merge by City, State, Year,
and Month.

Using a Having Clause to evaluate records summed over all records

Proc SQL;
 Create Table Stats as
 Select
 City, State,
 Year, Month, VarCost
 from
 work.joined a
 having
 VarCost = (1.30 * min(Varcost))
 ;
 quit;

Proc SQL;
 Create Table Stats as
 Select
 City, State,
 Year, Month, VarCost
 from
 work.joined a
 where
 VarCost lt (1.30 *
 (Select min(Varcost)
 from
 work.joined b))
 ;
 quit;

On the left above is another example of using a
Having clause to control the records that will
output to the Stats table. In this case, only the

records with the lowest variable costs are passed
to Stats table.

As stated above, the Having clause is executed
after the calculation of the measure, which means
it is executed during the remerge. Since the
remerge, in truth, is a separate view from the
calculation, the Having clause can reference either
the variable that is created from the calculation, as
in the earlier example, or the function that creates
the measure, as shown here. This means that the
Having clause does not ever need to use the
Calculated reference described earlier. It also
means that the Having clause is the equivalent of
a Where clause from the standpoint of the outer
view. This is shown by the second example, which
accomplishes the same result with an in-line view.

This in-line view executes somewhat more
efficiently than the remerge as the number of
observations increase, just as it did in an earlier
example. The inline view used 1 less CPU second
for 100,000 observations and 19 fewer CPU
seconds for 1 million observations.

This application of in-line view with a Where, or a
Having clause, is called a subquery. Subqueries
can return one value, as it does here, or multiple
values. To return multiple values, the in-line
Select must be structured to return multiple values
and the Where or Having clause must have an
operator that deals with multiple values, such as In
or Exists. The In operator is shown in the example
below and is the preferred method since it is more
efficient.

Proc SQL;
 Create Table Stats as
 Select
 City, State,
 Year, Month, VarCost
 from
 work.joined a
 where
 a.VarCost in
 (Select Varcost from
 work.joined b
 having Varcost gt
 (.125 * avg(varcost)))
 ;
 quit;

The subquery retrieves a list of values of variable
costs from Joined that are more than 25% larger
than the average variable costs of all Cities. The
Where clause then selects only the Cities from
Joined that have variable costs that exceed the
average variable cost by 25%. When it executes,
the Where clause looks something like this:

Where a.VarCost in (60, 70, 90, 100, 120)

The last examples in this paper cover Case
expressions and user-built formats, which are
used to assign values to a variable based upon
the values of other variables.

Proc SQL;
 Create Table Stats as
 Select
 City, State,
 Year, Month, VarCost,
 Case
 When Year lt ‘2003’ then
 ‘PreviousYear’
 Else
 ‘CurrentYear’
 end
 as Descrptn
 from
 work.joined a
 ;
 quit;

The Case expression assigns values to a field in
the same way an If Then Else statement would do
in a SAS Data Step. In this example, it assigns the
strings ‘PreviousYear’ or ‘CurrentYear’ to the field
that will be named Descprtn when the results of
the Select are written to the Stats table.

The Case expression is closed with an End
reference. The Else references are recommended,
but optional. SQL will assign missing values in
their absence, just as would the If Then Else
statements a Data Step if a final Else statement
was not used.

Case statements can also be nested. .

Case
 When Year lt ‘2003’ then
 Case
 When Month le ‘06’ then
 ‘First6Mos’
 Else
 ‘Second6Mos’
 End
 Else
 ‘PreviousYear’

User-built formats can also be used to assign
values with the same coding ease and operational
speed they provide in SAS Data Steps. They
would be used like this:

Select
 City,
 Put(State,$State.) as StateName,
 VarCost,
 FixedCost

 92

Assuming the user-built format looked something
like below, the put function would assign to
StateName the values ‘Texas’ for ‘TX’, ‘Louisiana’
for ‘LA’, and ‘New York’ for ‘NY’.

Proc format;
 Value $State
 ‘LA’ = ‘Louisiana’
 ‘TX’ = ‘Texas’
 ‘NY’ = ‘New York’
 ;
run;

Final Words

This paper has attempted to provide an
understanding of the simpler capabilities of Proc
SQL by comparing and contrasting Proc SQL code
with typical SAS code that would perform the
same function as the SQL code being presented.
It has also contrasted the SQL code to other SQL
to both reinforce the specific functions of the code
and to indicate which coding techniques could be
more efficient when processing larger numbers of
records.

It is hoped that this paper compliments, rather
than repeats or rewords, recent SUGI papers on
Proc SQL or the SAS Guide to the SQL
Procedure. The Guide and those papers that
were read (and appreciated) by the author are
listed in the references. All are available, thanks to
SAS, under the SAS support website:

http://support.sas.com/index.html

References

SAS® Guide to the SQL Procedure, Usage and
Reference, Version 6, First Edition, SAS Insitute,
Cary, NC, USA; 1990

Harrington, Timothy J., ‘An Introduction to SAS®
Proc SQL’, SAS Users Group International
(SUGI) 27, 2002

Lafler, Kirk Paul., ‘Undocumented and Hard-to-
Find SQL Features’, SAS Users Group
International (SUGI) 28, 2003

Sherman, Paul D., ‘Creating Efficient SQL – Four
Steps to a Quick Query’, SAS Users Group
International (SUGI) 27, 2002

Whitlock, Ian., ‘Proc SQL – Is it a Required Tool
for Good SAS® Programming?’, SAS Users
Group International (SUGI) 26, 2001

Trademark Citation

SAS and all other products and service names of
the SAS Institute Inc. are registered trademarks of
SAS Institute in the USA and other countries. ®
indicates registration.

Contact Information

The author, Jimmy DeFoor, can be contacted at

972-653-5928, and
jimmy.a.defoor@citigroup.com

 93

	Proc SQL – A Primer for SAS Programmers
	Creating an Output Listing with Proc SQL vs a Data Step

