

Multilingual Computing with the 9.1 SAS Unicode Server
Stephen Beatrous, SAS Institute, Cary, NC

ABSTRACT

In today’s business world, information comes in many
languages and you may have customers and employees in
various countries all over the globe. It is very possible
that your mission-critical data will be created and stored
in more than one language. SAS offers several features
that allow you to store and process multilingual data.
With SAS 9.1, it is now possible to write a SAS
application that processes data from many languages all in
the same SAS session. This paper introduces the Unicode
support that is provided in SAS 9.1 and discusses several
scenarios for how you might use this support to deliver
multilingual data to users around the world.

CONCEPTS

You should become familiar with the following basic
concepts in order to understand this paper.

� Character Set
� Encoding
� Transcoding
� Unicode
� Legacy Encoding
� SAS DBCS Extensions
� SAS Unicode server

A character set is a repertoire of symbols and
punctuation marks used in a single language or in a group
of languages.

An encoding is the association of a unique numeric value
with each symbol and punctuation mark in a character
set. There are two groups or types of encodings: single-
byte character set (SBCS) encodings and double-byte
character set (DBCS) encodings. SBCS encodings
represent each character in a single byte. DBCS
encodings require a varying number of bytes to represent
each character. A more appropriate term for “DBCS” is
multi-byte character set (MBCS). MBCS is sometimes
uses as a synonym for DBCS.

SBCS encodings are limited to 256 possible characters.
DBCS encodings can represent many more than 256
characters. Beginning with SAS 8.2, each SAS session
has one encoding. The encoding for a SAS session is set
using the LOCALE or ENCODING option.

Transcoding is the process of converting from one
encoding to another.

Unicode is a universal character set that contains the

characters in major languages of the world. Other
character sets are limited to a subset of the world’s
languages. Often the subset is regional (for example,
Windows Latin 1 (WLATIN1) represents the characters
of the US and Western Europe on Windows). UTF8 is
one encoding of the Unicode character set in which
characters are represented in 1 to 4 bytes.

A legacy encoding is one of the DBCS or SBCS
encodings which predate the Unicode standards. Legacy
encodings are limited to the characters from a single
language or a group of languages.

SAS DBCS extensions are an optional supplement to
BASE SAS that provide support for DBCS encodings. In
SAS 9 the DBCS extensions are available on the SAS
software media. When you install SAS, you can choose
to install SAS with or without the DBCS extensions.

SAS 9 uses the DBCS extensions to support the UTF8
encoding as a SAS session encoding. In this paper, I will
refer to the DBCS system running with a session
encoding of UTF8 as the SAS Unicode server.

Additional information about these and other SAS
international features and options is available in the
SAS® 9.1 National Language Support (NLS) Reference
book (1) and in the "Base SAS Software" SAS
OnlineDoc, Version 9. (2)

INTRODUCTION
BACKGROUND
From Version 5 through Release 8.2, the SAS System was
delivered in 2 separate forms: the SBCS system and the
DBCS extensions. The SBCS system supports character
data in the ASCII and EBCDIC encodings. ASCII and
EBCDIC store characters in a single byte. There are
multiple extensions to ASCII and multiple versions of
EBCDIC, which handle national characters for different
regions. For example, the WLATIN1 encoding handles
the characters necessary for the languages of Western
Europe. The WLATIN2 encoding handles the characters
in the languages of Central and Eastern Europe. All
ASCII and EBCDIC encodings handle US English
characters.

The SAS DBCS extensions support character encodings
in which individual characters are represented in multiple
bytes. The DBCS system supports SAS customers that
use or process data that is stored in languages such as
Japanese, Chinese, or Korean.

Both the DBCS and the SBCS SAS systems were

 26

designed so that an individual SAS session could
represent and process characters within one region or
country. That is, an individual SAS session could process
only Western European characters, or only Eastern
European characters, or only Japanese Characters, or only
Chinese characters. In other words, users were unable to
process data from all of these languages in a single SAS
session.

UNICODE SUPPORT IN SAS 9.1

In 9.1, SAS customers in many regions around the world
will use the DBCS extensions in order to support global
data (multilingual data which can only be represented in
the Unicode character set). With the SAS Unicode server,
it is now possible to write a SAS application which
processes Japanese data, German data, Polish data, and
more, all in the same session. A single server can deliver
multilingual data to users around the world.

This paper will discuss the following six scenarios for
using the SAS Unicode server.

1. Populating a Unicode database.
2. Using SAS/SHARE® as a Unicode data server.
3. Using thin-client applications with the Unicode

data server.
4. Using SAS/IntrNet® as a Unicode compute

server.
5. Using AppDev Studio™ as a Unicode compute

server.
6. Generating Unicode HTML output using ODS.

The SAS Unicode server is designed to run on ASCII
based machines. The SAS Unicode server may be run as
a data or compute server or as a batch program.

There are 3 restrictions to the SAS Unicode server.

1. The SAS Display Manger is not supported and if
used will not display data correctly.

2. Enterprise Guide® cannot access a SAS Unicode
server.

3. You cannot run a SAS Unicode server on MVS
(OS/390).

STARTING AND USING A SAS UNICODE
SERVER

To start a SAS Unicode server you must do two things:

1. Install SAS (release 9.1 or later) with DBCS
extensions.

2. Specify ENCODING UTF8 when you start SAS,
such as: sas -encoding UTF8

Getting started is that simple. The picture gets
complicated when you start thinking about how to convert

systems that were written for processing SBCS encoded
data, to systems written for processing DBCS Unicode
encoded data.

When you use the SAS Unicode server, by default the
files that you create and save will store characters in
UTF8 encoding. If you read files that were created in
other encodings, the data in those files will automatically
be converted to UTF8 format using SAS’ cross-
environment data access (CEDA) feature. (3) In the
section of this paper titled “Best Practices” I will discuss
how to efficiently use CEDA to bring legacy files into a
Unicode format.

The most efficient way to set up a Unicode SAS based
application is to have every layer of the application
(client, mid-tier, server, and data store) represent strings
in Unicode In the diagrams which follow I will use the
colors green, tan, and gray to denote Unicode, DBCS, and
SBCS, respectively.

Unicode DBCS SBCS

ACCESSING AND CREATING DATA

Data can be read into SAS from three external sources.

1. External files
2. SAS Data Libraries
3. DBMS Tables

The SAS Unicode server processes data differently from
each source. Tips for processing data from the first two
sources are discussed below.

EXTERNAL FILES

External files can be accessed using the FILENAME,
ODS, INFILE, or FILE statements.

An external file can contain only character data or a
mixture of character and binary data. In either case the
encoding for the character data in the external file can be
different from your current SAS session encoding.

When a file contains only character data, use the
ENCODING= option on the FILENAME, ODS, INFILE
or FILE statement to transcode the data from its original
encoding to the current SAS session encoding.
Please see the documentation on these statements for
details on the ENCODING= option. (6)

When an external file contains a mix of character and
binary data then you must use the KVCT function to
convert individual fields from the file encoding to the
session encoding.

 27

The KVCT function (2) can be used as shown here:

outstring = kvct(instring,
 enc_in,
 enc_out);

Where:

instring - input character string.
enc_in - encoding of instring.
enc_out – encoding of outstring.
outstring – results of transcoding instring from enc_in to
enc_out.

For example, if you have a WLATIN1 string that you
want to convert to UTF8 you could use the following
code:

out = kvct (in,
 “WLATIN1”,
 “UTF8”);

SAS DATA LIBRARIES

SAS DATA files have an ENCODING attribute in V9.
When the file encoding is different from the session
encoding, the CEDA facility (3) will automatically
transcode character data when it is read and when it is
saved.

By default, when you output data from SAS, the new files
will be saved using the current session encoding.
However, you can also explicitly create a UTF8 data file
during an SBCS or DBCS session. The
ENCODING=UTF8 option and the
OUTENCODING=UTF8 libname option can be used to
force SAS 9.1 to create a UTF8 encoded file.

Figure 1 shows how you can use CEDA transcoding to
output files to a Unicode data library. This example
shows multiple SAS sessions running with the appropriate
encoding for a specific region.

Error! Objects cannot be created from editing field
codes.

To follow the scenario shown in Figure 1, you must use
the ENCODING option on the LIBNAME or dataset
specification. The ENCODING option will force the
system to transcode character data from session encoding
to UTF8 as its being written. (6)

For example, if you are using a French locale, you would
do the following:

sas –locale french

libname lib 'mult’ outencoding=utf8;
data lib.fra;
 length x $ 20 ;
 x = 'français';
run;

If you are using a Japanese locale, you would do the
following:

sas -dbcs -dbcslang japanese -dbcstype sjis

libname lib 'mult' outencoding=utf8;
data lib.jpn;
 length x $ 20 ;
 x = '•••' ;
run;

Both of these code examples enable you to add a Unicode
file to the target library.

Figure 2 shows how you can use CEDA to convert SBCS
and traditional DBCS files to a UTF8 encoding as the
files are read.

Error! Objects cannot be created from editing field
codes.

Figures 1 and 2 describe cases where string data is
transcoded from a legacy encoding into a UTF8 encoding.
This transcoding has one risk. The string data can grow in
length when being transcoded from a legacy encoding to a
UTF8 encoding. See “Avoiding Character Truncation
During Transcoding” in the “Best Practices” section for
instructions on reading legacy data or converting legacy
data without the risk of truncation.

The scenarios provided in this paper include diagrams that
show how to read legacy data into SAS Unicode servers.
All of these examples are vulnerable to the risk of string
truncation, but you can avoid that risk by properly
transcoding your data.

SCENARIO 1: POPULATING A UNICODE
DATABASE

The first step in converting an existing database to
Unicode or in setting up a new Unicode based system will
be to convert all of your data from its legacy encoding to
the UTF8 encoding. Once the data is in a Unicode
database, there will not be any loss of data when it is read
by a Unicode server.

Figure 1 shows how multiple users in your enterprise can
simultaneously contribute Unicode data to a central
library. Figure 1 presents a distributed model where
employees deposit their regional files into a Unicode
library.

 28

In some organizations, however, a central database
administrator would convert selected data from regional
encodings to Unicode. Figure 3 shows how a central
administrator could collect data and store it in a Unicode
server database.

Error! Objects cannot be created from editing field
codes.

To use the model shown in Figure 3, you do not have to
use any options if the files being converted are SAS 9
files. If you have files from an earlier release, then you
must use a LIBNAME statement or data set option to
identify to SAS the current encoding of the input files.
The following example demonstrates how you can import
Version 8 or Version 9 data.

sas –encoding UTF8
 /* SAS 9 Data as Input */
data mult ;
 set lat1.data
 lat2.data
 sjis.data ;
run;

 /* SAS 8 Data as Input */
data mult;
 set lat1.data(encoding=wlatin1)
 lat2.data(encoding=wlatin2)
 sjis.data(encoding=sjis) ;
run;

SCENARIO 2: USING SAS/SHARE AS A
UNICODE DATA SERVER

SAS/SHARE is a product that enables multiple users to
access data from a central server. To convert your
existing SAS/SHARE server to a SAS Unicode server you
must specify the –ENCODING UTF8 config option.

Error! Objects cannot be created from editing field
codes.
In Figure 4, clients running SAS with a legacy encoding
are able to access the Unicode data from a SAS library or
from a DBMS. When the client session uses a legacy
encoding (such as Windows Latin1) then there may be
some Unicode string data that cannot be represented in
the client session. The data will be transcoded from
UTF8 encoding to the legacy encoding when it is
transferred between the server and the client. If your
client is running SAS with a WLATIN1 encoding (to
support a language such as French) you will not be able to
display a Japanese national character, but you will be able
to display any Latin1 based character (French, German,

Spanish, etc.).

Those characters which cannot be displayed in the legacy
encoding will display as boxes “□” (the standard
replacement character). If characters are replaced by the
replacement character during transcoding then the data
cannot be updated.

If your client is running SAS with a Unicode session
encoding you can view all of the data stored on the server.

SCENARIO 3: USING JDBC WITH A UNICODE
DATA SERVER

The SAS system is continuously increasing support for
industry standard data access protocols such as JDBC.
The JDBC interfaces are a data access interface for Java
applications. Java supports Unicode string data and
therefore, it would be very natural for the SAS Unicode
server to function as the data server for Java.

Error! Objects cannot be created from editing field
codes.
In SAS 9, many of the new features of the Business
Intelligence Platform are written in Java. This includes
SAS Management Console and SAS Metadata Server.
Note that a SAS Unicode server can be used as a data or a
compute server for SAS authored or user authored Java
applications.

The SAS ODBC driver and the OLEDB provider
currently do not surface Unicode data from a SAS server.
This means that thin client applications relying on
OLEDB or ODBC for data access will not be able to
exploit a SAS Unicode server. We plan to remedy this in
a future release.

SCENARIO 4: USING SAS/INTRNET AS A
COMPUTE SERVER

The SAS system is often used as a compute server from a
non-SAS client. This is another natural fit for the SAS
Unicode server.

Error! Objects cannot be created from editing field
codes.

The user must specify the –encoding UTF8 config option.
There are no changes required to the PROC APPSRV
statements (in appstart.sas). There are no changes
required for the CGI configuration (in broker.cfg).

When running the app server with a UTF8 encoding,
output will be passed to the browser in a UTF8 encoding.
The browser will recognize UTF8 data if any of the
following are true:

 29

• The browser default encoding is set to Unicode.
• The HTML is preceded by a Unicode byte order

mark. This will happen automatically UNLESS
the SAS/IntrNet program uses data step put
statements to write the HTTP header. Using
PUT statements to write the HTTP header has
not been recommended for several releases, but
many legacy programs still use this old style.

• The HTML contains a <META> tag defining the
charset. Any ODS HTML output will contain
the <META> tag unless it is explicitly disabled.
Other HTML generators (HTML Formatter, put
statements, etc.) will not include the <META>
tag by default.

• The HTTP header contains a UTF8 charset
identifier on the Content-Type record. This can
be set in the SAS/IntrNet program with the
appsrv_header function.

SCENARIO 5: USING APPDEV STUDIO AS A
COMPUTE SERVER

AppDev Studio enables Java programmers to run
programs on a SAS server. The programs that run on the
server are either SCL programs running with Jconnect or
remote objects executed through SAS Integration
Technologies.

The Java environment is Unicode enabled. When the
object server is a SAS Unicode server and the data
sources are Unicode data stores then the AppDev Studio
developer can create a truly multilingual application as
shown in Figure 7.

ERROR! OBJECTS CANNOT BE CREATED FROM
EDITING FIELD CODES.

SCENARIO 6: GENERATING UNICODE HTML
OUTPUT USING ODS

A SAS Unicode server can be used in a batch program to
produce ODS output with an encoding of UTF8. At the
time of this writing, the following ODS output formats
support –encoding UTF8:

• HTML
• XML

Error! Objects cannot be created from editing field
codes.

The SAS Unicode server (using a simple PROC PRINT)
was used to produce the following report. Note that
without the SAS 9.1 Unicode Server it would not have
been possible to produce output with this rich set of

national characters.

Figure 9: Unicode ODS HTML

BEST PRACTICES AND PITFALLS OF THE SAS
UNICODE SERVER

WHAT FORMAT SHOULD I USE FOR MY DATA?
To make the most efficient use of a SAS Unicode
compute or data server the data should be stored in
Unicode format with an encoding of UTF8. By default,
when a file is created it will inherit the current session
encoding. Your legacy files will contain character data
that is not in Unicode format. One of your first steps in
converting an application to run with SAS Unicode server
is to convert the data files. As noted above, files can be
read by a Unicode Server even if they are not in Unicode
format. However, there is a performance cost (as
character data is converted when it is read) and there are
restrictions (if the file encoding does not match the
session encoding the file cannot be updated and cannot
utilize index optimization).

You should use the Character Variable Padding engine
(CVP) (5) engine described below to convert your files
and avoid truncation problems.

USING THE CVP ENGINE TO AVOID CHARACTER
TRUNCATION DURING TRANSCODING
UTF8 encoding requires a varying number of bytes for
each character. When you transcode files from a regional
encoding to a UTF8 encoding you will likely experience
string truncation. You can avoid string truncation
problems by padding string data as it is converted from a
legacy encoding to a UTF8 encoding.

 30

The following table can help you determine how much
expansion to expect.

Bytes in
UTF8 Character Sets

1 7bit, US_ASCII Characters

2
Eastern, Central and Western European,
Baltic, Greek, Turkish, Cyrillic, Hebrew, and
Arabic

3
Japanese, Chinese, Korean, Thai, Indic and
certain control characters

4
Some ancient Chinese, special Math symbols
(surrogate pairs in UTF16)

For example, assume that you have a 6 byte character
field with the value “Straße.” In memory the field will
look like this:

S eßart

52 65D F617274

C 352 659F617274

LA T IN 1

U T F 8

If CEDA is used to read this field from a Latin1 encoding
into a UTF8 encoding then the value will truncate to
“Straß” because that is the maximum that can be
represented in a 6 byte UTF8 field.

The new CVP engine available in SAS 9.1is a read only
engine that will automatically pad character lengths. (5)
Using the CVP engine enables you to transcode data to
UTF8 without truncation. By default the CVP engine will
pad data by a factor of 1.5 when the data is read. For
example, a six byte character field becomes a nine byte
character field when read by the CVP engine.

The program below will copy all of the input files from X
to Y, expand the length of character fields by 1.5 (the
default), and transcode the character fields to UTF8 along
the way.

libname x cvp ‘path1’;
libname u ‘path1’ outencoding=utf8;

proc copy noclone in=x out=u;
 select datasetname;

There are 3 things that are particularly important in the
previous code example. First, the engine name of CVP
should be included on the first LIBNAME statement in
order to force strings in the input file to be expanded as
they are read.

Second, the OUTENCODING option in the second
LIBNAME statement ensures that output files are written
in UTF8 encoding. This option is not necessary if the
program is being run with a UTF8 session encoding.

Third, by default PROC COPY tries to make an output
file with the same attributes as the input file. The
NOCLONE option overrides this default.

AVOID TRANSCODING BINARY DATA
Sometimes a data set will contain character fields that are
really binary in nature. SAS would corrupt these fields if
it transcoded them from the file encoding to the current
session encoding. In SAS 9 you can identify binary fields
using the TRANSCODE=NO option and prevent
truncation problems.

For example, the MXG data set PDB.XTY70D contains
many binary fields, e.g. CPUSER0. These fields will be
incorrectly transcoded as character data if the file is
processed with CEDA. The ATTRIB statement below
will preserve the CPUSER0 field while allowing all other
character fields to be transcoded.

 data pdb.xty70d;
 attrib cpuser0 transcode=no;
 set pdb.xty70d;

AVOID TRANSCODING ERRORS DURING CEDA
When transcoding data from one encoding to another, an
error occurs when the input data contains a character that
cannot be represented in the output encoding.
Transcoding errors are most common when transcoding
from UTF8 to one of the legacy encodings.

If CEDA transcoding errors occur while reading input
files, the SAS system will ignore the error as long as the
SAS task has no other files open for OUTPUT or
UPDATE. Consider the following program:

proc print data=cedalib.data;

If this program encounters a transcoding error reading
CEDALIB.DATA it does no harm. SAS will ignore the
error. Now consider this program:

data permlib.newdata;
 set cedalib.data;
run;

 31

This program will potentially replace a file with bad data.
To prevent the risk of data corruption, CEDA treats
transcoding errors as an ERROR condition and the data
step stops with a NOREPLACE option.

For details on the CEDA rules for processing transcoding
errors see "Base SAS Software." SAS OnlineDoc,
Version 9. (3)

Transcoding errors can be avoided if all of your data and
all of your applications are running Unicode. If you are
running a mix of SAS clients in legacy encoding and SAS
Unicode servers then you are vulnerable to transcoding
errors.

CODING ISSUES: USING THE K STRING FUNCTIONS
If you do not currently use the DBCS SAS system then
your SAS programs assume that every character is a
single byte in length. You must convert your SAS
programs if you want them to support and process UTF8
encoded data. The SAS character functions (for example
SUBSTR, INDEX, LENGTH) have DBCS character
equivalents (for example KSUBSTR, KINDEX, and
KLENGTH). (8)

The following simple example uses two K string
functions. This example loops over the characters in a
string and assumes that a character can be as much as 4
bytes in length:

data _null_ ;
 set merged;
 length ch $ 4 ;
 do i = 1 to klength(maktx) ;
 ch = ksubstr(maktx, i, 1) ;
 put ch=;
 end ;
run;

SPDS AND THE SAS UNICODE SERVER
The SAS Performance Data Server® (SPDS) does not
support transcoding. This server is built for speed. The
SPDS server assumes that the encoding for its client data
utilize strings with the same encoding as its server.

The SPDS server can be used as a Unicode data store as
long as the files created in the SPDS library were created
by SAS Unicode servers and as long as all of the clients
expect data in UTF8 encoding.

APPENDIX 1: ENCODING RELATED OPTIONS IN
THE SAS SYSTEM

The encoding option is central to understanding how SAS

processes string data. The following table summarizes
the ENCODING related options in SAS 9. These and
other options are discussed in detail in the SAS 9.1
National Language Support (NLS) Reference book. (1)

Encoding Related Options in the SAS system
Option Name Purpose

ENCODING= SAS Configuration
option

Specifies the
current SAS
session encoding

ENCODING= FILENAME option

Specifies the
encoding for
external files or
stream

ENCODING= option in ODS statement

Specifies the
encoding for
ODS driver. The
encoding option
is only valid for
certain ODS
drivers such as
HTML, XML,
CSV. Some
device drivers
depend on their
own mechanism
on support
encoding
processing.

ENCODING= Dataset option on input /
output / update

 Specifies the
encoding of a
SAS Dataset

ENCODING= libname option
(INENCODING= for input,
OUTENCODEING= for output)

 Default encoding
for datasets
within a library.

CHARSET= option in APPSRV
procedure

Establishes the
metatag for
output streams.

TRANSCODE=YES|NO in ATTRIB
statement in DATASTEP (available in
9.1)

Binary character
data
type. TRANSCO
DE=NO in
ATTRIB
statement
suppress any
transcoding per
variable.

TRANSCODE=YES|NO SQL column
Modifier Same as above

CVPMULT= and CVPBYTES= options
in CVP Engine

 Control the
amount of
padding.

 32

 33

APPENDIX 2: UNICODE PROCESSING IN THE
SAS SYSTEM
There are several Unicode related features of SAS 9.
These features are available for SAS sessions running
legacy encodings as well as SAS Sessions running with a
UTF8 encoding. (1)

• Unicode ENCODING= values for FILENAME
and ODS statements. (1)

• Unicode FORMATS and INFORMATS. (7)
• NL formats for displaying currency and date

formats matching the user’s locale. (7)

CONCLUSIONS
The 9.1 SAS Unicode server introduces a SAS system
that can handle data from around the world in a single
application. To use the SAS Unicode server you must
install SAS (release 9.1 or later) with DBCS extensions
and then specify the appropriate encoding when you start
SAS. The SAS Unicode server allows you to meet your
business need to capture and process national characters
from around the world, in one SAS session.

ACKNOWLEDGMENTS

There are many SAS employees from around the world to
thank for the Unicode features of SAS. Some of them
are:
••••• (Shin Kayano)
•••• (Joji Kobayashi)
Mickaël Bouëdo (Mickael Bouedo)
••••• (Atsuko Yoshizawa)
Paula Smith (Paula Smith)
Manfred Kiefer (Manfred Kiefer)
Jack Wallace (Jack Wallace)

REFERENCES
1. SAS(R) 9.1 National Language Support (NLS)

Reference. SAS Institute Inc., Cary, NC. SAS.
2. "Base SAS Software." SAS OnlineDoc, Version 9.1

2003 CD-ROM. SAS Institute Inc., Cary, NC. SAS.
3. Cross-Environment Data Access (CEDA). "Base

SAS Software." SAS OnlineDoc, Version 9. 2003.
CD-ROM. SAS Institute Inc., Cary, NC. SAS.

4. Cross-Environment Data Access (CEDA). SAS
Institute Inc., Cary, NC.SAS Available at:
http://support.sas.com/rnd/migration/planning/files/ce
da.html.

5. Character Variable Padding (CVP). "Base SAS
Software." SAS OnlineDoc, Version 9.1 2003. CD-
ROM. SAS Institute Inc., Cary, NC. SAS.

6. Encoding. "National Language Support (NLS)
Reference." SAS OnlineDoc, Version 9.1 2003. CD-
ROM. SAS Institute Inc., Cary, NC. SAS.

7. NLS Formats. "National Language Support (NLS)
Reference." SAS OnlineDoc, Version 9.1 2003. CD-
ROM. SAS Institute Inc., Cary, NC. SAS.

8. NLS Functions. "National Language Support (NLS)
Reference." SAS OnlineDoc, Version 9.1 2003. CD-
ROM. SAS Institute Inc., Cary, NC. SAS.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at: steve.beatrous@sas.com

http://support.sas.com/rnd/migration/planning/files/ceda.html
http://support.sas.com/rnd/migration/planning/files/ceda.html

	libname x cvp ‘path1’;�libname u ‘path1’ outenco�

